JPH04267311A - Method of making electrode of superconductive current lead - Google Patents

Method of making electrode of superconductive current lead

Info

Publication number
JPH04267311A
JPH04267311A JP4899591A JP4899591A JPH04267311A JP H04267311 A JPH04267311 A JP H04267311A JP 4899591 A JP4899591 A JP 4899591A JP 4899591 A JP4899591 A JP 4899591A JP H04267311 A JPH04267311 A JP H04267311A
Authority
JP
Japan
Prior art keywords
electrode
oxide superconductor
current lead
alloy
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4899591A
Other languages
Japanese (ja)
Other versions
JPH0779046B2 (en
Inventor
Yutaka Yamada
豊 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP3048995A priority Critical patent/JPH0779046B2/en
Publication of JPH04267311A publication Critical patent/JPH04267311A/en
Publication of JPH0779046B2 publication Critical patent/JPH0779046B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To equip an oxide superconductive current lead with an electrode low in resistance by soaking an oxide superconductor in fused liquefied substance of alloy of In, Ga, Ag, etc., where there is no influence in superconductive property and the electric property is small and the melting point is low. CONSTITUTION:Selecting the composition of 2:96.8 in the atomic ratio of Ag to In, those are fused in a crucible, and a bismuth oxide superconductor is soaked in it to make an electrode. The temperature of the said bismuth oxide superconductor is preheated to 175 deg.C. This is one which is higher by about 10% than a eutectic temperature of 156 deg.C. As a result, the contact resistance of the electrode being made is 10<-8>OMEGAcm<2> at 77K. The contact resistance R=10<-8>OMEGAcm<2> being gotten this way is substituted for Q=I<2>R to calculate joule heat. Defining that the application current I=l000A and that the contact area of an electrode part is 1cm<2>, it follows that Q=10<-2>W, and the numerical value without problem as calorific value can be gotten.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は酸化物超電導材料を用い
た電流リードの電極形成方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming current lead electrodes using oxide superconducting materials.

【0002】0002

【従来の技術】超電導磁石装置などの超電導装置に用い
る電流リードとして酸化物超電導体を使用することは、
金属あるいは合金系超電導体を使用する場合に比べて冷
却システムが簡素化され、低コスト化、操作性の向上な
ど多くの利点が見込まれる。この場合、電流リードを構
成する酸化物超電導体と金属製のワイヤまたはバルクと
を接続する必要がある。従来、この接続にはハンダ付け
やろう付等が使用されている。図2は超電導機器と電流
リードとの関係を示す模式図である。超電導コイル11
と銅製電流リード12の間に酸化物超電導体電流リード
13を接続部14を介して配置する。通常、これらの電
流リード部のうち、酸化物超電導体電流リード13は酸
化物超電導体の臨界温度以下に冷却して用いられる。
[Prior Art] The use of oxide superconductors as current leads for superconducting devices such as superconducting magnet devices is
Compared to the case of using metal or alloy-based superconductors, the cooling system is simplified, and many advantages are expected, such as lower costs and improved operability. In this case, it is necessary to connect the oxide superconductor constituting the current lead to a metal wire or bulk. Conventionally, methods such as soldering and brazing have been used for this connection. FIG. 2 is a schematic diagram showing the relationship between superconducting equipment and current leads. Superconducting coil 11
An oxide superconductor current lead 13 is placed between the current lead 12 and the copper current lead 12 via a connecting portion 14 . Generally, among these current lead parts, the oxide superconductor current lead 13 is used after being cooled to a temperature below the critical temperature of the oxide superconductor.

【0003】しかし、酸化物超電導体電流リードに対す
るハンダ付け、ろう付けによる電極の接続は接触抵抗が
十分小さくはないので、流せる電流に限界がある。さら
に接触抵抗を下げる接続方法としては、電気抵抗が小さ
く超電導特性を劣化させない金属であるAg、Au、I
n等を箔状に加工し、酸化物超電導体に金属箔を圧着、
熱処理して電極を形成する方法も知られている。
[0003] However, since contact resistance is not sufficiently small when electrodes are connected to oxide superconductor current leads by soldering or brazing, there is a limit to the current that can be passed. As a connection method to further reduce contact resistance, metals such as Ag, Au, and I
Process n etc. into a foil shape, press the metal foil onto the oxide superconductor,
A method of forming an electrode by heat treatment is also known.

