JPH0426704A - Manufacture of fine gold ball - Google Patents

Manufacture of fine gold ball

Info

Publication number
JPH0426704A
JPH0426704A JP2133510A JP13351090A JPH0426704A JP H0426704 A JPH0426704 A JP H0426704A JP 2133510 A JP2133510 A JP 2133510A JP 13351090 A JP13351090 A JP 13351090A JP H0426704 A JPH0426704 A JP H0426704A
Authority
JP
Japan
Prior art keywords
fine gold
gold
fine
ball
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2133510A
Other languages
Japanese (ja)
Inventor
Kenji Mori
健次 森
Takatoki Fukuda
福田 孝祝
Masanori Tokita
時田 正憲
Junichi Kasai
純一 河西
Toyoshige Kawashima
川島 豊茂
Mamoru Suwa
諏訪 守
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Tatsuta Electric Wire and Cable Co Ltd
Original Assignee
Fujitsu Ltd
Tatsuta Electric Wire and Cable Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd, Tatsuta Electric Wire and Cable Co Ltd filed Critical Fujitsu Ltd
Priority to JP2133510A priority Critical patent/JPH0426704A/en
Publication of JPH0426704A publication Critical patent/JPH0426704A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain fine gold ball having the fixed particle size and shape with good yield by crushing and pulling off gold fine wire to make fine gold block, heating this on the way of dropping to make molten ball and then, rapidly cooling. CONSTITUTION:The gold fine wire having the fixed diameter is crushed and pulled off to make the fine gold block. This fine gold block 9 is uncontinuously dropped from a feeder 11. Below outlet 11B in the feeder, a heating cylinder 12 is set and the fine gold block 9 dropped by gravity becomes molten state with heating. Then, this is made to the molten ball 13 with the gravitation and surface tension. The molten ball 13 is further dropped with the dead wt. and rapidly cooled in water 15, etc., in a vessel 14 to make the fine gold ball 16 having about 55mum diameter.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、大きさ及び形状が均一である微細金球の製造
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for producing fine gold spheres having uniform size and shape.

〔従来の技術〕[Conventional technology]

一般的に、金属粉の製造方法として、ガスアトマイズ法
又は水アトマイズ法が知られている。溶融金属の滴下流
に対してガス噴出流又は水噴出流を作用させ、溶融金属
を霧化すると共に急冷して金属粉を製造する方法である
。第3図にこのガスアトマイズ法により微細金球を製造
する方法を説明する。
Generally, a gas atomization method or a water atomization method is known as a method for producing metal powder. This is a method of producing metal powder by applying a gas or water jet to a drip stream of molten metal to atomize and rapidly cool the molten metal. FIG. 3 illustrates a method for manufacturing fine gold spheres by this gas atomization method.

溶解炉51で金を溶かし、一定温度の溶融金52をプー
ルしておく。この溶融金52を滴下ノズル53から滴下
し、糸状の滴下流54を形成する。
Gold is melted in a melting furnace 51, and molten gold 52 at a constant temperature is pooled. This molten gold 52 is dripped from a drip nozzle 53 to form a thread-like drip stream 54.

不活性ガス55が噴出する霧化ノズル56の噴出流内に
この滴下流54を位置させる。ガス乱流57によって、
金の滴下流54は霧化し、微細金球58となる。この微
細金球58はタンク59の水60内に落ち込み急冷され
て、タンク59の底に沈澱する。その後、選別工程を経
て、所定の粒度の微細金球を得る方法である。なお、微
細金球58の形状をできるだけボール状にするために、
不活性ガス55に高温ガスを使用することもある。
This drip stream 54 is located within the jet stream of the atomizing nozzle 56 from which the inert gas 55 is jetted. Due to the gas turbulence 57,
The gold drip stream 54 is atomized and becomes fine gold spheres 58 . The fine gold spheres 58 fall into the water 60 of the tank 59 and are rapidly cooled, settling at the bottom of the tank 59. Thereafter, through a sorting process, fine gold spheres of a predetermined particle size are obtained. In addition, in order to make the shape of the fine gold sphere 58 as ball-like as possible,
A high temperature gas may be used as the inert gas 55.

