JPH04266079A - Semiconductor laser device - Google Patents

Semiconductor laser device

Info

Publication number
JPH04266079A
JPH04266079A JP2731091A JP2731091A JPH04266079A JP H04266079 A JPH04266079 A JP H04266079A JP 2731091 A JP2731091 A JP 2731091A JP 2731091 A JP2731091 A JP 2731091A JP H04266079 A JPH04266079 A JP H04266079A
Authority
JP
Japan
Prior art keywords
semiconductor laser
refractive index
laser device
layer
cladding layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2731091A
Other languages
Japanese (ja)
Other versions
JP2912717B2 (en
Inventor
Masaaki Yuri
正昭 油利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=12217515&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH04266079(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP2731091A priority Critical patent/JP2912717B2/en
Publication of JPH04266079A publication Critical patent/JPH04266079A/en
Application granted granted Critical
Publication of JP2912717B2 publication Critical patent/JP2912717B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To achieve a small vertical spread angle thetav which is equal to or less than 20 deg. with a high light entrapment coefficient GAMMAv in a semiconductor laser device. CONSTITUTION:Low refractive index layers 13 and 17 are provided at one portion of a region where a distance from an activation layer 15 is shorter than an oscillation wavelength within each region of a first clad layer 12 and a second clad layer 18.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、レーザ光を用いた各種
の情報処理や通信,計測のための光源として用いること
のできる半導体レーザ装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor laser device that can be used as a light source for various information processing, communications, and measurements using laser light.

【0002】0002

【従来の技術】近年、光ディスク装置や光通信装置の光
源として半導体レーザ装置の需要が急速に高まってきた
。この要求を満たすべく各種の構造を有する半導体レー
ザ装置が研究開発され実用化されている。
2. Description of the Related Art In recent years, the demand for semiconductor laser devices as light sources for optical disk devices and optical communication devices has rapidly increased. In order to meet this demand, semiconductor laser devices having various structures have been researched and developed and put into practical use.

【0003】半導体レーザ装置を実用化する際の問題と
して半導体レーザ装置から出射されるレーザ光の拡がり
角がガスレーザや固体レーザと比べ非常に大きくしかも
縦横の比が1よりもかなり大きくなるため焦光のための
光学系が複雑になるという点がある。
One of the problems when putting semiconductor laser devices into practical use is that the divergence angle of the laser light emitted from the semiconductor laser device is much larger than that of gas lasers or solid-state lasers, and the aspect ratio is much larger than 1. The problem is that the optical system for this becomes complicated.

【0004】これは活性領域を形成するダブルヘテロ接
合面に対し平行方向のビーム拡がり角(以下、水平拡が
り角という)はストライプ幅を制御することにより10
°以下程度を容易に得ることができるのに対し、ダブル
ヘテロ接合面に対し垂直方向のビーム拡がり角(以下、
垂直拡がり角という)は従来構造の半導体レーザ装置の
場合、約20°以下にすることが困難であることによる
[0004] By controlling the stripe width, the beam divergence angle in the direction parallel to the double heterojunction surface forming the active region (hereinafter referred to as horizontal divergence angle) can be increased to 10
The beam divergence angle in the direction perpendicular to the double heterojunction surface (hereinafter referred to as
This is because it is difficult to reduce the vertical divergence angle (referred to as the vertical divergence angle) to about 20° or less in the case of a semiconductor laser device having a conventional structure.

【0005】以下図面を参照しながら従来構造の半導体
レーザ装置における垂直拡がり角について説明する。
The vertical divergence angle in a semiconductor laser device having a conventional structure will be explained below with reference to the drawings.

【0006】図6は従来構造の半導体レーザ装置の断面
図を、図7はその活性層近傍での屈折率分布をそれぞれ
示すものである。図5において、1は半導体基板、2は
第1のクラッド層、3は活性層、4は第2のクラッド層
、5はキャップ層である。
FIG. 6 is a cross-sectional view of a semiconductor laser device having a conventional structure, and FIG. 7 is a diagram showing the refractive index distribution in the vicinity of the active layer. In FIG. 5, 1 is a semiconductor substrate, 2 is a first cladding layer, 3 is an active layer, 4 is a second cladding layer, and 5 is a cap layer.

