JPH04266623A - Rotation transmitting device - Google Patents

Rotation transmitting device

Info

Publication number
JPH04266623A
JPH04266623A JP3028655A JP2865591A JPH04266623A JP H04266623 A JPH04266623 A JP H04266623A JP 3028655 A JP3028655 A JP 3028655A JP 2865591 A JP2865591 A JP 2865591A JP H04266623 A JPH04266623 A JP H04266623A
Authority
JP
Japan
Prior art keywords
input shaft
rotation
retainer
outer ring
shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3028655A
Other languages
Japanese (ja)
Other versions
JP2886699B2 (en
Inventor
Kenichiro Ito
健一郎 伊藤
Hiromi Nojiri
博海 野尻
Tateo Adachi
健郎 安達
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP3028655A priority Critical patent/JP2886699B2/en
Priority to EP92900922A priority patent/EP0528037B1/en
Priority to KR1019920702391A priority patent/KR970000867B1/en
Priority to PCT/JP1991/001704 priority patent/WO1992014074A1/en
Priority to DE69129494T priority patent/DE69129494T2/en
Publication of JPH04266623A publication Critical patent/JPH04266623A/en
Priority to US08/176,676 priority patent/US5355981A/en
Application granted granted Critical
Publication of JP2886699B2 publication Critical patent/JP2886699B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D41/00Freewheels or freewheel clutches
    • F16D41/06Freewheels or freewheel clutches with intermediate wedging coupling members between an inner and an outer surface
    • F16D41/08Freewheels or freewheel clutches with intermediate wedging coupling members between an inner and an outer surface with provision for altering the freewheeling action
    • F16D41/10Freewheels or freewheel clutches with intermediate wedging coupling members between an inner and an outer surface with provision for altering the freewheeling action with self-actuated reversing

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Arrangement And Mounting Of Devices That Control Transmission Of Motive Force (AREA)

Abstract

PURPOSE:To provide a rotation transmitting device possible to mechanically conduct the transmission and change of a driving torque and control the transmitting direction of the torque only in one direction. CONSTITUTION:Engaging surfaces 4, 5 are formed on the opposed surfaces of an outer ring 1 and an input shaft 2, and a sprag 9 engaged with the engaging surface by the relative rotation between the input shaft and a retainer 6, and an elastic member for holding the sprag in neutral state are integrated into the pocket of retainers 6, 7 provided between both the engaging surfaces. The retainer 6 and the input shaft 2 are connected to a control shaft 12 through pins 15, 17, a rotating directional clearance is provided in the connecting part between the pin 17 and the input shaft 2, and a differential bearing 20 for decelerating the rotation of the control shaft 12 is connected to the top end of the pin 17. When the input shaft 2 is rotated, the rotation of the control shaft 12 is later than the input shaft 2 by the clearance portion of the connecting part, and the sprag 9 is laid in engaging operating state by the relative movement of the retainers 6, 7. When the rotation of the outer ring 1 is faster than the input shaft 2 in this state, the outer ring is overrun, and in the reverse case, the sprag is engaged with the engaging surfaces to transmit the torque to the outer ring.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は、回転伝達装置に関し
、例えば、自動車の駆動軸と車輪の間において駆動トル
クの伝達と遮断の切換えに用いられる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rotation transmission device, and is used, for example, to switch between transmission and interruption of drive torque between the drive shaft and wheels of an automobile.

【0002】0002

【従来の技術及びその課題】自動車において、コーナー
の旋回中は前輪の回転半径が後輪の回転半径より大きく
なるため、前後輪を直結した状態でタイトコーナーを旋
回すると、速く回ろうとする前輪がスリップして、あた
かもブレーキングをかけたような現象が生じる。
[Prior Art and its Problems] When turning a corner in a car, the turning radius of the front wheels becomes larger than the turning radius of the rear wheels, so when turning a tight corner with the front and rear wheels directly connected, the front wheels trying to turn quickly will The vehicle slips, causing the phenomenon as if the brakes had been applied.

【0003】このようなブレーキング現象のため、従来
の4輪駆動車においては、タイトコーナーや市街地走行
等で運転者が前後輪間の連結を切り放し、走行状態に応
じて2輪駆動と4輪駆動を使い分ける必要があり、切換
えの操作に手間がかかる不具合を有していた。
Due to this braking phenomenon, in conventional four-wheel drive vehicles, the driver disconnects the front and rear wheels when driving around tight corners or in urban areas, and switches between two-wheel drive and four-wheel drive depending on the driving condition. The problem was that it was necessary to use different drives, and switching operations were time-consuming.

【0004】これに対して、図11に示すように、エン
ジンのトランスファーBから分岐した駆動軸Cと、前輪
車輪Dに設けたフロントディファレンシャルEの間に、
ビスカスカップリングから成る回転伝達装置Aを介在し
、ビスカスカップリングにおける高粘性流体内部の抵抗
により前後車輪の回転差を吸収して、フルタイムの4輪
駆動を実現したものが知られている。
On the other hand, as shown in FIG. 11, between the drive shaft C branched from the engine transfer B and the front differential E provided on the front wheels D,
It is known that full-time four-wheel drive is achieved by interposing a rotation transmission device A consisting of a viscous coupling and absorbing the difference in rotation between the front and rear wheels by the resistance inside the high viscous fluid in the viscous coupling.