【0004】0004

【発明が解決しようとする課題】上記の従来方法は酸化
物超電導体電流リードを接続する際にある程度の効果の
ある方法であるが、さらに大きな電流が流れるときはジ
ュール熱による発熱量が大きくなることがあり、その場
合は大量の冷媒で冷却する必要がでてくる。
[Problem to be solved by the invention] The above conventional method is effective to some extent when connecting oxide superconductor current leads, but when a larger current flows, the amount of heat generated by Joule heat increases. In that case, it becomes necessary to cool the device with a large amount of refrigerant.

【0005】図3にAg、Au、In等の金属箔に熱処
理を施して超電導体に電極を形成する方法の一例を示す
。ビスマス系酸化物超電導体15にAg製の金属箔16
を圧着、熱処理した界面の模式図を示す。界面は熱処理
を加えたにもかかわらず間隙が残り、見かけの接触面積
に比べ、有効な接触面積は小さい。結局、固体同志の接
触であるため、この方法での接触抵抗の低減には限界が
ある。本発明は接触抵抗のきわめて低い電極を酸化物超
電導体電流リードに備えることを目的とする。
FIG. 3 shows an example of a method for forming electrodes on a superconductor by heat-treating a metal foil such as Ag, Au, In, or the like. Ag metal foil 16 on bismuth-based oxide superconductor 15
A schematic diagram of the interface after crimping and heat treatment is shown. Despite heat treatment, gaps remain at the interface, and the effective contact area is smaller than the apparent contact area. After all, since the contact is between solid bodies, there is a limit to the reduction of contact resistance using this method. The object of the present invention is to provide an oxide superconductor current lead with an electrode having extremely low contact resistance.

【0006】[0006]

【課題を解決するための手段】本発明の方法は、酸化物
超電導体を用いた電流リードの電極の接触抵抗を低減さ
せるため、Ag、Au、Inまたはそれらの合金を酸化
物超電導体にたいして溶射するか、あるいは超電導特性
に影響がなく、電気抵抗が小さく、かつ低融点であるI
n、Ga、Agなどの合金の溶融液状体に酸化物超電導
体を浸漬することにより金属を溶着させて電極とする方
法である。溶着度合は、酸化物超電導体に対する、溶着
金属のぬれ性が影響する。
[Means for Solving the Problems] The method of the present invention is to thermally spray Ag, Au, In, or an alloy thereof onto an oxide superconductor in order to reduce the contact resistance of an electrode of a current lead using an oxide superconductor. or I, which has no effect on superconducting properties, has low electrical resistance, and has a low melting point.
This is a method in which an oxide superconductor is immersed in a molten liquid of an alloy of n, Ga, Ag, etc., and metal is welded to form an electrode. The degree of welding is influenced by the wettability of the weld metal to the oxide superconductor.

【0007】上記の金属または合金を溶射する方法の場
合、酸化物超電導体を超電導特性を劣化させない程度の
高温に予熱しておくことで、ぬれ性が向上し、溶着度合
をさらに高めることが出来る。
[0007] In the case of the above method of thermal spraying metals or alloys, by preheating the oxide superconductor to a high temperature that does not deteriorate the superconducting properties, wettability can be improved and the degree of welding can be further increased. .

【0008】金属または合金の溶融液状体中に浸漬する
方法の場合、融点の高いものは超電導特性を劣化させる
ため使用できない。電極の有効な接触面積の大きさは、
酸化物超電導体に対する溶融金属のぬれ性が影響する。 この場合も、酸化物超電導体を合金の溶融温度より、5
〜20%程度高温に予熱することでぬれ性を高めること
が出来る。
[0008] In the case of the method of immersing the metal or alloy in a molten liquid, materials with a high melting point cannot be used because they deteriorate the superconducting properties. The size of the effective contact area of the electrode is
This is influenced by the wettability of molten metal to oxide superconductors. In this case as well, the temperature of the oxide superconductor is lower than the melting temperature of the alloy by 5
Preheating to a high temperature of about 20% can improve wettability.