【0007】図6に示した光導波路に対する垂直拡がり
角θvは近似的に次式で表すことができる。
The vertical divergence angle θv for the optical waveguide shown in FIG. 6 can be approximately expressed by the following equation.

【0008】 θv≒4・(n22−n12)・d/λ0)    (
rad)ここで、n1およびn2はそれぞれクラッド層
2,4および活性層3の屈折率、dは活性層3の厚み、
λ0は真空中での波長である。
[0008] θv≒4・(n22−n12)・d/λ0) (
rad) Here, n1 and n2 are the refractive indices of the cladding layers 2, 4 and the active layer 3, respectively, d is the thickness of the active layer 3,
λ0 is the wavelength in vacuum.

【0009】この式より発振波長λ0の半導体レーザ装
置において垂直拡がり角θvを小さくするためには活性
層3の厚みdを小さくするか、あるいはクラッド層2,
4の屈折率n1を大きくして(n22−n12)の値を
小さくすればよいことになる(活性層3の屈折率n2は
発振波長λ0からほぼ一義的に決まりほとんど変えるこ
とができない)。
From this equation, in order to reduce the vertical divergence angle θv in a semiconductor laser device with an oscillation wavelength λ0, it is necessary to reduce the thickness d of the active layer 3, or to reduce the thickness d of the cladding layer 2,
What is necessary is to increase the refractive index n1 of the active layer 3 and decrease the value of (n22-n12) (the refractive index n2 of the active layer 3 is almost uniquely determined from the oscillation wavelength λ0 and cannot be changed).

【0010】ところが、上記の方法により垂直拡がり角
θvを小さくすると活性層3への光の閉じ込めの程度が
低下するため発振の閾値電流密度が上昇するという問題
が生じてしまう。
However, when the vertical divergence angle θv is reduced by the above method, the degree of confinement of light in the active layer 3 is reduced, resulting in a problem that the threshold current density for oscillation is increased.

【0011】活性層3への光の閉じ込め係数Γvはこの
構造に対し近似的に次式で表すことができる。
The light confinement coefficient Γv in the active layer 3 can be approximately expressed by the following equation for this structure.

【0012】 Γv≒2π2・(n22−n12)・(d/λ0)2 
  図8はAlGaAs系のλ0=830nmの半導体
レーザ装置において活性層3の厚みd、およびクラッド
層2,4のAl組成x1(したがってクラッド層屈折率
n1)を変化させたときの垂直拡がり角θvと光の閉じ
込め係数Γvの変化を示したものである。
Γv≒2π2・(n22−n12)・(d/λ0)2
FIG. 8 shows the vertical divergence angle θv when the thickness d of the active layer 3 and the Al composition x1 of the cladding layers 2 and 4 (therefore, the refractive index n1 of the cladding layer) are changed in an AlGaAs-based semiconductor laser device with λ0 = 830 nm. It shows the change in the light confinement coefficient Γv.

【0013】図8から明らかなように活性層3の厚みd
、クラッド層2,4の屈折率n1のいずれを変化させて
もθv<20°を実現するときのΓvの値はθv>30
°を実現するときのΓvの値の数分の一以下にまで減少
し、閾値電流密度が著しく上昇してしまう。
As is clear from FIG. 8, the thickness d of the active layer 3
, the value of Γv when θv<20° is achieved no matter which of the refractive indices n1 of the cladding layers 2 and 4 is changed is θv>30.
The value of Γv decreases to less than a fraction of the value when realizing .degree., and the threshold current density increases significantly.

【0014】[0014]

【発明が解決しようとする課題】このように上述の構成
では、たとえ活性層3の厚みdおよびクラッド層2,4
の屈折率n1を変化させて小さな垂直拡がり角θvを実
現できたとしても、それに伴って光の閉じ込め係数Γv
が低下するため閾値電流密度が著しく上昇してしまい、
実用上問題があった。
As described above, in the above structure, even if the thickness d of the active layer 3 and the cladding layers 2 and 4
Even if a small vertical divergence angle θv can be achieved by changing the refractive index n1 of
As the current density decreases, the threshold current density increases significantly,
There was a practical problem.

【0015】本発明は上記欠点に鑑み、高い光の閉じ込
め係数Γvを有しつつ20°以下の小さな垂直拡がり角
θvを容易に実現することが可能な半導体レーザ装置を
提供することを目的とする。
In view of the above drawbacks, it is an object of the present invention to provide a semiconductor laser device that can easily realize a small vertical divergence angle θv of 20° or less while having a high light confinement coefficient Γv. .