また、より細かい微細金粒にするために、2本の霧化ノ
ズル56を下向きの■の字に配置し、■の字の中央に滴
下流54が位置するようにするものもある。
Furthermore, in order to produce finer gold particles, there is also one in which the two atomizing nozzles 56 are arranged in a downward-facing square square shape, with the dripping stream 54 located in the center of the square square shape.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の技術で述べたガスアトマイズ法による微細金球の
製造方法においては、ガス乱流で溶融金を霧化するので
、粒度分布が広く、形状もボールではなくいびつな形状
をしたものが多い。したがって、これらの微細金球の中
から所定の粒度であって且つボール状のものを選別する
という選別工程が必要となる。しかし、形状を含めた微
細金球の選別は極めて難しく、歩留まりも悪いという問
題点があった。
In the method for producing fine gold spheres using the gas atomization method described in the conventional technology, molten gold is atomized by gas turbulence, so the particle size distribution is wide and the shape is often irregular rather than a ball. Therefore, a sorting step is required to select those having a predetermined particle size and ball shape from among these fine gold spheres. However, there were problems in that it was extremely difficult to sort out the fine gold spheres, including their shape, and the yield was low.

本発明は、従来の技術の有するこのような問題点に鑑み
てなされたものであり、その目的とするところは、粒度
及び形状が一定の微細金球を歩留まり良く製造する方法
を提供せんとするものである。
The present invention has been made in view of the above-mentioned problems of the conventional technology, and its purpose is to provide a method for manufacturing fine gold spheres with a constant particle size and shape with a high yield. It is something.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために、本発明における微細金球の
製造方法は、金細線の一定長を押し潰し引き千切って微
細金塊とし、該微細金塊を非連続的に落下させ、落下途
中の該微細金塊を加熱して溶融ボールとし、この溶融ボ
ールを急冷して微細金球とするものである。
In order to achieve the above object, the method for producing fine gold balls according to the present invention involves crushing and tearing a certain length of thin gold wire into fine gold ingots, dropping the fine gold ingots discontinuously, A fine gold ingot is heated to form a molten ball, and this molten ball is rapidly cooled to form a fine gold ball.

〔作用] 金細線の一定長を押し潰し引き千切って形成された微細
金塊は一定重量でありこれを溶かして微細金球にすると
粒度のばらつきが無くなり、さらに、非連続的な落下途
中での加熱であって重力及び表面張力により均一なボー
ル形状となる。
[Function] The fine gold nuggets formed by crushing and tearing a certain length of thin gold wire have a constant weight, and when they are melted into fine gold balls, there is no variation in particle size, and furthermore, there is no variation in particle size during discontinuous falling. Due to heating, gravity and surface tension create a uniform ball shape.

〔実施例〕〔Example〕

以下、実施例について図面を参照しつつ説明する。 Examples will be described below with reference to the drawings.

第1図は金細線から微細金塊を製造する工程を示す図、
第2図は微細金塊を微細金球とする工程を示す図である
Figure 1 is a diagram showing the process of manufacturing fine gold ingots from fine gold wire;
FIG. 2 is a diagram showing the process of turning fine gold ingots into fine gold spheres.

まず、金細線から微細金塊を製造する工程を説明する。First, the process of manufacturing fine gold ingots from fine gold wire will be explained.