【0005】しかし、高粘性流体の抵抗によって回転ト
ルクを伝達するビスカスカップリングは、抵抗発生時の
損失によりトルク伝達の効率が悪く、また、小さい回転
差ではせん断抵抗が小さいため、自動車の重量に対して
十分に大きなトルクを伝達できない欠点がある。
However, viscous couplings, which transmit rotational torque through the resistance of high viscosity fluid, have poor torque transmission efficiency due to loss when resistance occurs, and also have low shear resistance with small rotational differences, which causes problems with the weight of automobiles. However, it has the disadvantage that it cannot transmit a sufficiently large torque.

【0006】また、伝達トルクを大きくするには、高粘
性流体をせん断するディスクの面積や数を増大させる必
要があるため、形状が大きくなって駆動系のコンパクト
が図れない問題があると共に、高粘性流体のせん断抵抗
が低回転時で大きくなるため、低速旋回時に引きづりト
ルクが生じ、タイトコーナーでのブレーキング現象が完
全に解消されない欠点もある。
In addition, in order to increase the transmitted torque, it is necessary to increase the area and number of disks that shear the highly viscous fluid, which results in a problem that the drive system cannot be made compact due to the large size. Since the shear resistance of the viscous fluid increases at low speeds, drag torque occurs when turning at low speeds, and there is also the drawback that the braking phenomenon at tight corners cannot be completely eliminated.

【0007】この発明は、上記の問題点に鑑みてなされ
たもので、その目的とするところは、駆動トルクの伝達
と遮断を機械的に切換えることにより効率的なトルク伝
達ができ、しかも、駆動力の伝達方向が一方向だけでそ
の逆方向の回転差を吸収することにより、自動車への適
用において完全フルタイムの4輪駆動を可能とする回転
伝達装置を提供することである。
The present invention was made in view of the above-mentioned problems, and its purpose is to enable efficient torque transmission by mechanically switching between transmission and cutoff of drive torque, and to It is an object of the present invention to provide a rotation transmission device that transmits force in only one direction and absorbs rotation differences in the opposite direction, thereby enabling complete full-time four-wheel drive when applied to automobiles.

【0008】[0008]

【課題を解決するための手段】上記の課題を解決するた
め、この発明の回転伝達装置は、外輪の内部に入力軸を
回転自在に支持し、その外輪と入力軸の対向面に係合子
の係合面を形成し、その両係合面間に回動可能に設けた
保持器のポケットに、入力軸と保持器の正逆方向の相対
回転によって上記両係合面に係合する係合子と、その係
合子を係合しない位置に保持する弾性部材とを組み込み
、上記保持器と入力軸を、入力軸と同軸上に回転自在に
配置した制御軸により回転力が伝達可能に連結すると共
に、その制御軸と入力軸の連結部には回転方向すきまを
設け、かつ、制御軸又は入力軸の一方と固定部材とを差
動軸受で連結し、その差動軸受に、入力軸又は制御軸の
支持部の回転抵抗により大きな回転抵抗を付与した構造
としたものである。
[Means for Solving the Problems] In order to solve the above problems, the rotation transmission device of the present invention rotatably supports an input shaft inside an outer ring, and has an engager on a surface facing the outer ring and the input shaft. An engaging element is formed in a pocket of a retainer that forms an engaging surface and is rotatably provided between the two engaging surfaces, and that engages with both of the engaging surfaces by relative rotation of the input shaft and the retainer in forward and reverse directions. and an elastic member that holds the engager in an unengaged position, and the retainer and the input shaft are connected so that rotational force can be transmitted by a control shaft that is rotatably disposed coaxially with the input shaft. , a rotational clearance is provided between the control shaft and the input shaft, one of the control shaft or the input shaft is connected to the fixed member by a differential bearing, and the input shaft or the control shaft is connected to the differential bearing. The structure provides greater rotational resistance than the rotational resistance of the supporting portion.

【0009】[0009]

【作用】上記の構造において、制御軸に差動軸受を連結
し、入力軸を回転させると、差動軸受の回転抵抗により
減速される制御軸の回転が、入力軸に対して連結部の回
転方向すきまの分だけ遅れ、制御軸と連結する保持器が
入力軸に対し相対回転する。この保持器の動きにより、
係合子は係合面と接触する係合作動位置に移動する。
[Operation] In the above structure, when a differential bearing is connected to the control shaft and the input shaft is rotated, the rotation of the control shaft, which is decelerated by the rotational resistance of the differential bearing, is the rotation of the connecting part relative to the input shaft. After a delay corresponding to the directional clearance, the retainer connected to the control shaft rotates relative to the input shaft. Due to this movement of the retainer,
The engager moves to an engaged position where it contacts the engagement surface.

【0010】この状態で、入力軸の回転が外輪より速く
なるような回転差が生じると、係合子が即座に係合面に
係合して、外輪を入力軸と一体に回転させる。
[0010] In this state, when a rotation difference occurs such that the input shaft rotates faster than the outer ring, the engager immediately engages with the engagement surface, causing the outer ring to rotate together with the input shaft.

【0011】逆に、外輪の回転が入力軸の回転よりも速
くなると、外輪は係合子に対してオーバーランニングす
るため、係合子は係合せず、外輪と入力軸は切離された
状態で回転する。したがって、駆動力の伝達方向は入力
軸から外輪の向かう方向だけであり、外輪から入力軸に
向かう回転は遮断される。
Conversely, when the rotation of the outer ring becomes faster than the rotation of the input shaft, the outer ring overruns the engager, so the engager does not engage, and the outer ring and the input shaft rotate in a separated state. do. Therefore, the driving force is transmitted only in the direction from the input shaft to the outer ring, and rotation from the outer ring to the input shaft is blocked.