【0009】溶射による電極形成方法および浸漬による
電極形成方法は、固体同志の接触では解消できない界面
の間隙をなくすことが出来る。
[0009] The electrode formation method by thermal spraying and the electrode formation method by dipping can eliminate gaps at the interface that cannot be eliminated by contact between solids.

【0010】0010

【作用】本発明の溶射による電極形成方法について説明
する。溶射の方法は、酸化物超電導体に金属が均一に溶
着されるものでなければならない。図1は溶射による電
極形成の一例を示す図である。酸化物超電導体1は回転
装置2により回転させる。溶射用ガン3から溶射される
金属4は、酸化物超電導体1上に均一に溶着されて電極
金属5を形成する。この電極を形成する金属は、超電導
特性に影響がなく、かつ、電気抵抗の小さいAg、Au
、Inまたはそれらの合金を使用する。さらに、酸化物
超電導体に対する溶射金属のぬれ性を高めるために、酸
化物超電導体を超電導特性を劣化させない程度の高温に
予熱しておく。ぬれ性が高くなることで、溶射金属の溶
着度がさらに向上する。接触抵抗は接触面積に相対して
小さくなる。溶着度が向上して、溶射金属と酸化物超電
導体の界面の間隙がなくなれば、有効な接触面積が大き
くなり、接触抵抗を低減させることが出来る。
[Operation] The method of forming electrodes by thermal spraying according to the present invention will be explained. The thermal spraying method must be such that the metal is uniformly deposited on the oxide superconductor. FIG. 1 is a diagram showing an example of electrode formation by thermal spraying. The oxide superconductor 1 is rotated by a rotating device 2. The metal 4 sprayed from the thermal spray gun 3 is uniformly welded onto the oxide superconductor 1 to form an electrode metal 5. The metals forming this electrode are Ag and Au, which have no effect on superconducting properties and have low electrical resistance.
, In or their alloys. Furthermore, in order to improve the wettability of the sprayed metal to the oxide superconductor, the oxide superconductor is preheated to a high temperature that does not deteriorate the superconducting properties. By increasing the wettability, the degree of welding of the sprayed metal is further improved. Contact resistance becomes small relative to contact area. If the degree of welding is improved and the gap at the interface between the sprayed metal and the oxide superconductor is eliminated, the effective contact area will increase and the contact resistance can be reduced.

【0011】本発明の浸漬による電極形成方法について
説明する。浸漬の方法により電極を形成する金属は、超
電導特性に影響がなく、かつ、電気抵抗が小さく、さら
に低融点であることが必要である。そこでIn、Ga、
Agなどの合金を使用する。図5は浸漬による電極形成
の一例を示す図である。るつぼ7中で合金8を溶融させ
る。ここに酸化物超電導体1を浸漬して電極部を形成す
る。この際、酸化物超電導体に対する溶融金属のぬれ性
を高めるために、酸化物超電導体を超電導特性を劣化さ
せない程度の高温に予熱しておく。ぬれ性が高くなるこ
とで、金属の溶着度がさらに向上する。
[0011] The electrode forming method by dipping according to the present invention will be explained. The metal used to form the electrode by the immersion method must have no effect on superconducting properties, low electrical resistance, and low melting point. So In, Ga,
An alloy such as Ag is used. FIG. 5 is a diagram showing an example of electrode formation by dipping. Alloy 8 is melted in crucible 7. The oxide superconductor 1 is immersed here to form an electrode portion. At this time, in order to improve the wettability of the molten metal to the oxide superconductor, the oxide superconductor is preheated to a high temperature that does not deteriorate the superconducting properties. Higher wettability further improves the degree of metal welding.