【0016】[0016]

【課題を解決するための手段】上記目的を達成するため
に本発明による半導体レーザ装置は、活性層に近いクラ
ッド層の一部をその部分以外のクラッド層の屈折率より
も小さい屈折率にした構成による。
[Means for Solving the Problems] In order to achieve the above object, a semiconductor laser device according to the present invention has a part of the cladding layer close to the active layer having a refractive index lower than that of the cladding layer other than that part. Depends on configuration.

【0017】[0017]

【作用】この構成によると、活性層近傍での光分布は屈
折率の小さい半導体層を導入することにより次のように
変化する。
[Operation] According to this structure, the light distribution near the active layer changes as follows by introducing the semiconductor layer having a small refractive index.

【0018】すなわちこの低屈折率層部分での光強度は
抑えられるためその減少分の光電力が低屈折率層の両側
すなわち活性層側およびクラッド層側に余分に分布する
ことになる。このとき活性層側に余分に分布した光電力
は活性層への光閉じ込め係数Γvを増加させ、一方クラ
ッド層側に余分に分布した光電力は近視野分布を広げる
ため垂直拡がり角θvを著しく減少させることができる
That is, since the light intensity in this low refractive index layer portion is suppressed, the optical power corresponding to the decrease is distributed over both sides of the low refractive index layer, that is, on the active layer side and the cladding layer side. At this time, the extra optical power distributed on the active layer side increases the optical confinement coefficient Γv in the active layer, while the extra optical power distributed on the cladding layer side widens the near-field distribution, thereby significantly reducing the vertical divergence angle θv. can be done.

【0019】[0019]

【実施例】以下、本発明の一実施例について、図面を参
照しながら説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.

【0020】図1は本発明の一実施例における半導体レ
ーザ装置の断面図を、図2はその活性層近傍での屈折率
分布をそれぞれ示すものである。
FIG. 1 is a cross-sectional view of a semiconductor laser device according to an embodiment of the present invention, and FIG. 2 is a diagram showing the refractive index distribution in the vicinity of the active layer.

【0021】図1において、11はn−GaAs(10
0)からなる半導体基板、12は厚み2μmのn−Al
0.5Ga0.5Asからなる第1のクラッド層、13
は厚み0.3μmのn−Al0.6Ga0.4Asから
なる低屈折率層、14は第1のクラッド層12と同一成
分からなる厚み0.075μmの層、15は厚み0.0
5μmのアンドロープAl0.06Ga0.94Asか
らなる活性層、16は厚み0.075μmのp−Al0
.5Ga0.5Asからなる第2のクラッドと同一成分
からなる層、17は厚み0.3μmのp−Al0.6G
a0.4Asからなる低屈折率層、18は厚み2μmの
p−Al0.5Ga0.5Asからなる第2のクラッド
層、19は厚み3μmのp−GaAsからなるキャップ
層である。
In FIG. 1, 11 is n-GaAs (10
0), 12 is a 2 μm thick n-Al
a first cladding layer made of 0.5Ga0.5As, 13
is a low refractive index layer made of n-Al0.6Ga0.4As with a thickness of 0.3 μm; 14 is a layer with a thickness of 0.075 μm made of the same components as the first cladding layer 12; and 15 is a layer with a thickness of 0.0 μm.
Active layer made of 5 μm and rope Al0.06Ga0.94As, 16 is p-Al0 with a thickness of 0.075 μm.
.. A layer made of the same component as the second cladding made of 5Ga0.5As, 17 is p-Al0.6G with a thickness of 0.3 μm.
A low refractive index layer made of a0.4As, 18 a second cladding layer made of p-Al0.5Ga0.5As with a thickness of 2 μm, and 19 a cap layer made of p-GaAs with a thickness of 3 μm.

【0022】この構成によれば、計算により求められる
垂直拡がり角θvは13.2°で、光の閉じ込め係数Γ
vは0.139である。一方低屈折率層13および17
を有さない従来構造の半導体レーザ装置の場合にはθv
=30.2°,Γv=0.141であるから、Γvをほ
とんど減少させることなくθvをめざましく減少させる
ことができることになる。
According to this configuration, the vertical divergence angle θv obtained by calculation is 13.2°, and the light confinement coefficient Γ
v is 0.139. On the other hand, low refractive index layers 13 and 17
In the case of a semiconductor laser device with a conventional structure that does not have θv
Since Γv=30.2° and Γv=0.141, it follows that θv can be significantly reduced without almost decreasing Γv.

