JPH04266470A - Method for continuous casting extremely low carbon steel - Google Patents
Method for continuous casting extremely low carbon steelInfo
- Publication number
- JPH04266470A JPH04266470A JP5389691A JP5389691A JPH04266470A JP H04266470 A JPH04266470 A JP H04266470A JP 5389691 A JP5389691 A JP 5389691A JP 5389691 A JP5389691 A JP 5389691A JP H04266470 A JPH04266470 A JP H04266470A
- Authority
- JP
- Japan
- Prior art keywords
- molten steel
- mold
- steel
- low carbon
- continuous casting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 22
- 238000009749 continuous casting Methods 0.000 title claims description 19
- 229910001209 Low-carbon steel Inorganic materials 0.000 title claims description 16
- 229910000831 Steel Inorganic materials 0.000 claims abstract description 76
- 239000010959 steel Substances 0.000 claims abstract description 76
- 239000002893 slag Substances 0.000 claims abstract description 19
- 238000007670 refining Methods 0.000 claims description 8
- 238000007254 oxidation reaction Methods 0.000 claims description 7
- 238000002347 injection Methods 0.000 claims description 6
- 239000007924 injection Substances 0.000 claims description 6
- 230000003647 oxidation Effects 0.000 claims description 6
- 238000003723 Smelting Methods 0.000 claims description 5
- 230000001590 oxidative effect Effects 0.000 abstract 1
- 238000011156 evaluation Methods 0.000 description 19
- 238000007654 immersion Methods 0.000 description 9
- 239000000498 cooling water Substances 0.000 description 8
- 230000000694 effects Effects 0.000 description 7
- 230000003749 cleanliness Effects 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 238000005266 casting Methods 0.000 description 3
- 229910044991 metal oxide Inorganic materials 0.000 description 3
- 150000004706 metal oxides Chemical class 0.000 description 3
- 238000010079 rubber tapping Methods 0.000 description 3
- 230000001629 suppression Effects 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 238000009529 body temperature measurement Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 239000003112 inhibitor Substances 0.000 description 2
- 230000002195 synergetic effect Effects 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000012447 hatching Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
Landscapes
- Continuous Casting (AREA)
- Treatment Of Steel In Its Molten State (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】本発明は、溶鋼中に含まれる非金
属介在物の鋳片への持ち込みを可及的に低減して、清浄
度に優れた良質の製品鋳片を得るべく行われる極低炭素
鋼の連続鋳造方法に関する。[Industrial Application Field] The present invention is carried out in order to obtain high-quality product slabs with excellent cleanliness by reducing as much as possible the introduction of non-metallic inclusions contained in molten steel into slabs. Concerning a continuous casting method for ultra-low carbon steel.
【0002】0002
【従来の技術】炭素含有量が極めて少ない( 0.00
3%以下)極低炭素鋼は、転炉、電気炉等の溶製炉から
の出鋼の段階においてこれの表面を覆うスラグに、通常
、20〜30%にも達する不安定な金属酸化物(FeO
,MnO)を含んでおり、これらが溶鋼中のAlを酸化
して、非金属介在物であるAl2 O3 (アルミナ)
を生成する作用をなすため、これを直接的に用いて連続
鋳造を実施した場合、非金属介在物を多く含み、清浄度
の低い製品鋳片が得られ、所定の品質確保が難しいとい
う問題が生じる。[Prior art] Carbon content is extremely low (0.00
3% or less) Ultra-low carbon steel usually contains 20 to 30% of unstable metal oxides in the slag that covers its surface during the tapping stage from a smelting furnace such as a converter or electric furnace. (FeO
, MnO), and these oxidize Al in the molten steel, forming non-metallic inclusions Al2O3 (alumina).
Therefore, if continuous casting is carried out using this directly, a product slab containing many non-metallic inclusions and low cleanliness will be obtained, making it difficult to ensure the specified quality. arise.
【0003】そこで、極低炭素鋼の連続鋳造に際しては
、例えば、特開平1−301814号公報に開示されて
いる如く、溶製炉からの出鋼を真空精錬する際に、真空
脱ガス槽内にMgO,CaO等の酸化度抑制剤を添加し
、スラグと溶鋼との界面にて生じる酸化反応を抑制して
、非金属介在物の生成量を低減する低減処理を実施し、
この低減処理後の溶鋼を連続鋳造設備に供給することに
より、鋳片への非金属介在物の混入量を低減して、清浄
度の向上を図ることが行われている。Therefore, in the continuous casting of ultra-low carbon steel, for example, as disclosed in Japanese Patent Application Laid-Open No. 1-301814, when the tapped steel from the smelting furnace is vacuum refined, it is necessary to An oxidation degree inhibitor such as MgO or CaO is added to the slag to suppress the oxidation reaction that occurs at the interface between the slag and molten steel, and a reduction treatment is performed to reduce the amount of nonmetallic inclusions produced.
By supplying the molten steel after this reduction treatment to continuous casting equipment, the amount of non-metallic inclusions mixed into the slab is reduced and the cleanliness is improved.
【0004】また一方、このような極低炭素鋼を用いる
連続鋳造設備側においては、溶鋼の注入に伴って鋳型内
に浸入する非金属介在物が、該鋳型から引抜かれる鋳片
中に持ち込まれることを防止して、製品鋳片の改質を図
るべく、鋳型内部での流れ状態を調べ、流れの偏り程度
が大きい場合に持ち出し量が多いと判定して、注湯ノズ
ルの交換又は位置換え、及び溶鋼注入量の低下等、溶鋼
の注入に関連する操業条件を変更することが行われてい
る。On the other hand, in continuous casting equipment that uses such ultra-low carbon steel, nonmetallic inclusions that enter the mold as molten steel is injected are carried into the slab that is pulled out from the mold. In order to prevent this and improve the quality of the product slab, we examine the flow condition inside the mold, and if the degree of flow deviation is large, it is determined that the amount of molten metal taken out is large, and the pouring nozzle is replaced or relocated. Changes are being made to the operating conditions related to molten steel injection, such as reducing the amount of molten steel injection, and reducing the amount of molten steel injection.