【0012】上記の溶射あるいは浸漬により形成した電
流リードの電極は図4に示すように金属と酸化物超電導
体が図3で示した固体同士の接触に比べて、金属と酸化
物超電導体の界面の間隙がなく、有効な接触面積を大き
くすることで、接触抵抗を低減させることが出来る。
As shown in FIG. 4, the electrode of the current lead formed by thermal spraying or dipping as described above has an interface between the metal and the oxide superconductor, as compared to the contact between the metal and the oxide superconductor as shown in FIG. Contact resistance can be reduced by eliminating gaps and increasing the effective contact area.

【0013】[0013]

【実施例】(実施例1)本発明の溶射による電極形成方
法の実施例を示す。ビスマス系酸化物超電導体に銀を溶
射した電極部の接触抵抗は77Kにおいて10−8Ωc
m2であった。
Examples (Example 1) An example of the electrode forming method by thermal spraying of the present invention will be described. The contact resistance of the electrode part made of bismuth-based oxide superconductor sprayed with silver is 10-8Ωc at 77K.
It was m2.

【0014】(実施例2)本発明の溶融金属中に浸漬す
る電極形成方法の実施例を以下に示す。Ag−In合金
の溶融金属にビスマス系酸化物超電導体を浸漬して電極
を形成する。図6はAg−In合金の状態図である。図
において矢印で示されているものはAgとInの原子比
が3.2:96.8の組成となる点である。本実施例で
はこの組成を選んで、前出の図5のように、るつぼ中で
溶融し、ビスマス系酸化物超電導体を浸漬して電極を形
成した。ビスマス系超電導体の温度は175℃に予熱し
た。これは共晶温度156℃より10%程度高いもので
ある。この結果、形成された電極部の接触抵抗は77K
において10−8Ωcm2であった。
(Example 2) An example of the method of forming an electrode by immersing it in molten metal according to the present invention is shown below. A bismuth-based oxide superconductor is immersed in molten Ag-In alloy metal to form an electrode. FIG. 6 is a state diagram of the Ag-In alloy. What is indicated by an arrow in the figure is a composition in which the atomic ratio of Ag and In is 3.2:96.8. In this example, this composition was selected and melted in a crucible, and the bismuth-based oxide superconductor was immersed to form an electrode, as shown in FIG. 5 above. The temperature of the bismuth-based superconductor was preheated to 175°C. This is about 10% higher than the eutectic temperature of 156°C. As a result, the contact resistance of the formed electrode part was 77K.
It was 10-8 Ωcm2.

【0015】実施例1及び2において得られた接触抵抗
R=10−8Ωcm2を以下の式に代入してジュール発
熱Qを計算する。 Q=I2R ここで通電電流I=1000A、電極部の接触面積を1
cm2とすると Q=(1000)2×10−8 =10−2  W このように発熱量としては問題のない数値が得られた。
The Joule heat generation Q is calculated by substituting the contact resistance R=10-8 Ωcm2 obtained in Examples 1 and 2 into the following equation. Q=I2R Here, the current flowing I=1000A, the contact area of the electrode part is 1
In cm2, Q=(1000)2×10-8 =10-2 W Thus, a value without any problem was obtained for the amount of heat generated.

【0016】[0016]

【発明の効果】以上のように、酸化物超電導体にAu、
Ag、In及びそれらの合金を溶射して電極部を形成す
る方法、In、Ga、Agの合金の溶融金属中に酸化物
超電導体を浸漬して電極を形成する方法とも、従来の固
体同志にあるような、接触界面の間隙がなくすことがで
きる。電極形成の際、酸化物超電導体を高温にしておく
ことで界面のぬれ性が大きくなり、さらに接触界面の間
隙がなくなる。有効な接触面積が増大し、それに対応し
て接触抵抗を極めて低くすることが出来る。これにより
、超電導機器、金属製電流リードとの接続部の発熱量を
抑えられ、冷却の工程、コストを少なくすることが出来
る。
[Effect of the invention] As described above, the oxide superconductor contains Au,
A method of thermally spraying Ag, In, and their alloys to form an electrode part, and a method of forming an electrode by immersing an oxide superconductor in molten metal of an alloy of In, Ga, and Ag are different from conventional solid-state methods. The gap at the contact interface can be eliminated. When forming the electrode, keeping the oxide superconductor at a high temperature increases the wettability of the interface and eliminates gaps at the contact interface. The effective contact area is increased and the contact resistance can be correspondingly very low. As a result, the amount of heat generated at the connection part with the superconducting device and the metal current lead can be suppressed, and the cooling process and cost can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の溶射による電極形成方法の一例を示す
図である。
FIG. 1 is a diagram showing an example of a method for forming an electrode by thermal spraying according to the present invention.