第1図(d)に示されるように、ボンダー2とサブスト
レート3の共同作業により金JR線から微細金塊が製造
される。ボンダー2はクランプ8とキャピラリー4とス
パーク電極5とから成っている。クランプ8は金細線1
を把持する開閉自在な構造であり、金細線1を一定長に
制御出来る様に開閉のタイミング時間がコントロールさ
れている。キャピラリー4は金細線1を通す中心孔4A
と、中心孔4A先端の円錐孔4Bを有しており、全体が
昇降自在となっている。スパーク電極5は円錐孔4Bに
対向する位置と退避位置との間をスライド自在となって
いる。そして、サブストレート3は例えば銀メツキ層3
Aと基盤3Bとから成っている。以上の構造のボンダー
2とサブストレート3による微細金塊の製造方法は以下
の通りである。第1図(a)はスタート時を示す。金細
線1が円錐孔4Bから飛び出した状態にされ、適宜な基
盤7にキャピラリー4を押し当てると、金細線1はLA
線で押しつぶされる。つぎに、第1図(b)のように、
キャピラリー4を上昇させると共に金細線1のある一定
長のところでクランプ8を閉じると、金細線Iば引きち
ぎられる。そして、第1図(C)のように、一定長の針
状金細線IBが円錐孔4Bから突き出た状態となる。つ
ぎに、第1図(d)のように、スパーク電極5を円錐孔
4Bの対向位置にスライドさせ、第1図(c)の針状金
細線IBとの間で放電させると、金細線1の先にボール
ICが形成される。つぎに、第1図(e)のように、キ
ャピラリー4を所定の一定圧でザブストレート3に押し
付ける。この時、クランプ8は開いている。第1図(d
)のボールICは押し潰されてネイルへ・7ド状の微細
金塊9となり、銀メツキ層3Aに密着する。つぎに、第
1図(f)のように、キャピラリー4を上昇させ、クラ
ンプ8を閉じると、金細線1は引きちぎられ、第1図(
g)のように微細金塊9はサブストレートの銀メツキ層
3A上に残ったままとなる。そして、ザブストレー1・
3又はボンダー2がX方向又はY方向の何れかに移動し
て、第1図(c)の状態に戻る。この第1図(c)〜(
g)を高速動作(例えば5回/秒)繰り返すことによっ
て、サブストレートの銀メツキ層3A上に多数の微細金
塊9が密着したものができる。このサブストレートの銀
メツキ層3Aを電気分解液又は酸で溶解させると、微細
金塊9が離脱し回収される。なお、サブストレーl−の
銀メツキ層3Aに代わり銅メツキ層あるいはメツキのな
い銅板を使用することもできる。
As shown in FIG. 1(d), a fine gold ingot is manufactured from the gold JR wire by the joint work of the bonder 2 and the substrate 3. The bonder 2 consists of a clamp 8, a capillary 4, and a spark electrode 5. Clamp 8 is gold wire 1
The opening/closing timing is controlled so that the thin gold wire 1 can be controlled to a constant length. The capillary 4 has a central hole 4A through which the thin gold wire 1 is passed.
It has a conical hole 4B at the tip of the center hole 4A, and the whole can be moved up and down. The spark electrode 5 is slidable between a position facing the conical hole 4B and a retracted position. The substrate 3 is, for example, a silver plating layer 3.
It consists of A and a base 3B. The method for manufacturing fine gold ingots using the bonder 2 and substrate 3 having the above structure is as follows. FIG. 1(a) shows the start time. When the thin gold wire 1 is made to protrude from the conical hole 4B and the capillary 4 is pressed against an appropriate base 7, the thin gold wire 1 is exposed to the LA.
crushed by lines. Next, as shown in Figure 1(b),
When the capillary 4 is raised and the clamp 8 is closed at a certain length of the gold wire 1, the gold wire I is torn off. Then, as shown in FIG. 1(C), a certain length of the wire-like thin wire IB protrudes from the conical hole 4B. Next, as shown in FIG. 1(d), when the spark electrode 5 is slid to a position facing the conical hole 4B and a discharge is caused between the spark electrode 5 and the wire-like thin wire IB shown in FIG. 1(c), the fine gold wire 1 A ball IC is formed at the tip of. Next, as shown in FIG. 1(e), the capillary 4 is pressed against the substraight 3 with a predetermined constant pressure. At this time, the clamp 8 is open. Figure 1 (d
) is crushed into a nail-shaped fine gold nugget 9, which adheres closely to the silver plating layer 3A. Next, as shown in FIG. 1(f), when the capillary 4 is raised and the clamp 8 is closed, the thin gold wire 1 is torn off, and as shown in FIG.
As shown in g), the fine gold ingots 9 remain on the silver plating layer 3A of the substrate. And Zabstra 1.
3 or the bonder 2 moves in either the X direction or the Y direction and returns to the state shown in FIG. 1(c). This figure 1 (c) - (
By repeating g) at high speed (for example, 5 times/second), a large number of fine gold ingots 9 are formed in close contact with the silver plating layer 3A of the substrate. When the silver plating layer 3A of this substrate is dissolved with an electrolytic solution or acid, the fine gold nuggets 9 are separated and recovered. Note that a copper plating layer or an unplated copper plate may be used instead of the silver plating layer 3A of the substray l-.