【0005】なおこのとき、鋳型内での偏り流れの程度
を知るべく流れ状態を評価する必要があるが、この評価
方法としては、鋳型の両短辺に埋設した多数の熱電対に
より両短辺での深さ方向の温度分布を測定し、この結果
に基づいて評価を行う方法、及び鋳型の両短辺近傍にて
該鋳型内部に生じる湯面変動を夫々測定し、これらの比
較に基づいて評価を行う方法が広く採用されており、ま
た、特開昭61―150762号公報には、耐火物製の
ケースに収納した熱電対を鋳型内に挿入して注湯口に対
向させ、該注湯口からの流出する溶鋼の温度を熱電対に
より測温すると共に、注湯口から流出する溶鋼の動圧を
前記ケースの支持部位に貼着した歪ゲージにより測定し
て、これらの測定結果に基づいて流れ状態を評価する方
法が開示されており、更に特開平2−207955号公
報には、鋳型の両短辺に供給される冷却水の入側温度と
出側温度との温度差を夫々検出し、これらの比較により
偏り流れの程度を判定する方法が開示されている。[0005] At this time, it is necessary to evaluate the flow state in order to find out the degree of unbalanced flow within the mold, but this evaluation method uses a large number of thermocouples embedded in both short sides of the mold. A method of measuring the temperature distribution in the depth direction at the mold and making an evaluation based on this result, and a method of measuring the melt level fluctuation that occurs inside the mold near both short sides of the mold, and based on a comparison of these. A method of evaluation has been widely adopted, and Japanese Patent Application Laid-Open No. 150762/1986 discloses that a thermocouple housed in a refractory case is inserted into the mold and faced to the pouring spout. The temperature of the molten steel flowing out from the spout is measured with a thermocouple, and the dynamic pressure of the molten steel flowing out from the spout is measured with a strain gauge attached to the supporting part of the case, and the flow is determined based on these measurement results. A method for evaluating the condition is disclosed, and furthermore, Japanese Patent Application Laid-Open No. 2-207955 detects the temperature difference between the inlet temperature and the outlet temperature of cooling water supplied to both short sides of the mold, A method for determining the degree of biased flow by comparing these is disclosed.
【0006】[0006]
【発明が解決しようとする課題】ところが、以上の如く
実施される極低炭素鋼の連続鋳造方法においては、鋳型
に注入される溶鋼中に含まれる非金属介在物の量は、溶
製炉からの出鋼に対して行われる前述の低減処理に際し
ての処理条件の変動、及びこの処理中における種々の外
乱の作用に応じて変化するにも拘わらず、これを用いた
連続鋳造設備の操業は、鋳型内部の流れ状態の評価結果
に基づいて操業条件を変更する手順にて行われているた
め、溶鋼中に含まれる非金属介在物が多い場合、これの
鋳片中への持ち出しを有効に防止できず十分な改質効果
が得られない虞があり、逆に非金属介在物が少ない場合
、流れ状態の評価結果に基づいて不必要な操業条件の変
更が行われ、溶鋼注入量の低下、注湯ノズルの無為な交
換等により生産性の低下を招来するという難点があった
。However, in the continuous casting method for ultra-low carbon steel carried out as described above, the amount of non-metallic inclusions contained in the molten steel injected into the mold is reduced from the melting furnace. Despite changes in the processing conditions during the aforementioned reduction treatment performed on the tapped steel and the effects of various disturbances during this treatment, the operation of continuous casting equipment using this Since the procedure is to change the operating conditions based on the evaluation results of the flow state inside the mold, if there are many non-metallic inclusions in the molten steel, this effectively prevents them from being carried out into the slab. On the other hand, if there are few nonmetallic inclusions, unnecessary changes to operating conditions may be made based on the flow condition evaluation results, resulting in a decrease in the amount of molten steel injected. There was a problem in that productivity decreased due to careless replacement of the pouring nozzle.
【0007】本発明は斯かる事情に鑑みてなされたもの
であり、極低炭素鋼の連続鋳造に際し、鋳片中への非金
属介在物の持ち出しを有効に防止でき、清浄度の高い製
品鋳片を安定的に得ることが可能となる上、このための
無為な操業条件の変更が行われる虞がなく、生産性の低
下を解消し得る極低炭素鋼の連続鋳造方法を提供するこ
とを目的とする。The present invention has been made in view of the above circumstances, and it is possible to effectively prevent non-metallic inclusions from being taken out into slabs during continuous casting of ultra-low carbon steel, and to produce product castings with high cleanliness. It is an object of the present invention to provide a continuous casting method for ultra-low carbon steel, which makes it possible to stably obtain pieces, eliminates the risk of unnecessarily changing the operating conditions, and eliminates a decrease in productivity. purpose.