【図2】従来の超電導機器と電流リードの関係を示す模
式図である。
FIG. 2 is a schematic diagram showing the relationship between conventional superconducting equipment and current leads.

【図3】従来の金属箔圧着により形成した電極界面の説
明図である。
FIG. 3 is an explanatory diagram of an electrode interface formed by conventional metal foil pressure bonding.

【図4】本発明の溶射あるいは浸漬による電極形成の一
例を示す説明図である。
FIG. 4 is an explanatory diagram showing an example of electrode formation by thermal spraying or dipping according to the present invention.

【図5】本発明の浸漬による電極形成方法の一例を示す
説明図である。
FIG. 5 is an explanatory diagram showing an example of the method for forming electrodes by dipping according to the present invention.

【図6】Ag−In合金の状態図である。FIG. 6 is a phase diagram of an Ag-In alloy.

【符号の説明】[Explanation of symbols]

1    酸化物超電導体 2    回転装置 3    溶射用ガン 4    溶射金属 5    圧着した電極金属 6    溶融あるいは溶射により酸化物超電導体の溶
着した電極金属 7    るつぼ 8    溶融合金 11    超電導コイル 12    銅製電流リード 13    酸化物超電導体電流リード14    接
続部 15    ビスマス系酸化物超電導体16    A
g製金属箔
1 Oxide superconductor 2 Rotating device 3 Thermal spray gun 4 Thermal spray metal 5 Pressure-bonded electrode metal 6 Electrode metal 7 with oxide superconductor welded by melting or thermal spraying Crucible 8 Molten alloy 11 Superconducting coil 12 Copper current lead 13 Oxide superconductor Body current lead 14 Connection part 15 Bismuth-based oxide superconductor 16 A
g metal foil

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】  超電導電流リードを構成する酸化物超
電導体にたいして、超電導特性に影響がなく、電気抵抗
が小さい金属またはそれらの合金を溶射することにより
、金属を該酸化物超電導体に溶着させて電極とすること
を特徴とする超電導電流リードの電極形成方法。
Claim 1: The metal is deposited on the oxide superconductor constituting the superconducting current lead by thermally spraying a metal or an alloy thereof that does not affect the superconducting properties and has low electrical resistance. A method for forming an electrode of a superconducting current lead, characterized in that the electrode is used as an electrode.
【請求項2】  前記電気抵抗が小さい金属が金、銀、
インジウムであることを特徴とする請求項1記載の超電
導電流リードの電極形成方法。
2. The metal with low electrical resistance is gold, silver,
2. The method for forming an electrode of a superconducting current lead according to claim 1, wherein the electrode is made of indium.
【請求項3】  前記酸化物超電導体を超電導特性を劣
化させない温度に予熱することを特徴とする請求項1お
よび2記載の超電導電流リードの電極形成方法。
3. The method of forming an electrode for a superconducting current lead according to claim 1, wherein the oxide superconductor is preheated to a temperature that does not deteriorate superconducting properties.
【請求項4】  超電導電流リードを構成する酸化物超
電導体にたいして、超電導特性に影響がなく、電気抵抗
が小さく、かつ低融点であるい金属またはそれらの合金
の溶融液中に、該酸化物超電導体を浸漬することにより
、前記金属または合金を該酸化物超電導体に溶着させて
電極とすることを特徴とする超電導電流リードの電極形
成方法。
4. The oxide superconductor constituting the superconducting current lead has no effect on the superconducting properties, has low electrical resistance, and has a low melting point. A method for forming an electrode for a superconducting current lead, characterized in that the metal or alloy is welded to the oxide superconductor to form an electrode by immersing the body.
【請求項5】  前記合金がGa−In合金、Ag−G
a合金またはGa−In合金から選択された合金である
ことを特徴とする請求項4記載の超電導電流リードの電
極形成方法。
5. The alloy is a Ga-In alloy, an Ag-G
5. The method for forming an electrode of a superconducting current lead according to claim 4, wherein the alloy is selected from a alloy or a Ga-In alloy.
【請求項6】  前記酸化物超電導体を溶融合金の融点
よりも上でかつ超電導特性を劣化させない温度に予熱す
ることを特徴とする請求項4および5記載の超電導電流
リードの電極形成方法。
6. The method of forming an electrode for a superconducting current lead according to claim 4, wherein the oxide superconductor is preheated to a temperature above the melting point of the molten alloy and at a temperature that does not deteriorate superconducting properties.
JP3048995A 1991-02-21 1991-02-21 Electrode forming method for superconducting current lead Expired - Lifetime JPH0779046B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3048995A JPH0779046B2 (en) 1991-02-21 1991-02-21 Electrode forming method for superconducting current lead