ところで、金細線1は以下のようにして製造されたもの
が使用されるのが望ましい。全純度が99゜99重量%
以上の電解金を用いて、イツトリウム、カルシウム、銅
、ヘリリウム等を添加総量で50〜100重ippm程
度微量に添加し、常温強度と耐熱性を向上させた金合金
とする。この金合金を高周波真空溶解炉で溶解鋳造し、
その鋳塊を圧延した後、常温で伸線加工を行ない金細線
とする。
By the way, it is desirable to use the thin gold wire 1 manufactured as follows. Total purity is 99°99% by weight
Using the above electrolytic gold, a trace amount of yttrium, calcium, copper, helium, etc. is added in a total amount of about 50 to 100 ppm by weight to produce a gold alloy with improved room temperature strength and heat resistance. This gold alloy is melted and cast in a high frequency vacuum melting furnace,
After rolling the ingot, it is drawn into a fine gold wire at room temperature.

かかる金細線の最終線径は特に限定されるものではない
が、実用上は10〜50μmφのものとするのが好まし
い。この金細線は、大気雰囲気中で連続焼鈍して伸び値
が2〜10%になるように調質したもの等が使用される
。本願で得られる微細金球の径についても、特に限定は
されないが、上記した金細線の実用上の線径サイズから
は、概ね直径20〜150μmの微細金球を得るように
するのが好ましい。本願における一実施例を例示すれば
、まず20μmφの金細線1を用いることによってボー
ルICの径が金細線1の径の2.5倍になるように放電
条件をコントロールし、このボールICを押し潰して引
き千切られた約70μmのネイルヘッド状微細金塊が得
られる。ところで、上記した、耐熱性を有する金合金は
、本願において微細金塊9とする際に、再結晶化温度の
高い金細線1がネイルヘッド状微細金塊9の近傍で切断
するのに適している。これによって一定の重量の微細金
塊9が得られることとなる。
Although the final wire diameter of such a fine gold wire is not particularly limited, it is preferably 10 to 50 μmφ in practice. The thin gold wire used is one that has been continuously annealed in an air atmosphere and tempered to have an elongation value of 2 to 10%. The diameter of the fine gold spheres obtained in the present application is not particularly limited, but it is preferable to obtain fine gold spheres with a diameter of approximately 20 to 150 μm based on the practical wire diameter size of the fine gold wire described above. To illustrate one embodiment of the present application, first, by using a thin gold wire 1 of 20 μmφ, discharge conditions are controlled so that the diameter of the ball IC is 2.5 times the diameter of the thin gold wire 1, and this ball IC is pushed. Nail head-shaped fine gold ingots of approximately 70 μm in size are obtained by crushing and tearing. By the way, the above-described gold alloy having heat resistance is suitable for cutting the fine gold wire 1 having a high recrystallization temperature near the nail head-shaped fine gold ingot 9 when forming the fine gold ingot 9 in the present application. As a result, fine gold ingots 9 having a constant weight can be obtained.

つぎに、上述した微細金塊を微細金球とする工程を説明
する。第2図において、微細金塊9をフィーダ11によ
り非連続的に落下させる。ここで言う非連続的とは、図
示のように、微細金塊9が上下方向及び横方向で距離を
有してばらばらに供給される状態を言う。このようなフ
ィーダ11としては超音波発信器11Aを固設した振動
フィーダ等がある。そして、フィーダ出口JIB下方に
、加熱筒12が配置されており、重力落下する微細金塊
9は加熱により熔融状態となる。そして、重力及び表面
張力により、溶融ボール13となる。
Next, a process of turning the above-mentioned fine gold ingots into fine gold spheres will be explained. In FIG. 2, fine gold ingots 9 are dropped discontinuously by a feeder 11. Here, discontinuously refers to a state in which the fine gold ingots 9 are supplied separately with distances in the vertical and horizontal directions, as shown in the figure. As such a feeder 11, there is a vibration feeder having a fixed ultrasonic transmitter 11A. A heating cylinder 12 is disposed below the feeder outlet JIB, and the fine gold ingots 9 falling by gravity are heated to become molten. Then, it becomes a molten ball 13 due to gravity and surface tension.