【0012】なお、入力軸に差動軸受を連結して、入力
軸と制御軸に速度差を生じさせても、上記と同じ作用が
得られる。
Note that the same effect as described above can be obtained even if a differential bearing is connected to the input shaft to create a speed difference between the input shaft and the control shaft.

【0013】[0013]

【実施例】以下、この発明の実施例を添付図面に基づい
て説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Examples of the present invention will be described below with reference to the accompanying drawings.

【0014】図1乃至図4は、第1の実施例を示す。図
に示すように外輪1の内部には、入力軸2の一端が挿入
され、その両者間に組み込んだ2個の軸受3、3により
、入力軸2が回転自在に支持されている。
1 to 4 show a first embodiment. As shown in the figure, one end of the input shaft 2 is inserted into the outer ring 1, and the input shaft 2 is rotatably supported by two bearings 3, 3 installed between the two bearings.

【0015】外輪1の内径面と、それに対向する入力軸
2の外径面には、それぞれ円筒形の係合面4、5が形成
され、その両係合面4、5間に、回動可能な大径の制御
用保持器6と、入力軸2にピン止めされる小径の固定保
持器7が組み込まれている。
Cylindrical engagement surfaces 4 and 5 are formed on the inner diameter surface of the outer ring 1 and the outer diameter surface of the input shaft 2 opposing thereto. A control cage 6 with a possible large diameter and a small diameter fixed cage 7 pinned to the input shaft 2 are incorporated.

【0016】上記の両保持器6、7の周面には、対向し
て複数のポケット8、8が形成され、その各ポケット8
、8内に、係合子としてのスプラグ9と、弾性部材10
が組み込まれている。このスプラグ9は、外径側と内径
側がスプラグの中央線上に曲率中心をもつ弧状面11で
形成され、左右の両方向に所定角度傾くと、係合面4、
5間に係合して外輪1と入力軸2を一体化する。また、
各スプラグ9は、通常時、制御用保持器6に支持された
弾性部材10により両側面が押圧され、弧状面11が係
合面4、5に係合しない中立の状態に保持されている。
A plurality of opposing pockets 8, 8 are formed on the circumferential surfaces of both retainers 6, 7, and each pocket 8
, 8 includes a sprag 9 as an engager and an elastic member 10.
is included. This sprag 9 is formed with an arcuate surface 11 having a center of curvature on the center line of the sprag on the outer diameter side and the inner diameter side.
5 to integrate the outer ring 1 and the input shaft 2. Also,
Normally, both sides of each sprag 9 are pressed by elastic members 10 supported by the control retainer 6, and the arcuate surfaces 11 are held in a neutral state in which they do not engage with the engagement surfaces 4, 5.

【0017】一方、入力軸2の内部には、入力軸の中心
軸上に配置された制御軸12が一対の軸受13、13を
介して回転自在に支持されている。この制御軸12の中
央部には、入力軸2のピン孔14に円周方向すきまをも
って挿入された連結ピン15により制御用保持器6が一
体に固定されている。
On the other hand, inside the input shaft 2, a control shaft 12 disposed on the central axis of the input shaft is rotatably supported via a pair of bearings 13, 13. A control retainer 6 is integrally fixed to the center of the control shaft 12 by a connecting pin 15 inserted into a pin hole 14 of the input shaft 2 with a gap in the circumferential direction.

【0018】また、制御軸12の先端部には、入力軸2
の先端側のピン孔16に回転方向すきま18をもって挿
通した連結ピン17が固定され、その連結ピン17の先
端に、差動軸受20に圧入されたスリーブ19が一体に
連結されている。この回転方向すきま18は、スプラグ
9が中立位置から係合面4、5に弾性部材10を介して
接触する距離以上の大きさに設定されている。
Furthermore, an input shaft 2 is provided at the tip of the control shaft 12.
A connecting pin 17 inserted through the pin hole 16 on the tip side with a rotational clearance 18 is fixed, and a sleeve 19 press-fitted into the differential bearing 20 is integrally connected to the tip of the connecting pin 17. This rotational direction clearance 18 is set to be larger than the distance at which the sprag 9 contacts the engagement surfaces 4 and 5 via the elastic member 10 from the neutral position.

【0019】上記差動軸受20は、単列の深みぞ玉軸受
が用いられ、内輪21が上記スリーブ19に嵌合し、外
輪22が外部の固定部材(図示略)に連結する固定用腕
23に嵌合されている。この差動軸受20は、外輪を固
定用腕23に圧入することにより軸受の半径方向すきま
を負とし、転がり時の回転抵抗が大きくなるように形成
されており、この回転抵抗は、入力軸2を支持する軸受
3、3の回転抵抗より大きく設定され、連結ピン17と
連結する制御軸12に入力軸2の回転より遅くなるよう
なブレーキ力を与えている。
The differential bearing 20 is a single-row deep groove ball bearing, and the inner ring 21 fits into the sleeve 19, and the outer ring 22 has a fixing arm 23 connected to an external fixing member (not shown). is mated to. This differential bearing 20 is formed so that the outer ring is press-fitted into the fixing arm 23 to make the radial clearance of the bearing negative, and the rotational resistance during rolling becomes large. The rotational resistance is set to be greater than the rotational resistance of the bearings 3, 3 that support the input shaft 2, and a braking force is applied to the control shaft 12 connected to the connecting pin 17 so that the rotation is slower than the rotation of the input shaft 2.