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3048995A JPH0779046B2 (en) 1991-02-21 1991-02-21 Electrode forming method for superconducting current lead

Publications (2)

Publication Number Publication Date
JPH04267311A true JPH04267311A (en) 1992-09-22
JPH0779046B2 JPH0779046B2 (en) 1995-08-23

Family

ID=12818794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3048995A Expired - Lifetime JPH0779046B2 (en) 1991-02-21 1991-02-21 Electrode forming method for superconducting current lead

Country Status (1)

Country Link
JP (1) JPH0779046B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5885515A (en) * 1981-11-17 1983-05-21 日本電気株式会社 Chip-shaped condenser and method of producing same
JPH04255203A (en) * 1991-02-07 1992-09-10 Mitsui Mining & Smelting Co Ltd Oxide superconducting current lead

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5885515A (en) * 1981-11-17 1983-05-21 日本電気株式会社 Chip-shaped condenser and method of producing same
JPH04255203A (en) * 1991-02-07 1992-09-10 Mitsui Mining & Smelting Co Ltd Oxide superconducting current lead

Also Published As

Publication number Publication date
JPH0779046B2 (en) 1995-08-23

Similar Documents

Publication Publication Date Title
KR100412765B1 (en) Solder material, device and manufacturing method thereof using the same solder material
US5321003A (en) Connection between high temperature superconductors and superconductor precursors
JP4539980B2 (en) Semiconductor device and manufacturing method thereof
US2877283A (en) Thermoelectric couples, particularly for the production of cold, and method of their manufacture
JP3736819B2 (en) Lead-free solder alloy
US5399547A (en) Method for increasing the critical current density of high transition temperature superconductors
JP2001266724A (en) Alloy-type thermal fuse
EP3100321B1 (en) Method of joining a superconductor
CN101171695B (en) Method for producing a superconductive element and superconductive element thereby
JP2004154864A (en) Lead-free soldering alloy
US3036139A (en) Brazing alloy and brazing of thermoelectric elements therewith
JPH04267311A (en) Method of making electrode of superconductive current lead
CN114628179A (en) Method for connecting copper-tungsten alloy and copper alloy
JPH0997637A (en) Joint part of oxide superconductor and metal terminal, and its forming method
JP7078456B2 (en) Fuse element material with low melting point metal part and its manufacturing method
US5592732A (en) Method of making super conducting bonds for thin film devices
JPH10275641A (en) Superconductor and alternating current metal terminal connecting structure
Said et al. Superconducting lead-free solder joint: a short review
JP2981810B2 (en) Current lead of superconducting coil device
JPH05279140A (en) Method for joining oxide superconductor
JP2001283660A (en) Connection structure for superconducting wire
JP2770247B2 (en) Method for producing superconducting composite with electrode
JPS59107056A (en) Solderable aluminum alloy
JP2620697B2 (en) Semiconductor device
Aksoy et al. Microstructure Comparison of Superconducting Joints Fabricating by Using Different Techniques

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080823

Year of fee payment: 13

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080823

Year of fee payment: 13

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080823

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090823

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090823

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100823

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100823

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110823

Year of fee payment: 16

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110823

Year of fee payment: 16