【0023】事実、本実施例に基づいてMOCVD法に
より結晶成長を行い試作したストライプ幅20μmのブ
ロードエリア型半導体レーザ装置の垂直拡がり角θvは
図3に示すように12.8°であった。このときの閾値
電流密度は1530A/cm2であり、低屈折率層を有
さない従来構造の半導体レーザ装置(θv=30.5°
)の閾値電流密度1450A/cm2とほとんど等しい
値が得られた。
In fact, the vertical divergence angle θv of a broad area type semiconductor laser device with a stripe width of 20 μm, which was prototyped by crystal growth using the MOCVD method based on this example, was 12.8° as shown in FIG. The threshold current density at this time was 1530 A/cm2, and the semiconductor laser device had a conventional structure without a low refractive index layer (θv=30.5°
A value almost equal to the threshold current density of 1450 A/cm2 was obtained.

【0024】また本実施例に基づいて製作したストライ
プ幅2μmの屈折率導波型の半導体レーザ装置では水平
拡がり角θhが13.0°となり、図4に示すように遠
視野像の縦横比(楕円率)がほぼ1の半導体レーザ装置
を実現することができた。
In addition, in the refractive index guided semiconductor laser device with a stripe width of 2 μm manufactured based on this example, the horizontal divergence angle θh is 13.0°, and the aspect ratio of the far-field pattern ( A semiconductor laser device with an ellipticity of approximately 1 could be realized.

【0025】なお、上記の実施例では特定の膜厚,組成
を有する構造について述べたが、次に述べるように膜厚
,組成を変化させることによりかなり自由に光閉じ込め
係数Γvと垂直拡がり角θvを選定することができる。
In the above embodiment, a structure having a specific film thickness and composition was described, but by changing the film thickness and composition, the optical confinement coefficient Γv and the vertical divergence angle θv can be changed quite freely. can be selected.

【0026】図5は図2の構造において低屈折率層13
,17の膜厚d1、活性層15と低屈折率層13,17
との距離d2を変化させたときの光閉じ込め係数Γvと
垂直拡がり角θvの値を示したものである。この図から
明らかなように低屈折率層13,17の膜厚,位置を適
当に選定することにより従来構造の半導体レーザ装置で
は実現できなかった高い光閉じ込め係数と小さい垂直拡
がり角の両方を同時に達成できる。
FIG. 5 shows the low refractive index layer 13 in the structure of FIG.
, 17 film thickness d1, active layer 15 and low refractive index layers 13, 17
This figure shows the values of the optical confinement coefficient Γv and the vertical divergence angle θv when the distance d2 between the two is changed. As is clear from this figure, by appropriately selecting the film thickness and position of the low refractive index layers 13 and 17, it is possible to simultaneously achieve both a high optical confinement coefficient and a small vertical divergence angle, which could not be achieved with semiconductor laser devices of conventional structure. It can be achieved.

【0027】上述の効果は低屈折率層13,17の存在
場所での光分布強度の抑圧に起因するものである。した
がって低屈折率層13,17が存在しない状態での光分
布強度が大きい領域、すなわち活性層15からの距離が
波長の大きさ以内の領域にこの低屈折率層13,17を
導入したとき上述の効果が顕著に現れることになる。
The above-mentioned effect is due to the suppression of the light distribution intensity where the low refractive index layers 13 and 17 exist. Therefore, when the low refractive index layers 13 and 17 are introduced into a region where the light distribution intensity is large in the absence of the low refractive index layers 13 and 17, that is, a region where the distance from the active layer 15 is within the wavelength, as described above, The effect will be noticeable.

【0028】なお、本実施例では、低屈折率層13,1
7が第1および第2のクラッド層12,18のそれぞれ
の材料の混晶比を変えた場合について述べたが、材料そ
のものを変えることも可能である。
Note that in this embodiment, the low refractive index layers 13, 1
Although No. 7 describes the case where the mixed crystal ratio of each material of the first and second cladding layers 12 and 18 is changed, it is also possible to change the materials themselves.