【0008】[0008]
【課題を解決するための手段】本発明に係る極低炭素鋼
の連続鋳造方法は、溶製炉からの出鋼を真空精錬する際
に非金属介在物の低減処理を施してなる極低炭素鋼の溶
鋼を用い、これをタンディッシュを介して鋳型に注入し
、該鋳型から連続的に引抜いて、高清浄度の鋳片を得る
べく行われる極低炭素鋼の連続鋳造方法において、前記
溶鋼中における非金属介在物の生成量を示す指標を、該
溶鋼の表面を覆うスラグの酸化度として抽出する一方、
前記鋳型内部での溶鋼の流れ状態を調べ、偏り流れの程
度を示す指標を得て、これら両指標間に所定の相関関係
が満たされない場合、前記鋳型への溶鋼の注入に関連す
る操業条件を変更することを特徴とする。[Means for Solving the Problems] The continuous casting method of ultra-low carbon steel according to the present invention provides ultra-low carbon steel that is produced by performing a treatment to reduce non-metallic inclusions during vacuum refining of tapped steel from a smelting furnace. In a continuous casting method for ultra-low carbon steel, in which molten steel is injected into a mold through a tundish and continuously pulled out from the mold to obtain a slab with high cleanliness, the molten steel is While extracting an index indicating the amount of nonmetallic inclusions produced in the molten steel as the degree of oxidation of the slag covering the surface of the molten steel,
The flow state of molten steel inside the mold is examined to obtain an index indicating the degree of unbalanced flow, and if a predetermined correlation is not satisfied between these two indexes, the operating conditions related to the injection of molten steel into the mold are determined. It is characterized by changing.
【0009】[0009]
【作用】本発明においては、溶製炉からの出鋼後、非金
属介在物の低減処理を行った溶鋼に対し、これの内部の
非金属介在物の生成量を示す指標を、表面を覆うスラグ
の酸化度、即ち、該スラグ中の不安定な金属酸化物の量
として得ると共に、この溶鋼を用いての連続鋳造設備の
操業中に、鋳型内部の流れ状態評価を行い、偏り流れの
程度を示す指標を得て、これら両指標間に、操業実績に
基づいて決定された所定の相関関係が満たされない場合
にのみ操業条件の変更を行う。[Operation] In the present invention, an indicator indicating the amount of nonmetallic inclusions formed inside the molten steel that has been subjected to nonmetallic inclusion reduction treatment after being tapped from the smelting furnace is coated on the surface of the molten steel. The degree of oxidation of the slag, that is, the amount of unstable metal oxides in the slag, is obtained, and the flow condition inside the mold is evaluated during the operation of continuous casting equipment using this molten steel. The operating conditions are changed only when a predetermined correlation determined based on operational results is not satisfied between these two indicators.
【0010】0010
【実施例】以下本発明をその実施例を示す図面に基づい
て詳述する。第1図は、本発明に係る極低炭素鋼の連続
鋳造方法(以下本発明方法という)の実施状態を示す模
式図である。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below with reference to drawings showing embodiments thereof. FIG. 1 is a schematic diagram showing the implementation state of the continuous casting method for ultra-low carbon steel according to the present invention (hereinafter referred to as the method of the present invention).
【0011】図中1は、矩形断面の筒形をなし両端の開
口部を上下に向けて設置されたスラブ用の鋳型であり、
矩形の長辺に沿う断面が示されている。鋳型1には、こ
れの上部に配されたタンディッシュ2から、浸漬ノズル
3を経て溶鋼4が注入されている。浸漬ノズル3は、矩
形断面をなす鋳型1への均一な注湯のため、該鋳型1の
両短辺に向けて夫々開口する一対の流出口 3a,3b
をその先端に備えた2孔タイプのノズルとなっており、
これらの流出口 3a,3bから鋳型1の両短辺に向け
て夫々流出する溶鋼4は、鋳型1の水冷された内壁との
接触により冷却されて、下方に至るに従って外側から凝
固し、その外側を凝固シェルにて被覆された鋳片5とな
り、鋳型1の下側開口部から下方に向けて連続的に引き
抜かれる。Reference numeral 1 in the figure is a mold for a slab, which has a cylindrical shape with a rectangular cross section and is installed with openings at both ends facing upward and downward.
A cross section along the long side of the rectangle is shown. Molten steel 4 is injected into the mold 1 from a tundish 2 placed above the mold 1 through an immersion nozzle 3. The immersion nozzle 3 has a pair of outlet ports 3a and 3b that open toward both short sides of the mold 1, respectively, in order to uniformly pour molten metal into the mold 1 having a rectangular cross section.
It is a two-hole type nozzle with a
The molten steel 4 flowing out from these outlets 3a, 3b toward both short sides of the mold 1 is cooled by contact with the water-cooled inner wall of the mold 1, and solidifies from the outside as it goes downward. The resulting slab 5 is covered with a solidified shell, and is continuously drawn downward from the lower opening of the mold 1.
【0012】タンディッシュ2内の溶鋼4は、該タンデ
ィッシュ2の上方に位置する取鍋6から供給されている
。この取鍋6は、転炉7にて生産された極低炭素鋼の溶
鋼4を内部に収納し、図示しないクレーン等の搬送手段
によりタンディッシュ2の上部に搬送される。Molten steel 4 in the tundish 2 is supplied from a ladle 6 located above the tundish 2. This ladle 6 stores therein molten steel 4 of ultra-low carbon steel produced in the converter 7, and is transported to the upper part of the tundish 2 by a transport means such as a crane (not shown).
【0013】転炉7からタンディッシュ2に向かう取鍋
6の搬送経路の中途には、吸上式の真空精錬装置8が設
置してあり、取鍋6内に収納されて運搬される溶鋼4は
、この真空精錬装置8内において、上部から挿入される
浸漬管を経て真空槽80に吸い上げられ、該真空槽80
内を循環する間に、脱ガス、脱炭及び攪拌による成分,
温度の均一化処理を施された後、取鍋6に還流せしめら
れる。A suction type vacuum refining device 8 is installed in the middle of the transport path of the ladle 6 from the converter 7 to the tundish 2, and the molten steel 4 stored in the ladle 6 and transported is is sucked up into the vacuum tank 80 in this vacuum refining device 8 through a dipping tube inserted from the top, and
During circulation, components are degassed, decarburized and stirred,
After being subjected to temperature equalization treatment, it is refluxed into the ladle 6.