【0020】また、入力軸2の先端には、圧入嵌合する
スプライン24を介して、駆動軸に対する取付孔25を
備えた入力用フランジ部材26が一体に固定されている
。このフランジ部材26に設けたピン孔27と連結ピン
17の間にできる円周方向のすきま28は、上述した入
力軸2のピン孔16と連結ピン17の間の回転方向すき
ま18よりも大きく設定されている。
Further, an input flange member 26 having a mounting hole 25 for the drive shaft is integrally fixed to the tip of the input shaft 2 via a press-fitted spline 24. The circumferential clearance 28 created between the pin hole 27 provided in the flange member 26 and the connecting pin 17 is set larger than the rotational clearance 18 between the pin hole 16 of the input shaft 2 and the connecting pin 17 described above. has been done.

【0021】上記の構造で成る実施例の回転伝達装置に
おいては、入力軸2が一方向に回転すると、差動軸受2
0により減速された制御軸12の回転が遅れ、制御用保
持器6は回転方向すきま18の分だけ入力軸2及び固定
保持器7に対して相対回転する。この両保持器6、7の
相対移動により、図4に示すようにスプラグ9が入力軸
2の回転方向(矢印)に対して反対方向に傾き、係合面
4、5に接触して係合作動状態になる。
In the rotation transmission device of the embodiment having the above structure, when the input shaft 2 rotates in one direction, the differential bearing 2
The rotation of the control shaft 12 decelerated by 0 is delayed, and the control retainer 6 rotates relative to the input shaft 2 and fixed retainer 7 by the rotational clearance 18 . Due to this relative movement between the retainers 6 and 7, the sprag 9 tilts in the opposite direction to the rotational direction (arrow) of the input shaft 2 as shown in FIG. 4, contacts the engagement surfaces 4 and 5, and engages. becomes active.

【0022】その場合、制御用保持器6に取付けた弾性
部材10がスプラグ9を押圧状態で保持しているため、
連結ピン17とピン孔16が接触する前に全スプラグ9
を係合状態にスタンバイさせることができる。
In this case, since the elastic member 10 attached to the control retainer 6 holds the sprag 9 in a pressed state,
All sprags 9 are removed before the connecting pin 17 and pin hole 16 come into contact.
can be placed on standby in an engaged state.

【0023】この状態で、入力軸2と外輪1との間に入
力軸が速くなるような回転差が生じると、係合作動状態
にあるスプラグ9が即座に係合面4、5に係合し、外輪
1と入力軸2を一体に回転させる。
In this state, when a rotational difference occurs between the input shaft 2 and the outer ring 1 that causes the input shaft to speed up, the sprag 9 in the engagement operation state immediately engages the engagement surfaces 4 and 5. Then, the outer ring 1 and the input shaft 2 are rotated together.

【0024】逆に、外輪1が入力軸2よりも速く回転す
ると、外輪1がオーバーランニングし、スプラグ9は外
輪により係合から外れる方向の接触を受ける。このため
、スプラグ9と係合面4、5が係合せず、外輪1と入力
軸2は切り離された状態で回り続ける。
Conversely, when the outer ring 1 rotates faster than the input shaft 2, the outer ring 1 overruns and the sprags 9 are contacted by the outer ring in the direction of being disengaged. Therefore, the sprag 9 does not engage with the engaging surfaces 4 and 5, and the outer ring 1 and the input shaft 2 continue to rotate in a separated state.

【0025】このように駆動力の伝達方向は、入力軸2
から外輪1への一方向だけとなり、外輪1から入力軸2
に向かう回転トルクは遮断される。
In this way, the driving force is transmitted in the input shaft 2.
There is only one direction from outer ring 1 to outer ring 1, and from outer ring 1 to input shaft 2.
Rotational torque directed toward is cut off.

【0026】一方、上記の状態から入力軸2が逆方向に
回転すると、保持器6は入力軸とは逆向きに相対回転し
、スプラグ9が傾いて係合作動状態になる。すなわち、
入力軸2の回転方向によってスプラグ9の傾きが変化し
て係合作動状態に待機するため、正逆の両方向において
全く同様に回転トルクの伝達と遮断を行なうことができ
る。
On the other hand, when the input shaft 2 rotates in the opposite direction from the above-mentioned state, the retainer 6 rotates relative to the input shaft in the opposite direction, and the sprag 9 is tilted to become engaged. That is,
Since the inclination of the sprag 9 changes depending on the direction of rotation of the input shaft 2 and waits in the engaged state, rotational torque can be transmitted and interrupted in the same manner in both forward and reverse directions.

【0027】上記の実施例の回転伝達装置Aを、図11
に示すような後輪Fが駆動車輪となる4輪駆動車に装着
するには、トランスファーBから分かれた駆動軸Cに入
力軸2を連結し、前輪車軸Dのフロントディファレンシ
ャルEに向かう軸に外輪1を連結する。
The rotation transmission device A of the above embodiment is shown in FIG.
To install it on a four-wheel drive vehicle in which the rear wheel F is the driving wheel as shown in Figure 2, the input shaft 2 is connected to the drive shaft C that is separated from the transfer B, and the outer wheel is connected to the shaft of the front wheel axle D that goes toward the front differential E. Connect 1.

【0028】上記の構造において、通常の直進時は、後
輪Fによる2輪駆動で前輪Gは後輪に共回りしており、
入力軸2と外輪1の間に回転差が生じないため、スプラ
グ9は係合せず、入力軸と外輪は切離されて回転する。
In the above structure, when the vehicle is normally traveling straight, the rear wheels F are two-wheel drive, and the front wheels G rotate together with the rear wheels.
Since there is no difference in rotation between the input shaft 2 and the outer ring 1, the sprags 9 do not engage with each other, and the input shaft and the outer ring rotate separately.