なお、もともと微細金塊9となっているので、溶&Jる
とすぐに溶融ボール13となる。この加熱筒12は側面
にバーナ12Aを有し、下方に向かう加熱旋回流■で微
細金塊9同士の接触を防ぎつつ加熱するものである。な
お、バーナ12Aを用いる加熱筒12に代わり、不活性
ガスが充満された誘電加熱装置を用いるものでもよい。
In addition, since it is originally a fine gold nugget 9, it becomes a molten ball 13 as soon as it is melted and JJ. This heating cylinder 12 has a burner 12A on its side, and heats the fine gold ingots 9 while preventing them from coming into contact with each other using a heating swirling flow (2) directed downward. Note that instead of the heating cylinder 12 using the burner 12A, a dielectric heating device filled with inert gas may be used.

そして、溶融ボール13は更に自重落下し、容器14の
水15内で象、速冷却され、直径的55μmの微細金球
16となる。なお、冷却手段は、水15による急速冷却
に限らず、ガス空冷によるものでもよい。
Then, the molten ball 13 further falls under its own weight and is rapidly cooled in the water 15 of the container 14, becoming a fine gold ball 16 with a diameter of 55 μm. Note that the cooling means is not limited to rapid cooling using water 15, but may be based on gas air cooling.

以上の工程によると、一定太さの金細線の一定長を押し
潰し引き千切って一定重量の微細金塊9とし、この微細
金塊9がばらばらの状態で自由落下しているものを溶融
して微細金球16としているので、溶融ボールになりや
すく、粒度及び形状は均一となって歩留まりが大幅に向
上する。
According to the above process, a certain length of a thin gold wire of a certain thickness is crushed and torn to pieces to obtain a fine gold ingot 9 of a certain weight, and the fine gold nugget 9 that is freely falling in pieces is melted and finely divided. Since the gold spheres 16 are used, they are easily formed into molten balls, and the particle size and shape are uniform, which greatly improves the yield.

〔発明の効果〕〔Effect of the invention〕

以上説明した如く、本発明に係る微細金球の製造方法は
、金細線の一定長を押し潰し引き千切って微細金塊とし
、該微細金塊を非連続的に落下させ、落下途中の該微細
金塊を加熱して溶融ボールとし、この溶融ボールを急冷
して微細金球とするものであり、一定重量のものを溶か
して微細金球にするので、粒度のばらつきが無くなり、
さらに、非連続的な落下途中での加熱であるので、重力
及び表面張力により均一なボール形状となる。したがっ
て、一定精度で均一なボール形状の微細金球が歩留まり
よく生産できる。さらに、極めて複雑な選別工程も不要
となる。
As explained above, the method for producing fine gold balls according to the present invention involves crushing and tearing a certain length of thin gold wire to obtain fine gold nuggets, dropping the fine gold nuggets discontinuously, and discontinuously dropping the fine gold nuggets while they are falling. is heated to form a molten ball, and this molten ball is rapidly cooled to form fine gold spheres.Since a certain weight is melted to form fine gold spheres, there is no variation in particle size.
Furthermore, since the heating is performed discontinuously during falling, the ball becomes uniform in shape due to gravity and surface tension. Therefore, fine gold balls having a uniform ball shape can be produced with constant accuracy and high yield. Furthermore, an extremely complicated sorting process is no longer necessary.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は金細線から微細金塊を製造する工程を示す図、
第2図は微細金塊を微細金球とする工程を示す図、第3
図は従来のガスアトマイズ法で微細金球を製造する方法
を示す図であって、図面の主な符号の説明は次の通りで
ある。 1・・・金細線、 2・・・ボンダー(押し潰し引き千切り手段)、9・・
・微細金塊、 12・・・加熱筒(加熱手段)、 13・・・溶融ボール、 15・・・水(冷却手段)、 16・・・微細金球。
Figure 1 is a diagram showing the process of manufacturing fine gold ingots from fine gold wire;
Figure 2 is a diagram showing the process of turning fine gold ingots into fine gold balls, Figure 3
The figure shows a method of manufacturing fine gold spheres by the conventional gas atomization method, and the explanations of the main symbols in the figure are as follows. 1... Gold thin wire, 2... Bonder (crushing, pulling and shredding means), 9...
- Fine gold ingot, 12... Heating cylinder (heating means), 13... Molten ball, 15... Water (cooling means), 16... Fine gold ball.