【0014】真空精錬装置8の真空槽80には、これの
内部を循環する溶鋼4中での非金属介在物の生成を抑制
するため、所定量のCaOが添加されている。このCa
Oは、溶鋼4と共に取鍋6に還流した後、該溶鋼4の表
面に浮上し、該表面を覆うスラグとの間に低流動性の固
化状スラグを形成して、前記スラグ中に含まれるFeO
,MnO,SiO2 等の不安定な金属酸化物と、溶鋼
4中に含まれるAlとの間での酸化反応を抑制し、この
反応により生成される非金属介在物(Al2 O3 )
の生成を抑制する作用をなす。なお、CaOの添加は、
転炉7からの出鋼中及び出鋼後の夫々の時点において取
鍋6内にも直接的に行われており、出鋼時に添加された
CaOと、真空槽80内にて添加されたCaOとの相乗
効果により、タンディッシュ2上に搬送された溶鋼4は
、非金属介在物の含有量が少ない良質の溶鋼となってい
る。A predetermined amount of CaO is added to the vacuum chamber 80 of the vacuum refining apparatus 8 in order to suppress the formation of non-metallic inclusions in the molten steel 4 circulating therein. This Ca
After O flows back into the ladle 6 together with the molten steel 4, it floats to the surface of the molten steel 4, forms a solidified slag with low fluidity between it and the slag covering the surface, and is contained in the slag. FeO
, MnO, SiO2, and other unstable metal oxides and Al contained in the molten steel 4, and non-metallic inclusions (Al2O3) generated by this reaction.
acts to suppress the production of Note that the addition of CaO is
The process is carried out directly in the ladle 6 during and after tapping the steel from the converter 7, and the CaO added at the time of tapping and the CaO added in the vacuum chamber 80 are Due to the synergistic effect, the molten steel 4 conveyed onto the tundish 2 becomes high-quality molten steel with a low content of nonmetallic inclusions.
【0015】溶鋼4中に含まれる非金属介在物の量は介
在物量測定器9にて測定される。この介在物量測定器9
は、前記溶鋼4の表面を覆うスラグをタンディッシュ2
への供給前にサンプル採取し、この採取スラグを分析し
て、これに含まれるFeOとMnOとのスラグ全体に対
する重量%、換言すれば、該スラグの酸化度を非金属介
在物の量を示す介在物指標として求めるものであり、こ
の結果は、前述した連続鋳造設備における操業条件の適
否を判定する判定部20に与えられている。The amount of nonmetallic inclusions contained in the molten steel 4 is measured by an inclusion amount measuring device 9. This inclusion amount measuring device 9
The slag covering the surface of the molten steel 4 is transferred to the tundish 2.
A sample is collected before being supplied to the slag, and the collected slag is analyzed to determine the weight percent of FeO and MnO contained in the slag to the entire slag, in other words, the degree of oxidation of the slag, which indicates the amount of nonmetallic inclusions. This is determined as an inclusion index, and the result is given to the determination unit 20 that determines the suitability of the operating conditions in the above-mentioned continuous casting equipment.
【0016】図2は、真空精錬装置8の真空槽80内へ
のCaOの添加量と、これにより得られた溶鋼4におけ
る前記介在物指標の変化との関係を示すグラフである。
本図に示す如く、真空槽80内でのCaOの添加量の増
大に伴って介在物指標が低下しており、CaOの添加が
溶鋼4中の非金属介在物の生成抑制に有効であることが
わかる。FIG. 2 is a graph showing the relationship between the amount of CaO added into the vacuum chamber 80 of the vacuum refining apparatus 8 and the change in the inclusion index in the molten steel 4 obtained thereby. As shown in this figure, the inclusion index decreases as the amount of CaO added in the vacuum chamber 80 increases, indicating that the addition of CaO is effective in suppressing the formation of nonmetallic inclusions in the molten steel 4. I understand.
【0017】また図3は、種々の介在物指標を有する溶
鋼4を鋳型1に注入して、同一条件下にて連続鋳造を実
施し、得られた製品鋳片中に含まれる介在物の個数を調
べた結果を示すグラフであり、図中の●は、真空精錬装
置8の真空槽80内へのCaOの添加による介在物の抑
制処理を行ったもの、○は、介在物の抑制処理を行わな
かったものを夫々示している。本図から、抑制処理済の
溶鋼4を用いることにより製品鋳片中の介在物個数を大
幅に低減し得ることが明らかである。なおCaOの添加
は、非金属介在物を球状化して溶鋼4の表面への浮上を
促進する作用をなし、また溶鋼4とこれの表面を覆うス
ラグとの間の反応を抑制し、更にスラグを希釈する作用
もなし、これらの相乗効果により介在物の生成を抑制す
る。FIG. 3 also shows the number of inclusions contained in the product slab obtained by pouring molten steel 4 having various inclusion indicators into the mold 1 and performing continuous casting under the same conditions. This is a graph showing the results of the investigation. In the figure, ● indicates the case where inclusion suppression treatment was performed by adding CaO into the vacuum chamber 80 of the vacuum refining device 8, and ○ indicates the case where inclusion suppression treatment was performed. Each shows what was not done. It is clear from this figure that the number of inclusions in the product slab can be significantly reduced by using the suppressed molten steel 4. Note that the addition of CaO has the effect of spheroidizing nonmetallic inclusions and promoting the floating of the molten steel 4 to the surface, and also suppresses the reaction between the molten steel 4 and the slag covering the surface of the molten steel 4, and further reduces the slag. There is no diluting effect, and the synergistic effect of these suppresses the formation of inclusions.