【0029】いま、後輪がスリップして車速が落ちると
、減速する前輪よりも駆動軸Cの回転が上回るため、入
力軸2の回転が外輪1よりも速くなる。このため、回転
伝達装置Aにおいてスプラグ9が係合面4、5に係合し
、駆動軸Cのトルクが前輪車軸Dに伝わり、4輪駆動状
態に切換わる。
Now, when the rear wheels slip and the vehicle speed decreases, the rotation of the drive shaft C exceeds that of the decelerating front wheels, so the input shaft 2 rotates faster than the outer wheel 1. Therefore, in the rotation transmission device A, the sprag 9 engages with the engagement surfaces 4 and 5, the torque of the drive shaft C is transmitted to the front wheel axle D, and the state is switched to a four-wheel drive state.

【0030】一方、タイトコーナーの旋回中に4輪駆動
状態に切換わった場合、後輪より速く回ろうとする前輪
の動きによって外輪1が入力軸2より速く回転しようと
するが、この状態では、外輪1がオーバーランニングす
るため、スプラグ9は係合面5、6に係合しない。この
ため、後輪の動きにより前車輪の動きが規制されること
がなく、ブレーキング現象が生じない。
On the other hand, when switching to four-wheel drive mode while turning a tight corner, the outer wheel 1 tries to rotate faster than the input shaft 2 due to the movement of the front wheels trying to turn faster than the rear wheels, but in this state, Since the outer ring 1 overruns, the sprags 9 do not engage the engagement surfaces 5 and 6. Therefore, the movement of the front wheels is not restricted by the movement of the rear wheels, and no braking phenomenon occurs.

【0031】このように、上記の構造では、走行中駆動
輪である後輪がスリップすると自動的に4輪駆動に切換
わり、タイトコーナーの旋回中などにおいて前輪の回転
が後輪より速くなると、外輪のオーバーランニングによ
って前後輪の回転差が吸収されるため、スムーズで安定
した走行を行なうことができる。
In this way, with the above structure, if the rear wheel, which is the drive wheel, slips while driving, the system automatically switches to four-wheel drive, and when the front wheels rotate faster than the rear wheels, such as when turning a tight corner, The overrunning of the outer wheel absorbs the difference in rotation between the front and rear wheels, allowing smooth and stable driving.

【0032】図5は、第2の実施例を示している。この
例では、差動軸受31を、並列配置した2個の転がり軸
受32、33で形成し、その転がり軸受32、33にス
ラスト押圧板34により軸方向の予圧を加えて、必要な
回転抵抗を与えている。
FIG. 5 shows a second embodiment. In this example, the differential bearing 31 is formed by two rolling bearings 32 and 33 arranged in parallel, and an axial preload is applied to the rolling bearings 32 and 33 by a thrust press plate 34 to create the necessary rotational resistance. giving.

【0033】このように複数の転がり軸受を利用するこ
とにより、1個の軸受で回転抵抗を与える場合に比べ、
各軸受に加わる抵抗を小さくでき、より高速回転での使
用が可能になる。なお、他の構造は、第1の実施例と同
様であり、同じ部品には同一の符号を付して説明を省略
する。
By using multiple rolling bearings in this way, compared to the case where one bearing provides rotational resistance,
The resistance applied to each bearing can be reduced, allowing use at higher speeds. Note that the other structures are similar to those in the first embodiment, and the same parts are given the same reference numerals and explanations will be omitted.

【0034】図6は、第3の実施例を示す。この例では
、差動軸受41を1個のラジアル軸受とし、その内輪4
2を入力用フランジ部材26に取付け、外輪43を固定
用腕44に固定している。また、内外輪42、43間に
組み込んだボール45の保持器46と、連結ピン17と
一体に連結した回転部材47とを滑り材48を介してす
べり接触させている。
FIG. 6 shows a third embodiment. In this example, the differential bearing 41 is one radial bearing, and its inner ring 4
2 is attached to the input flange member 26, and the outer ring 43 is fixed to the fixing arm 44. Further, a retainer 46 of a ball 45 incorporated between the inner and outer rings 42 and 43 and a rotating member 47 integrally connected to the connecting pin 17 are brought into sliding contact via a sliding member 48.

【0035】さらに、差動軸受41は、半径方向すきま
をゼロ近くに設定し、内部にトラクショングリース等の
高粘性の潤滑剤を封入して、ボール45と保持器46の
滑りをなくしている。
Furthermore, the differential bearing 41 has a radial clearance set close to zero, and a highly viscous lubricant such as traction grease is sealed inside to prevent slippage between the balls 45 and the retainer 46.

【0036】上記の構造では、差動軸受41の外輪43
が固定のため、内輪42に比べて保持器46の回転は約
1/2.5に低下する。このため、保持器46からすべ
り接触する回転部材47に、入力用フランジ部材26に
対して回転遅れとなるような減速力が加わり、制御軸1
2の回転を入力軸2に比べて遅れさせる。
In the above structure, the outer ring 43 of the differential bearing 41
is fixed, the rotation of the cage 46 is reduced to about 1/2.5 compared to that of the inner ring 42. For this reason, a decelerating force is applied to the rotating member 47 that slides into contact with the retainer 46 to cause a rotation delay with respect to the input flange member 26, and the control shaft 1
2 is delayed compared to the input shaft 2.

【0037】図7は、第4の実施例を示している。この
例においては、差動軸受51を、軌道径の異なる2個の
転がり軸受52、53で形成し、その両者のボール54
の保持器55を一体に形成して両軸受52、53を結合
している。
FIG. 7 shows a fourth embodiment. In this example, the differential bearing 51 is formed by two rolling bearings 52 and 53 with different raceway diameters, and the balls 54 of both of them are
A retainer 55 is integrally formed to connect both bearings 52 and 53.