【0029】また本実施例では、AlGaAs系半導体
レーザ装置について述べたが、この系以外の半導体レー
ザ装置についても同様の効果を得ることができる。
Although this embodiment has been described with reference to an AlGaAs semiconductor laser device, similar effects can be obtained with semiconductor laser devices other than this type.

【0030】また本実施例では、MOCVD法により結
晶成長を行ったが、これ以外の結晶成長方法によっても
当然のことながら本発明による効果を実現することがで
きる。
Further, in this embodiment, the crystal growth was performed by MOCVD, but it goes without saying that the effects of the present invention can also be achieved by other crystal growth methods.

【0031】[0031]

【発明の効果】以上のように本発明は、活性層からの距
離が発振波長よりも小さい、第1および第2のクラッド
層のそれぞれの領域内の少なくとも一部分の屈折率がこ
の部分以外のクラッド層の屈折率よりも小さい構成によ
るので光の閉じ込め係数を減少させることなく垂直拡が
り角をきわめて小さくすることが可能な半導体レーザ装
置を提供できる。
As described above, in the present invention, the refractive index of at least a portion of each region of the first and second cladding layers whose distance from the active layer is smaller than the oscillation wavelength is lower than that of the cladding other than this portion. Since the refractive index is smaller than the refractive index of the layer, it is possible to provide a semiconductor laser device in which the vertical divergence angle can be made extremely small without reducing the light confinement coefficient.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の一実施例における半導体レーザ装置の
断面図
FIG. 1 is a cross-sectional view of a semiconductor laser device according to an embodiment of the present invention.

【図2】同半導体レーザ装置の活性層近傍での屈折率分
布図
[Figure 2] Refractive index distribution diagram near the active layer of the same semiconductor laser device

【図3】同半導体レーザ装置でストライプ幅20μmの
場合の垂直拡がり角θvと光強度の関係を示す図
[Fig. 3] A diagram showing the relationship between the vertical spread angle θv and the light intensity when the stripe width is 20 μm in the same semiconductor laser device.

【図4
】同半導体レーザ装置でストライプ幅2μmの場合の垂
直拡がり角θvと光強度の関係、遠視野像を示す図
[Figure 4
] Diagram showing the relationship between vertical divergence angle θv and light intensity and far-field pattern when the stripe width is 2 μm in the same semiconductor laser device.

【図5】同半導体レーザ装置の低屈折率層の膜厚d1と
活性層と低屈折率層との距離d2を変化させたときの光
閉じ込め係数Γvと垂直拡がり角θvの変化を示す図
FIG. 5 is a diagram showing changes in the optical confinement coefficient Γv and vertical divergence angle θv when the film thickness d1 of the low refractive index layer and the distance d2 between the active layer and the low refractive index layer of the same semiconductor laser device are changed.


図6】従来の半導体レーザ装置の断面図
[
Figure 6: Cross-sectional view of a conventional semiconductor laser device

【図7】同半導
体レーザ装置の活性層近傍での屈折率分布図
[Figure 7] Refractive index distribution diagram near the active layer of the same semiconductor laser device

【図8】同半導体レーザ装置の活性層の厚みdとクラッ
ド層のAl組成x1(すなわちクラッド層屈折率n1)
をパラメータとして、垂直拡がり角θvと光の閉じ込め
係数Γvの関係を示す図
FIG. 8: Thickness d of the active layer and Al composition x1 of the cladding layer (that is, refractive index n1 of the cladding layer) of the same semiconductor laser device.
A diagram showing the relationship between the vertical spread angle θv and the light confinement coefficient Γv, with θv as a parameter.

【符号の説明】[Explanation of symbols]

11  半導体基板 12  第1のクラッド層 13  低屈折率層 14  第1のクラッド層と同一成分からなる層15 
 活性層 16  第2のクラッド層と同一成分からなる層17 
 低屈折率層 18  第2のクラッド層 19  キャップ層
11 Semiconductor substrate 12 First cladding layer 13 Low refractive index layer 14 Layer 15 made of the same component as the first cladding layer
Active layer 16 Layer 17 made of the same components as the second cladding layer
Low refractive index layer 18 Second cladding layer 19 Cap layer