【0018】さて前記鋳型1は、内壁水冷のための冷却
水の通水路をその全周に亘って備えており、浸漬ノズル
3の流出口 3a,3bからの溶鋼の流れ方向下流側と
なる鋳型1の両短辺には、これらの下部から上部へ向け
て冷却水を通水せしめるべく各別の通水路 10,11
が形成してある。これらの通水路 10,11には、夫
々に供給される冷却水の入側温度を検出する入側温度計
12,13、及び、同じく出側温度を検出する出側温
度計 14,15が設置してある。そして、一方の通水
路10の入側温度計12及び出側温度計14の測温結果
は第1の温度差算出部16に与えられ、また、他方の通
水路11の入側温度計13及び出側温度計15の測温結
果は第2の温度差算出部17に夫々与えられており、鋳
型1の両短辺における溶鋼4の冷却の結果として夫々の
冷却水の入,出側間に生じる温度差が、これらの温度差
算出部 16,17にて算出されるようになしてある。The mold 1 is provided with a cooling water passage for water cooling the inner wall around its entire circumference, and is located on the downstream side in the flow direction of the molten steel from the outlet ports 3a and 3b of the immersion nozzle 3. Separate water passages 10 and 11 are provided on both short sides of 1 to allow cooling water to flow from the bottom to the top.
is formed. These water passages 10 and 11 are equipped with inlet thermometers 12 and 13 that detect the inlet temperature of the cooling water supplied to each channel, and outlet thermometers 14 and 15 that also detect the outlet temperature. It has been done. The temperature measurement results of the inlet thermometer 12 and the outlet thermometer 14 of one of the water passages 10 are given to the first temperature difference calculation unit 16, and The temperature measurement results of the exit side thermometer 15 are respectively given to the second temperature difference calculation unit 17, and as a result of cooling the molten steel 4 on both short sides of the mold 1, there is a difference between the inflow and outflow sides of each cooling water. The resulting temperature difference is calculated by these temperature difference calculating sections 16 and 17.
【0019】第1,第2の温度差算出部 16,17の
算出結果は、所定のサンプリング間隔にて前記判定部2
0に取込まれており、該判定部20は、両算出部 16
,17において算出された温度差を相互に比較し、鋳型
1内における溶鋼4の流れ状態をこの比較結果に基づい
て評価して、両短辺のいずれか一方への流れの偏り程度
を示す指標(片流れ指標)を後述の如く求める。The calculation results of the first and second temperature difference calculation units 16 and 17 are sent to the determination unit 2 at predetermined sampling intervals.
0, and the determination unit 20 includes both calculation units 16
, 17 are compared with each other, and the flow state of the molten steel 4 in the mold 1 is evaluated based on the comparison result, and an index indicating the degree of bias of the flow toward either of the short sides. (one-sided flow index) is determined as described below.
【0020】判定部20での流れ状態の評価は、鋳型1
の両短辺の夫々に対し第1,第2の温度差算出部 16
,17にて算出された冷却水の入,出側間の温度差T1
,T2 を次式に適用して得られる評価指数Hを用い
て行われる。
H=k・(T1 −T2 )× 100(%) …(
1)なおこの式中のkは、両温度差T1 ,T2 の平
均値の逆数、即ち、
k=2/(T1 +T2 )
…(2)であるが、適宜の定数としてもよい。[0020] The evaluation of the flow state in the determination unit 20
The first and second temperature difference calculation units 16
, 17, the temperature difference T1 between the inlet and outlet sides of the cooling water
, T2 using the evaluation index H obtained by applying the following equation. H=k・(T1 −T2)×100(%)…(
1) Note that k in this formula is the reciprocal of the average value of both temperature differences T1 and T2, that is, k=2/(T1 +T2)
...(2), but may be an appropriate constant.
【0021】例えば、浸漬ノズル3の一方の流出口3a
に詰まりが生じた場合、該流出口3aからの溶鋼4の流
出量が減少し、他方の流出口3bからの流出量が相対的
に増す結果、鋳型1の内部には、流出口 3a,3bか
らの溶鋼4の流出量の不均衡により流出口3b側への偏
り流れが生じ、流出口3bから流出する溶鋼4が鋳型1
内に深く浸入するようになり、これが鋳片5への非金属
介在物の持ち込みを促進する。For example, one outlet 3a of the immersion nozzle 3
When a blockage occurs in the outlet 3a, the amount of molten steel 4 flowing out from the outlet 3a decreases, and the amount flowing out from the other outlet 3b relatively increases. Due to the imbalance in the amount of molten steel 4 flowing out from the mold 1, a biased flow toward the outlet 3b occurs, and the molten steel 4 flowing out from the outlet 3b flows into the mold 1.
This facilitates the introduction of non-metallic inclusions into the slab 5.