【0038】また、小径側の軸受52の内輪52aを入
力用フランジ部材26に固定し、大径側の軸受25の内
輪53aをフランジ部材26に対して回転自在とし、そ
の内輪53aの側面に、弾性部材56を介して連結ピン
17に連結した回転部材57をすべり接触させている。
Further, the inner ring 52a of the bearing 52 on the small diameter side is fixed to the input flange member 26, the inner ring 53a of the bearing 25 on the large diameter side is rotatable relative to the flange member 26, and a side surface of the inner ring 53a is provided with a A rotating member 57 connected to the connecting pin 17 via an elastic member 56 is brought into sliding contact.

【0039】また、上記の第3の実施例と同様に、各転
がり軸受52、53は半径方向すきまをゼロ以下に設定
し、内部にトラクショングリース等を封入してボール5
4の保持器55に対する滑り回転を防止している。
Further, as in the third embodiment, each of the rolling bearings 52 and 53 has a radial clearance set to zero or less, and traction grease or the like is sealed inside the ball 5.
4 is prevented from slipping and rotating relative to the retainer 55.

【0040】上記の構造では、入力用フランジ部材26
が回転すると、保持器55を介して大径側の軸受53に
回転が伝えられるが、軌道径の差によって小径側軸受5
2の内輪52aに比べて大径側軸受53の内輪53aの
回転は遅くなる。この回転の遅れが、弾性部材56の押
付け力を介して連結ピン17に伝えられ、制御軸12を
入力軸2に対して遅れさせる。
In the above structure, the input flange member 26
When rotates, the rotation is transmitted to the large diameter bearing 53 via the cage 55, but due to the difference in raceway diameter, the small diameter bearing 5
The rotation of the inner ring 53a of the large-diameter bearing 53 is slower than that of the inner ring 52a of No. 2. This rotational delay is transmitted to the connecting pin 17 via the pressing force of the elastic member 56, causing the control shaft 12 to lag behind the input shaft 2.

【0041】図8は、第5の実施例を示しており、この
例では、固定用腕62に設けた空所63に、軌道径の異
なる2個の転がり軸受64、65を、それぞれ内輪と外
輪を一体に連結して多層状に組み込んでいる。
FIG. 8 shows a fifth embodiment, in which two rolling bearings 64 and 65 with different raceway diameters are installed in a space 63 provided in a fixing arm 62, with an inner ring and an inner ring, respectively. The outer rings are connected together and assembled in a multi-layered structure.

【0042】また、小径側の軸受64の保持器66を入
力用フランジ部材26に固定し、大径側の軸受64の保
持器67に、連結ピン17に連結した回転部材68をす
べり接触させている。この回転部材68は弾性力を備え
、保持器67に対して圧着された状態にあり、すべりに
よる保持器67との速度差を小さくしている。
Furthermore, the retainer 66 of the bearing 64 on the small diameter side is fixed to the input flange member 26, and the rotating member 68 connected to the connecting pin 17 is brought into sliding contact with the retainer 67 of the bearing 64 on the large diameter side. There is. This rotating member 68 has elastic force and is in a state of being pressed against the retainer 67, thereby reducing the speed difference between the rotary member 68 and the retainer 67 due to slippage.

【0043】なお、69は、固定用腕62と入力用フラ
ンジ部材26を位置決めするための軸受である。
Note that 69 is a bearing for positioning the fixing arm 62 and the input flange member 26.

【0044】上記の構造で成る差動軸受61においては
、入力用フランジ部材26が小径側軸受64の保持器6
6を回転させると、軌道径の差により、大径側軸受65
の保持器67の回転が上記保持器66に比べて遅れるた
め、その回転遅れが回転部材68と連結ピン17を介し
て制御軸12に伝えられる。
In the differential bearing 61 having the above structure, the input flange member 26 is connected to the retainer 6 of the small diameter bearing 64.
6 rotates, due to the difference in raceway diameter, the larger diameter bearing 65
Since the rotation of the retainer 67 is delayed compared to the retainer 66, the rotation delay is transmitted to the control shaft 12 via the rotating member 68 and the connecting pin 17.

【0045】なお、上記の第4及び第5の実施例におい
て、3個以上の転がり軸受を利用して差動軸受を構成す
るようにしてもよい。
In the fourth and fifth embodiments described above, the differential bearing may be constructed using three or more rolling bearings.

【0046】図9及び図10は、第6の実施例を示し、
この例では、入力軸側に差動軸受を連結している。すな
わち、制御軸71は、一方の端部がナット72のねじ込
みにより入力用フランジ部材73に一体に固定され、他
方の端部が軸受74によって入力軸75に回転自在に支
持されている。
FIGS. 9 and 10 show a sixth embodiment,
In this example, a differential bearing is connected to the input shaft side. That is, one end of the control shaft 71 is integrally fixed to the input flange member 73 by screwing a nut 72, and the other end is rotatably supported by the input shaft 75 by a bearing 74.

【0047】また、入力用フランジ部材73と入力軸7
5が、回転方向にすきまをもったスプライン76を介し
て連結され、入力軸75の外周面に、差動軸受77が嵌
合している。この差動軸受77は、第1の実施例と同様
に固定用腕78に外輪を強制圧入して、予圧により制御
軸71の支持部の抵抗よりも大きな回転抵抗を得たもの
で、その抵抗により入力軸75に減速力を与えている。
Furthermore, the input flange member 73 and the input shaft 7
5 are connected via a spline 76 having a clearance in the rotational direction, and a differential bearing 77 is fitted to the outer peripheral surface of the input shaft 75. This differential bearing 77 has an outer ring forcibly press-fitted into a fixing arm 78 in the same way as in the first embodiment, and a rotational resistance greater than the resistance of the support portion of the control shaft 71 is obtained by preloading. This applies deceleration force to the input shaft 75.