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】一導電型の半導体基板上に順次形成された
、その半導体基板と同導電型の第1のクラッド層,活性
層および前記第1のクラッド層とは逆の導電型の第2の
クラッド層等からなる半導体レーザ装置において、前記
活性層からの距離が発振波長よりも短い、前記第1およ
び第2のクラッド層のそれぞれの領域内の一部分の屈折
率がこの部分以外のクラッド層の屈折率よりも小さいこ
とを特徴とする半導体レーザ装置。
1. A first cladding layer of the same conductivity type as the semiconductor substrate, an active layer, and a second cladding layer of the opposite conductivity type to the first cladding layer, which are sequentially formed on a semiconductor substrate of one conductivity type. In the semiconductor laser device, the distance from the active layer is shorter than the oscillation wavelength, and the cladding layer has a refractive index in a portion of each region of the first and second cladding layers other than this portion. A semiconductor laser device characterized in that the refractive index is smaller than the refractive index of the semiconductor laser device.
【請求項2】屈折率が小さいクラッド層の一部の領域が
、その領域以外のクラッド層の材料の混晶比を変えたも
のである請求項1記載の半導体レーザ装置。
2. The semiconductor laser device according to claim 1, wherein a part of the cladding layer having a low refractive index has a mixed crystal ratio of a material of the cladding layer other than that region.
【請求項3】屈折率が小さいクラッド層の一部の領域が
その領域以外のクラッド層の材料と異なる材料からなる
請求項1記載の半導体レーザ装置。
3. The semiconductor laser device according to claim 1, wherein a part of the cladding layer having a small refractive index is made of a material different from the material of the cladding layer other than that region.
JP2731091A 1991-02-21 1991-02-21 Semiconductor laser device Expired - Lifetime JP2912717B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2731091A JP2912717B2 (en) 1991-02-21 1991-02-21 Semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2731091A JP2912717B2 (en) 1991-02-21 1991-02-21 Semiconductor laser device

Publications (2)

Publication Number Publication Date
JPH04266079A true JPH04266079A (en) 1992-09-22
JP2912717B2 JP2912717B2 (en) 1999-06-28

Family

ID=12217515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2731091A Expired - Lifetime JP2912717B2 (en) 1991-02-21 1991-02-21 Semiconductor laser device

Country Status (1)

Country Link
JP (1) JP2912717B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5592502A (en) * 1993-10-22 1997-01-07 Sharp Kabushiki Kaisha Semiconductor laser element and method for adjusting self-induced oscillation intensity of the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5592502A (en) * 1993-10-22 1997-01-07 Sharp Kabushiki Kaisha Semiconductor laser element and method for adjusting self-induced oscillation intensity of the same

Also Published As

Publication number Publication date
JP2912717B2 (en) 1999-06-28

Similar Documents

Publication Publication Date Title
US6285694B1 (en) Semiconductor laser
JPH07503581A (en) Tapered semiconductor laser gain structure with cavity spoil groove
US7016386B2 (en) Semiconductor laser device
JPH03227088A (en) Semiconductor laser
JP4618854B2 (en) Semiconductor device and manufacturing method thereof
JP3183683B2 (en) Window type semiconductor laser device
JPH04266079A (en) Semiconductor laser device
JPH05251813A (en) Semiconductor laser element
JPS61272987A (en) Semiconductor laser element
JPH08316563A (en) Semiconductor laser device
JP2004087980A (en) Edge-emitting semiconductor laser, electronic equipment, control method of edge-emitting semiconductor laser and manufacturing method of edge-emitting semiconductor laser
JPS63170985A (en) Semiconductor laser element and its device
JPH0745907A (en) Distributed feedback type semiconductor laser
JPH04127595A (en) Semiconductor laser
JP2687449B2 (en) Semiconductor laser and manufacturing method thereof
JPS62281389A (en) Semiconductor laser
JP2658821B2 (en) Method for manufacturing semiconductor wafer and wafer for optical semiconductor device
JPS6130090A (en) Semiconductor laser
JPS63142879A (en) Semiconductor laser
JPH01282883A (en) Semiconductor laser device
JP2003224334A (en) Semiconductor laser
JPH0362585A (en) Semiconductor laser device
JPH02281681A (en) Semiconductor laser
JP2003133642A (en) Semiconductor laser device and photoelectron device
JPS61244082A (en) Semiconductor laser device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080409

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090409

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100409

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110409

Year of fee payment: 12

EXPY Cancellation because of completion of term