【0022】前記温度差T1 及びT2 は、鋳型1の
両短辺に夫々供給された冷却水と鋳型1内部の溶鋼4と
の間の熱交換の結果として生じるものであり、前述の偏
り流れが生じた場合、流出口3aに対向する側にて得ら
れる温度差T1 は、流出口3bに対向する側にて得ら
れる温度差T2 よりも小さくなり、前記(1)式にて
得られる評価指数Hは、偏り流れの方向を示す符号と、
偏り流れの発生程度に対応する絶対値を有することにな
り、この評価指数Hにより鋳片5への非金属介在物の持
ち込み程度を知り得る。The temperature differences T1 and T2 occur as a result of heat exchange between the cooling water supplied to both short sides of the mold 1 and the molten steel 4 inside the mold 1, and the above-mentioned unbalanced flow occurs. If this occurs, the temperature difference T1 obtained on the side facing the outlet 3a will be smaller than the temperature difference T2 obtained on the side opposite the outlet 3b, and the evaluation index obtained by the above formula (1) H is a sign indicating the direction of biased flow;
It has an absolute value corresponding to the degree of occurrence of biased flow, and the degree of non-metallic inclusions brought into the slab 5 can be determined from this evaluation index H.
【0023】但しこのように求められる評価指数Hは、
浸漬ノズル3と鋳型1との相対的位置関係に影響される
値であることから、前記判定部20における流れ状態の
評価においては、前記評価指数Hそのものではなく、所
定時間内に生じる評価指数Hの変動、即ち標準偏差σH
又は最大変動幅Hmax を算出し、これを偏り流れ
の程度を示す指標(片流れ指標)として用いる。また、
タンディッシュ2内の溶鋼4に含まれる大形の非金属介
在物が鋳型1内に流入しようとする場合、これは、浸漬
ノズル3の流出口3a又は3bを一旦閉塞した後に押出
される挙動を示し、この時、(1)式にて求められる評
価指数Hは大きく変動する。このこともまた、鋳片5へ
の介在物の持ち込み阻止を目的として行われる流れ評価
が、評価指数Hそのものではなく、これの変動を示す標
準偏差σH 又は最大変動幅Hmax により行われる
べきであることを示している。However, the evaluation index H obtained in this way is
Since the value is influenced by the relative positional relationship between the immersion nozzle 3 and the mold 1, in the evaluation of the flow state in the determination section 20, the evaluation index H generated within a predetermined time is used instead of the evaluation index H itself. variation, that is, standard deviation σH
Alternatively, the maximum fluctuation width Hmax is calculated and used as an index (unilateral flow index) indicating the degree of uneven flow. Also,
When large non-metallic inclusions contained in the molten steel 4 in the tundish 2 try to flow into the mold 1, they will be forced out after once blocking the outlet 3a or 3b of the submerged nozzle 3. At this time, the evaluation index H obtained by equation (1) varies greatly. This also means that flow evaluation, which is performed for the purpose of preventing inclusions from being brought into the slab 5, should be performed not by the evaluation index H itself, but by the standard deviation σH or maximum fluctuation width Hmax that indicates the fluctuation of this index. It is shown that.
【0024】図4は、一定量の非金属介在物を含む溶鋼
4を用いて複数回の操業を実施し、各回において算出さ
れた片流れ指標σH と、各回において得られた製品鋳
片に含まれる介在物個数との相関関係を調べた結果を示
すグラフである。本図に明らかな如く、製品鋳片中の介
在物個数は、鋳型1内の流れ評価の結果として得られた
片流れ指標σH の増大に伴って増大しており、この片
流れ指標σH を適正に保つことにより製品鋳片の改質
が可能なことがわかる。[0024] Figure 4 shows the one-sided flow index σH calculated at each operation and the amount contained in the product slab obtained at each operation by performing multiple operations using molten steel 4 containing a certain amount of nonmetallic inclusions. It is a graph showing the results of examining the correlation with the number of inclusions. As is clear from this figure, the number of inclusions in the product slab increases with the increase in the one-sided flow index σH obtained as a result of flow evaluation in mold 1, and this one-sided flow index σH is maintained at an appropriate level. This shows that it is possible to modify the product slab.
【0025】但しこの片流れ指標σH の適正値は、タ
ンディッシュ2から鋳型1に注入される溶鋼4中に含ま
れる非金属介在物の多少に応じて異なり、非金属介在物
の含有量が少ない溶鋼4を用いた場合には、比較的大き
い片流れ指標σH が得られるような流れ状態において
も鋳片5中への介在物の持込み量を少なく保ち得て、良
質の製品鋳片が得られるのに対し、非金属介在物を多く
含む溶鋼4を用いた場合、片流れ指標σH を小さく保
ち、鋳型1内での偏り流れの発生を可及的に抑制する必
要がある。However, the appropriate value of this one-sided flow index σH varies depending on the amount of nonmetallic inclusions contained in the molten steel 4 injected from the tundish 2 into the mold 1. 4, the amount of inclusions carried into the slab 5 can be kept small even in flow conditions where a relatively large one-sided flow index σH is obtained, and a product slab of good quality can be obtained. On the other hand, when molten steel 4 containing many non-metallic inclusions is used, it is necessary to keep the one-sided flow index σH small and to suppress the occurrence of unbalanced flow within the mold 1 as much as possible.
【0026】判定部20は、前記介在物量測定器9から
与えられる介在物指標により、鋳型1に供給される溶鋼
4中の介在物量を認識し、また、前述した流れ状態の評
価の結果として得られた片流れ指標σH により、鋳型
1内における偏り流れの程度を認識しており、これら両
指標間に所定の相関関係が満たされない場合、操業条件
が不適正であり、製品鋳片における所定の品質確保が困
難であると判定する。The determination unit 20 recognizes the amount of inclusions in the molten steel 4 supplied to the mold 1 based on the inclusion index given from the inclusion amount measuring device 9, and also recognizes the amount of inclusions in the molten steel 4 supplied to the mold 1. The degree of unbalanced flow in the mold 1 is recognized by the unbalanced flow index σH, and if a predetermined correlation is not satisfied between these two indices, the operating conditions are inappropriate, and the predetermined quality of the product slab is not satisfied. It is determined that it is difficult to secure.