【0048】さらに、制御軸71の中央部と連結ピン1
5を介して連結する制御用保持器79は、スプラグ9の
内径側に配置され、入力軸75に固定される固定保持器
80がスプラグ9の外径側に配置されている。
Furthermore, the central part of the control shaft 71 and the connecting pin 1
A control retainer 79 connected through the sprag 5 is disposed on the inner diameter side of the sprag 9, and a fixed retainer 80 fixed to the input shaft 75 is disposed on the outer diameter side of the sprag 9.

【0049】上記の構造では、入力用フランジ部材73
が回転すると、制御軸71は一体で回転するが、差動軸
受77で減速される入力軸75は、スプライン76の回
転すきまの分だけ回転が遅れる。これにより、制御用保
持器79と固定保持器80は相対回転するが、制御用保
持器79が内径側にあるため、スプラグ9は入力軸75
の回転方向とは反対方向に傾き、係合作動状態に移行す
る。
In the above structure, the input flange member 73
When the control shaft 71 rotates, the control shaft 71 rotates as a unit, but the input shaft 75, which is decelerated by the differential bearing 77, is delayed in rotation by the rotational clearance of the spline 76. As a result, the control retainer 79 and the fixed retainer 80 rotate relative to each other, but since the control retainer 79 is on the inner diameter side, the sprag 9 is moved toward the input shaft 75.
is tilted in the opposite direction to the direction of rotation, and transitions to the engaged state.

【0050】なお、上述した各実施例では、係合子とし
てスプラグを用いた例を示したが、ローラを用いるよう
にしてもよい。
In each of the embodiments described above, sprags were used as the engagers, but rollers may also be used.

【0051】[0051]

【効果】以上のように、この発明の回転伝達装置は、係
合子を入力軸と外輪の間に係合させて機械的に駆動トル
クの伝達を切換えるので、効率の良いトルク伝達が行な
うことができ、入力側と出力側の間で正確なトルク伝達
ができる。
[Effect] As described above, the rotation transmission device of the present invention mechanically switches the transmission of drive torque by engaging the engager between the input shaft and the outer ring, so that efficient torque transmission can be performed. This allows for accurate torque transmission between the input and output sides.

【0052】また、入力軸と制御軸の間に回転の速度差
を生じさせ、常に係合子を係合作動状態におくので、入
力側と出力側にわずかでも回転差が生じると、即座に係
合子が係合し、高粘性流体を利用するビスカスカップリ
ングのように大きな相対すべりを必要としないため、応
答性の良い回転の切換えが行なえる。
Furthermore, since a rotation speed difference is created between the input shaft and the control shaft, and the engager is always kept in the engaged state, even if there is a slight difference in rotation between the input side and the output side, the engagement is immediately caused. Since the couplings engage and do not require large relative slips unlike viscous couplings that use high viscosity fluids, the rotation can be switched with good responsiveness.

【0053】さらに、出力側の回転が入力側を上回った
場合、外輪がオーバーランニングすることによってその
回転の伝達を遮断することができ、駆動トルクの伝達方
向を一方向だけに制御することができる。
Furthermore, when the rotation on the output side exceeds the rotation on the input side, the transmission of the rotation can be cut off by overrunning the outer ring, and the transmission direction of the drive torque can be controlled in only one direction. .

【0054】したがって、この発明の回転伝達装置を自
動車の駆動部に用いれば、4輪直結状態でタイトコーナ
ーを旋回してもブレーキング現象を引き起こすことがな
く、2輪駆動と4輪駆動を自動的に行なうことが可能と
なり、フルタイムで直結型の4輪駆動を実現できる。
Therefore, if the rotation transmission device of the present invention is used in the drive unit of an automobile, braking will not occur even when turning a tight corner with four wheels directly connected, and two-wheel drive and four-wheel drive can be automatically switched. This makes it possible to achieve full-time direct-coupled four-wheel drive.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】第1の実施例の縦断正面図[Fig. 1] Longitudinal front view of the first embodiment

【図2】図1のII−II線に沿った断面図[Figure 2] Cross-sectional view taken along line II-II in Figure 1

【図3】図
1のIII −III 線に沿った断面図
[Figure 3] Cross-sectional view taken along line III-III in Figure 1

【図4】図2
の要部拡大断面図
[Figure 4] Figure 2
Enlarged cross-sectional view of main parts

【図5】第2の実施例の縦断正面図[Fig. 5] Longitudinal front view of the second embodiment

【図6】第3の実施例の縦断正面図[Fig. 6] Vertical front view of the third embodiment

【図7】第4の実施例の縦断正面図[Fig. 7] Longitudinal front view of the fourth embodiment

【図8】第5の実施例の縦断正面図[Fig. 8] Longitudinal front view of the fifth embodiment

【図9】第6の実施例の縦断正面図[Fig. 9] Vertical front view of the sixth embodiment

【図10】図9のX−X線に沿った断面図[Fig. 10] Cross-sectional view taken along line X-X in Fig. 9

【図11】自
動車への回転伝達装置の装着例を示す図
[Fig. 11] A diagram showing an example of mounting a rotation transmission device on a car.