Claims (1)

【特許請求の範囲】[Claims] (1)金細線の一定長を押し潰し引き千切って微細金塊
とし、該微細金塊を非連続的に落下させ、落下途中の該
微細金塊を加熱して溶融ボールとし、この溶融ボールを
急冷して微細金球とすることを特徴とする微細金球の製
造方法。
(1) A certain length of thin gold wire is crushed and torn into fine gold ingots, the fine gold ingots are dropped discontinuously, the fine gold ingots are heated in the middle of falling to form molten balls, and the molten balls are rapidly cooled. A method for producing fine gold spheres, characterized in that the fine gold spheres are produced by
JP2133510A 1990-05-22 1990-05-22 Manufacture of fine gold ball Pending JPH0426704A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2133510A JPH0426704A (en) 1990-05-22 1990-05-22 Manufacture of fine gold ball

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2133510A JPH0426704A (en) 1990-05-22 1990-05-22 Manufacture of fine gold ball

Publications (1)

Publication Number Publication Date
JPH0426704A true JPH0426704A (en) 1992-01-29

Family

ID=15106467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2133510A Pending JPH0426704A (en) 1990-05-22 1990-05-22 Manufacture of fine gold ball

Country Status (1)

Country Link
JP (1) JPH0426704A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0466601A (en) * 1990-07-06 1992-03-03 Nippon Steel Corp Manufacture of fine metal balls

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0466601A (en) * 1990-07-06 1992-03-03 Nippon Steel Corp Manufacture of fine metal balls

Similar Documents

Publication Publication Date Title
US4631013A (en) Apparatus for atomization of unstable melt streams
US4619597A (en) Apparatus for melt atomization with a concave melt nozzle for gas deflection
USRE39224E1 (en) Apparatus and method for making uniformly sized and shaped spheres
US4801412A (en) Method for melt atomization with reduced flow gas
US5183493A (en) Method for manufacturing spherical particles out of liquid phase
CN201208649Y (en) Apparatus for preparing spherical tin-base alloy powder by supersonic vibration atomization method
JP2002020807A (en) Solder ball and its production method
GB2154902A (en) Atomization nozzle with boron nitride surfaces
JP2002212611A (en) Method and apparatus for producing metallic spherical particle and metallic spherical particle obtained by the production method and apparatus
JPH0426704A (en) Manufacture of fine gold ball
US4355057A (en) Formation of alloy powders through solid particle quenching
JP2001226706A (en) Apparatus for manufacturing fine metallic ball
JPH03281708A (en) Manufacture of fine lead balls
JPH03281706A (en) Manufacture of fine copper balls
GB2155049A (en) Method of atomization of melt from a closely coupled nozzle, apparatus and product formed
JPH0426701A (en) Manufacture of fine gold ball
JPH03281707A (en) Manufacture of fine lead balls
JPH06293904A (en) Method for producing fine metallic ball and device therefor
JP4902119B2 (en) Method for producing metal silicon particles
JPH03281705A (en) Manufacture of fine copper balls
JPH08143915A (en) Production of powder for strengthened platinum material and strengthened platinum material
JP2002317211A (en) Method for producing metallic ball
TW544825B (en) Method for manufacturing ultra-fine solder balls used in ball grid array package
CN115519128A (en) Device and method for preparing fixed-size 3D printing powder through centrifugal atomization of hot-melt material
RU2302926C2 (en) Metal powder producing process