【0027】図5は、多くの操業実績に基づいて得られ
た片流れ指標σH と、前記介在物指標との関係を示す
グラフであり、本図中の○は、得られた製品鋳片の単位
重量当たりの介在物個数が所定量、例えば、0.09個
/ton以下であり、所望の品質基準を満たし得たもの
を、逆に●は、前記品質基準を満たし得なかったものを
夫々示している。判定部20はこの相関関係を記憶して
おり、介在物量測定器9から与えられる前記介在物指標
と、温度差算出部 16,17の検出結果から前述の如
く得られる片流れ指標σH とにより定まる現状の操業
状態をこのグラフ上に求め、これが、図中にハッチング
を施して示す適正範囲内にあるか否かにより、現状の操
業条件の適否を判定する。なお、判定部20での判定基
準は、製品鋳片に要求される品質基準に応じて異なる。FIG. 5 is a graph showing the relationship between the one-sided flow index σH obtained based on many operational results and the inclusion index, and ○ in this figure indicates the unit of the obtained product slab. The number of inclusions per weight is less than a predetermined amount, for example, 0.09 pieces/ton, and the desired quality standards are met, and ● indicates those that fail to meet the quality standards. ing. The determination unit 20 stores this correlation, and determines the current state based on the inclusion index given from the inclusion amount measuring device 9 and the one-sided flow index σH obtained as described above from the detection results of the temperature difference calculation units 16 and 17. The operating conditions of the equipment are determined on this graph, and the suitability of the current operating conditions is determined based on whether or not the operating conditions are within the appropriate range indicated by hatching in the diagram. Note that the criteria used in the determining section 20 differ depending on the quality standards required for the product slab.
【0028】判定部20によるこの判定結果は、例えば
、表示部21に出力して該表示部21上に所定の表示を
行わせ、作業者に、浸漬ノズル3の位置の変更、浸漬ノ
ズル3の交換、浸漬ノズル3からの注湯量の減少等、溶
鋼の注入に関連する操業条件の変更を促すべく用いられ
る。The determination result by the determination unit 20 is outputted to the display unit 21, for example, and a predetermined display is made on the display unit 21, so that the operator can change the position of the immersion nozzle 3, change the position of the immersion nozzle 3, etc. It is used to prompt changes in operating conditions related to molten steel injection, such as replacement or reduction of the amount of molten metal poured from the immersion nozzle 3.
【0029】なお本実施例においては、鋳型1内部の流
れ評価を、該鋳型1の両短辺における冷却水の入,出側
間の温度差を用いて行っているが、流れ評価の方法はこ
れに限らず、鋳型1の両短辺側での湯面レベルの変動等
、他の評価方法を採用してもよく、また本実施例におい
ては、CaOの添加により溶鋼4内部での介在物の生成
を抑制しているが、MgO等の他の酸化度抑制剤を用い
てもよい。In this example, the flow inside the mold 1 is evaluated using the temperature difference between the inlet and outlet sides of the cooling water on both short sides of the mold 1, but the flow evaluation method is as follows. The present invention is not limited to this, and other evaluation methods such as fluctuations in the molten metal level on both short sides of the mold 1 may be adopted. Although the formation of is suppressed, other oxidation degree inhibitors such as MgO may also be used.
【0030】また本実施例においては、矩形断面の鋳型
1を用いるスラブ連続鋳造設備への適用例について述べ
たが、他の連続鋳造設備においても本発明方法の適用が
可能であることは言うまでもない。Furthermore, in this embodiment, an example of application to continuous slab casting equipment using a mold 1 with a rectangular cross section has been described, but it goes without saying that the method of the present invention can also be applied to other continuous casting equipment. .
【0031】[0031]
【発明の効果】以上詳述した如く本発明方法においては
、非金属介在物の低減処理を行った溶鋼に対し、鋳型へ
の注入前に非金属介在物の量を示す介在物指標を求め、
またこの溶鋼の鋳型内での偏り流れの程度を示す片流れ
指標を得て、両指標間に所定の相関関係が満たされるか
否かにより操業条件の適否を判定し、これに従って操業
条件の変更が行われるから、溶鋼中の非金属介在物の多
少に拘わらず常に適正な操業条件が得られ、鋳片中への
非金属介在物の持ち込みを有効に防止でき、清浄度に優
れた良質の製品鋳片を安定的に得ることができ、また無
為な操業条件の変更による生産性の低下をも解消し得る
等、本発明は優れた効果を奏する。Effects of the Invention As detailed above, in the method of the present invention, an inclusion index indicating the amount of nonmetallic inclusions is determined for molten steel that has been treated to reduce nonmetallic inclusions before being poured into a mold, and
In addition, a one-sided flow index indicating the degree of unbalanced flow of this molten steel in the mold is obtained, and the suitability of the operating conditions is determined based on whether a predetermined correlation is satisfied between the two indicators, and changes in the operating conditions are made according to this. Because of this, proper operating conditions can always be obtained regardless of the amount of non-metallic inclusions in the molten steel, and the introduction of non-metallic inclusions into the slab can be effectively prevented, resulting in a high-quality product with excellent cleanliness. The present invention has excellent effects, such as being able to stably obtain slabs and eliminating the drop in productivity caused by unnecessary changes in operating conditions.
【図1】本発明方法の実施状態を示す模式図である。FIG. 1 is a schematic diagram showing the implementation state of the method of the present invention.
【図2】CaOの添加による介在物の低減効果を示すグ
ラフである。FIG. 2 is a graph showing the effect of reducing inclusions by adding CaO.
【図3】介在物の抑制処理の製品鋳片の品質に与える効
果を示すグラフである。FIG. 3 is a graph showing the effect of inclusion suppression treatment on the quality of product slabs.
【図4】鋳型内での偏り流れの程度とこれにより得られ
る製品鋳片の品質との関係を示すグラフである。FIG. 4 is a graph showing the relationship between the degree of unbalanced flow within the mold and the quality of the product slab obtained thereby.
【図5】本発明方法における鋳造条件の適否の判定基準
の一例を示す図である。FIG. 5 is a diagram showing an example of criteria for determining suitability of casting conditions in the method of the present invention.
1 鋳型 2 タンディッシュ 3 浸漬ノズル 4 溶鋼 5 鋳片 6 取鍋 7 転炉 8 真空精錬装置 9 介在物量測定器 10,11 通水路 12,13 入側温度計 14,15 出側温度計 20 判定部 80 真空槽 1 Mold 2 Tundish 3 Immersion nozzle 4 Molten steel 5 Slab 6 Ladle 7 Converter 8 Vacuum refining equipment 9 Inclusion amount measuring device 10,11 Waterway 12, 13 Inlet side thermometer 14, 15 Outlet side thermometer 20 Judgment section 80 Vacuum chamber
Claims (1)
非金属介在物の低減処理を施してなる極低炭素鋼の溶鋼
を用い、これをタンディッシュを介して鋳型に注入し、
該鋳型から連続的に引抜いて、高清浄度の鋳片を得るべ
く行われる極低炭素鋼の連続鋳造方法において、前記溶
鋼中における非金属介在物の生成量を示す指標を、該溶
鋼の表面を覆うスラグの酸化度として抽出する一方、前
記鋳型内部での溶鋼の流れ状態を調べ、偏り流れの程度
を示す指標を得て、これら両指標間に所定の相関関係が
満たされない場合、前記鋳型への溶鋼の注入に関連する
操業条件を変更することを特徴とする極低炭素鋼の連続
鋳造方法。[Claim 1] Using molten steel of ultra-low carbon steel that has been subjected to a treatment to reduce nonmetallic inclusions during vacuum refining of tapped steel from a smelting furnace, this is injected into a mold through a tundish,
In a continuous casting method for ultra-low carbon steel, which is performed to obtain a highly clean slab by continuously drawing it from the mold, an index indicating the amount of non-metallic inclusions produced in the molten steel is determined based on the surface of the molten steel. While extracting the oxidation degree of the slag covering the mold, the flow state of the molten steel inside the mold is examined to obtain an index indicating the degree of unbalanced flow, and if a predetermined correlation between these two indexes is not satisfied, the mold 1. A continuous casting method for ultra-low carbon steel, characterized in that the operating conditions associated with the injection of molten steel into the steel are changed.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5389691A JPH04266470A (en) | 1991-02-22 | 1991-02-22 | Method for continuous casting extremely low carbon steel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5389691A JPH04266470A (en) | 1991-02-22 | 1991-02-22 | Method for continuous casting extremely low carbon steel |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04266470A true JPH04266470A (en) | 1992-09-22 |
Family
ID=12955488
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5389691A Pending JPH04266470A (en) | 1991-02-22 | 1991-02-22 | Method for continuous casting extremely low carbon steel |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04266470A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5884685A (en) * | 1995-03-29 | 1999-03-23 | Nippon Steel Corporation | Quality prediction and quality control of continuous-cast steel |
-
1991
- 1991-02-22 JP JP5389691A patent/JPH04266470A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5884685A (en) * | 1995-03-29 | 1999-03-23 | Nippon Steel Corporation | Quality prediction and quality control of continuous-cast steel |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9460248B2 (en) | Method for predicting degree of contamination of molten steel during ladle exchange | |
JP2008260045A (en) | Solidification delay suppressing method | |
JP5245800B2 (en) | Continuous casting mold and steel continuous casting method | |
KR101239537B1 (en) | Method for deceasing a depression of strip surface by optimization a deposition depth in submerged entry nozzle | |
JPH03275256A (en) | Method for controlling drift flow of molten steel in continuous casting mold | |
JPH04266470A (en) | Method for continuous casting extremely low carbon steel | |
JPWO2019044292A1 (en) | Steel continuous casting method and thin steel plate manufacturing method | |
JP2004034090A (en) | Continuous casting method for steel | |
KR20120032924A (en) | Method for estimating steel component during mixed grade continuous casting | |
KR101344897B1 (en) | Device for predicting quality of plate in continuous casting and method therefor | |
Badr et al. | Refractory Solutions to Improve Steel Cleanliness | |
JP4998705B2 (en) | Steel continuous casting method | |
JPH0484650A (en) | Method for restraining drift of molten steel in continuous casting mold | |
JP2019155396A (en) | Slab casting device and slab casting method | |
JPH1043842A (en) | Tundish for continuously casting steel | |
WO2021106441A1 (en) | Operation method of ladle refining process | |
JPH10193056A (en) | Method for removing inclusion in continuous casting tundish | |
Dutta et al. | Continuous casting (concast) | |
KR100229910B1 (en) | Method and apparatus for molten metal surface control of tundish | |
JPH05337618A (en) | Method for evaluating flow condition in inner part of mold for continuous casting | |
JP3470537B2 (en) | Inclusion removal method in tundish for continuous casting | |
JP3745689B2 (en) | Manufacturing method for continuous cast slabs with excellent cleanliness | |
JP3415313B2 (en) | Tundish for continuous casting and continuous casting method using the tundish | |
KR19990050906A (en) | Method for Reducing Slab Surface Defects by Optimizing Immersion Nozzle Depth | |
KR101377484B1 (en) | Method for estimating carbon-increasing of molten steel |