【符号の説明】[Explanation of symbols]

1  外輪 2、75  入力軸 4、5  係合面 6、79  制御用保持器 7、80  固定保持器 8  ポケット 9  スプラグ 10  弾性部材 12、71  制御軸 18  回転方向すき間 20、31、41、51、61、77  差動軸受46
、55、66、67  保持器 A  回転伝達装置
1 Outer ring 2, 75 Input shaft 4, 5 Engagement surface 6, 79 Control retainer 7, 80 Fixed retainer 8 Pocket 9 Sprag 10 Elastic member 12, 71 Control shaft 18 Rotational direction clearance 20, 31, 41, 51, 61, 77 Differential bearing 46
, 55, 66, 67 Cage A Rotation transmission device

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  外輪の内部に入力軸を回転自在に支持
し、その外輪と入力軸の対向面に係合子の係合面を形成
し、その両係合面間に回動可能に設けた保持器のポケッ
トに、入力軸と保持器の正逆方向の相対回転によって上
記両係合面に係合する係合子と、その係合子を係合しな
い位置に保持する弾性部材とを組み込み、上記保持器と
入力軸を、入力軸と同軸上に回転自在に配置した制御軸
により回転力が伝達可能に連結すると共に、その制御軸
と入力軸の連結部には回転方向すきまを設け、かつ、制
御軸又は入力軸の一方と固定部材とを差動軸受で連結し
、その差動軸受に、入力軸又は制御軸の支持部の回転抵
抗により大きな回転抵抗を付与した回転伝達装置。
[Claim 1] An input shaft is rotatably supported inside an outer ring, an engaging surface of an engager is formed on the opposing surface of the outer ring and the input shaft, and a rotatable member is provided between the two engaging surfaces. Incorporating in the pocket of the retainer an engager that engages with both of the engagement surfaces by relative rotation of the input shaft and the retainer in forward and reverse directions, and an elastic member that holds the engager in a non-engaged position. The retainer and the input shaft are connected so that rotational force can be transmitted by a control shaft that is rotatably arranged on the same axis as the input shaft, and a clearance in the rotational direction is provided at the connection portion between the control shaft and the input shaft, and A rotation transmission device in which one of a control shaft or an input shaft and a fixed member are connected by a differential bearing, and a rotational resistance greater than the rotational resistance of a support portion of the input shaft or control shaft is imparted to the differential bearing.
【請求項2】  差動軸受が、軌道径の異なる複数の転
がり軸受を備え、各転がり軸受の転動体の保持器を回転
抵抗の取出し部材とした請求項1に記載の回転伝達装置
2. The rotation transmission device according to claim 1, wherein the differential bearing includes a plurality of rolling bearings having different raceway diameters, and a retainer of a rolling element of each rolling bearing is used as a rotational resistance extraction member.
JP3028655A 1991-01-30 1991-02-22 Rotation transmission device Expired - Fee Related JP2886699B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP3028655A JP2886699B2 (en) 1991-02-22 1991-02-22 Rotation transmission device
EP92900922A EP0528037B1 (en) 1991-01-30 1991-12-11 Rotation transmitting device
KR1019920702391A KR970000867B1 (en) 1991-01-30 1991-12-11 Rotation transmitting device
PCT/JP1991/001704 WO1992014074A1 (en) 1991-01-30 1991-12-11 Rotation transmitting device
DE69129494T DE69129494T2 (en) 1991-01-30 1991-12-11 DEVICE FOR TRANSMITTING A ROTATIONAL MOTION
US08/176,676 US5355981A (en) 1991-01-30 1994-01-03 Torque transmission device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3028655A JP2886699B2 (en) 1991-02-22 1991-02-22 Rotation transmission device

Publications (2)

Publication Number Publication Date
JPH04266623A true JPH04266623A (en) 1992-09-22
JP2886699B2 JP2886699B2 (en) 1999-04-26

Family

ID=12254524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3028655A Expired - Fee Related JP2886699B2 (en) 1991-01-30 1991-02-22 Rotation transmission device

Country Status (1)

Country Link
JP (1) JP2886699B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010286016A (en) * 2009-06-09 2010-12-24 Origin Electric Co Ltd Reverse input cutoff clutch

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010286016A (en) * 2009-06-09 2010-12-24 Origin Electric Co Ltd Reverse input cutoff clutch

Also Published As

Publication number Publication date
JP2886699B2 (en) 1999-04-26

Similar Documents

Publication Publication Date Title
US5286239A (en) Rotation transmitting device having differently rotating output shafts
EP0528037B1 (en) Rotation transmitting device
JP3202031B2 (en) Vehicle driving force transmission device
US5355748A (en) Rotation transmitting device for an interaxle gearless differential
JPH04266623A (en) Rotation transmitting device
JP3095482B2 (en) Rotation transmission device
JP2975134B2 (en) Rotation transmission device
JPH0533372Y2 (en)
JP2975133B2 (en) Rotation transmission device
JP2975135B2 (en) Rotation transmission device
JP2886698B2 (en) Rotation transmission device
JP3049130B2 (en) Vehicle driving force transmission device
JP3137387B2 (en) Vehicle driving force transmission device
JP2994779B2 (en) Rotation transmission device
JP2997094B2 (en) Rotation transmission device
JP2895550B2 (en) Rotation transmission device
JPH0434102Y2 (en)
JP3207450B2 (en) Transfer of four-wheel drive vehicles
JPH04262157A (en) Rotation transmission device
JP3144847B2 (en) Rotation transmission device
JPH05149353A (en) Rotation transmitting device
JPH04300733A (en) Hub clutch
JPH05139172A (en) Rotation transmitting device
JPH0893800A (en) Rotation transmitting device and driving force transmitting device of vehicle using it
JPH05118359A (en) Rotation transmitting device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees