JPH04266074A - Manufacture of phosphor gallium phosphide green light-emitting element - Google Patents

Manufacture of phosphor gallium phosphide green light-emitting element

Info

Publication number
JPH04266074A
JPH04266074A JP3047823A JP4782391A JPH04266074A JP H04266074 A JPH04266074 A JP H04266074A JP 3047823 A JP3047823 A JP 3047823A JP 4782391 A JP4782391 A JP 4782391A JP H04266074 A JPH04266074 A JP H04266074A
Authority
JP
Japan
Prior art keywords
gallium phosphide
temperature
green light
layer
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3047823A
Other languages
Japanese (ja)
Inventor
Katsuhiko Nishitani
克彦 西谷
Kazumi Unno
海野 和美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP3047823A priority Critical patent/JPH04266074A/en
Publication of JPH04266074A publication Critical patent/JPH04266074A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a gallium phosphide green light-emitting element with an improved light-emitting efficiency with an improved reproducibility under stable condition. CONSTITUTION:After an n-type gallium phosphide layer and a p-type gallium phosphide layer are subjected to epitaxial growth in sequence on an n-type gallium phosphide substrate, donor impurities of the n-type gallium phosphide layer can be compensated for by diffusion of zinc by performing heat treatment while mainaining a temperature 12 of 300 deg.C-650 deg.C and a donor concentration of pn junction of the n-type gallium phosphide layer can be reduced, thus obtaining a gallium phosphide green light-emitting element with an improved light-emitting efficiency under stable conditions with an improved reproducibility.

Description

【発明の詳細な説明】[Detailed description of the invention]

[発明の目的] [Purpose of the invention]

【0001】0001

【産業上の利用分野】本発明は、りん化ガリウム緑色発
光素子の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a gallium phosphide green light emitting device.

【0002】0002

【従来の技術】従来、りん化ガリウム緑色発光素子(G
aP緑色発光素子)は、高輝度ランプや屋外表示用サイ
ンボード等の光源に使用されている。そしてこのGaP
緑色発光素子の構成は、例えばチップサイズが 0.3
mm角で、図3に示すような断面構成を有する全体厚さ
が 300μm のものである。これはn型りん化ガリ
ウム(GaP)基板1上にテルル(Te)をドープした
n型りん化ガリウム(GaP)層2が成層されており、
このn型GaP層2の上に厚さ20μm のn+ 型G
aP層3、厚さ15μm のn− 型GaP層4が順次
成層されており、さらにn− 型GaP層4の上には厚
さ20μm のp型GaP層5が成層されている。なお
p型GaP層5の上面にはp側電極6が、n型GaP基
板1の下面には2つのn側電極7がそれぞれ設けられて
いる。そして、n− 型GaP層4のpn接合8の近傍
に発光領域が形成されている。
[Prior Art] Conventionally, gallium phosphide green light emitting devices (G
aP green light-emitting elements) are used as light sources for high-intensity lamps, outdoor display signboards, and the like. And this GaP
For example, the configuration of the green light emitting element has a chip size of 0.3
It is mm square, has a cross-sectional configuration as shown in FIG. 3, and has a total thickness of 300 μm. This consists of an n-type gallium phosphide (GaP) layer 2 doped with tellurium (Te) that is layered on an n-type gallium phosphide (GaP) substrate 1.
On this n-type GaP layer 2, an n+ type G layer with a thickness of 20 μm is formed.
An aP layer 3 and an n- type GaP layer 4 with a thickness of 15 .mu.m are successively deposited, and a p-type GaP layer 5 with a thickness of 20 .mu.m is further deposited on the n--type GaP layer 4. Note that a p-side electrode 6 is provided on the upper surface of the p-type GaP layer 5, and two n-side electrodes 7 are provided on the lower surface of the n-type GaP substrate 1. A light emitting region is formed near the pn junction 8 of the n- type GaP layer 4.

【0003】このようなりん化ガリウム緑色発光素子(
GaP緑色発光素子)の製造方法は、一般にn型GaP
基板1上、あるいはn型GaP基板1上に一層以上設け
たn型GaP層2,3上に液相エピタキシャル成長法に
より、さらにn− 型GaP層4及びp型GaP層5を
順次成層し、n− 型GaP層4のpn接合8の近傍に
発光中心となる窒素をドープして発光領域が形成される
。 そして液相エピタキシャル成長や窒素のドープは、通常
、n型GaP基板1等を石英製のボートに設置し、石英
製の反応管を有する所定の成長炉にて行われる。
Such a gallium phosphide green light emitting device (
The manufacturing method for GaP green light emitting device is generally n-type GaP
On the substrate 1 or on the n-type GaP layers 2 and 3 provided on the n-type GaP substrate 1, an n- type GaP layer 4 and a p-type GaP layer 5 are successively deposited by liquid phase epitaxial growth. A light emitting region is formed in the vicinity of the pn junction 8 of the - type GaP layer 4 by doping nitrogen, which is a light emitting center. Liquid phase epitaxial growth and nitrogen doping are usually performed in a predetermined growth furnace equipped with a quartz reaction tube, with the n-type GaP substrate 1 placed in a quartz boat.

【0004】また、GaP緑色発光素子の発光領域は、
n− 型GaP層4のpn接合8の近傍に形成されるも
ので、発光効率は、この領域のドナー濃度を低くして電
子の注入効率を向上させることにより向上させることが
できる。そして発光領域のドナー濃度は、経験的に 0
.4〜 1.5×1016/cm3 であるのが最適で
あるとされている。
[0004] Furthermore, the light emitting region of the GaP green light emitting device is
It is formed near the pn junction 8 of the n- type GaP layer 4, and the luminous efficiency can be improved by lowering the donor concentration in this region to improve the electron injection efficiency. Empirically, the donor concentration in the emission region is 0
.. It is said that the optimum value is 4 to 1.5×10 16 /cm 3 .

【0005】それ故、n− 型GaP層4のドナー濃度
を下げるために、製造上、ボードや反応管を使用するこ
とによって反応環境に多く存在するけい素(Si)をn
型不純物として用い、このSiと、発光中心となる窒素
をド−プするのに用いられるアンモニアガス(NH3 
)との反応が利用されている。すなわち、窒素のドープ
がn− 型GaP層4をエピタキシャル成長させる時に
、雰囲気をNH3 が添加されたガスの雰囲気にするこ
とにより行われ、このときSiと添加されたNH3 と
が反応して窒化けい素(Si3 N4 )が形成される
。これによってドナーとなるSiはn− 型GaP層4
の結晶の中に取り込まれない形となり、n− 型GaP
層4のドナー濃度は低いものとなる。しかし、このよう
な方法では再現性良くドナー濃度を十分に低下させるこ
とが出来ず、せいぜい 2.0×1016/cm3 ま
でしか低下せず、最適な値を得ることができない。
Therefore, in order to lower the donor concentration of the n- type GaP layer 4, silicon (Si), which is present in large quantities in the reaction environment, is reduced by using a board or a reaction tube during manufacturing.
Ammonia gas (NH3
) is used. That is, doping with nitrogen is carried out by making the atmosphere a NH3-added gas atmosphere when epitaxially growing the n-type GaP layer 4, and at this time Si reacts with the added NH3 to form silicon nitride. (Si3 N4) is formed. As a result, Si, which becomes a donor, is transferred to the n- type GaP layer 4.
It becomes a form that is not incorporated into the crystal of n- type GaP.
The donor concentration in layer 4 will be low. However, with such a method, it is not possible to sufficiently reduce the donor concentration with good reproducibility, and the donor concentration is reduced to at most 2.0×10 16 /cm 3 , making it impossible to obtain an optimal value.

【0006】さらに、添加するNH3 の量を増し、N
H3 とSiの反応を過剰にしてドナー濃度の低下を行
おうとすると、Si3 N4 の成長量が増加し、これ
に起因するn− 型GaP層4の異常成長が発生する。 すなわちn− 型GaP層4に成長する部分と成長しな
い部分が生じ、得られる層の厚さに部分的な差が生じて
上面の平坦性が維持できないと共に、さらに形成される
上層の性状を均一なものとすることができない。
Furthermore, by increasing the amount of NH3 added,
If an attempt is made to reduce the donor concentration by excessively reacting H3 and Si, the amount of Si3 N4 grown increases, and this causes abnormal growth of the n- type GaP layer 4. In other words, there are parts that grow and parts that do not grow in the n- type GaP layer 4, and there are local differences in the thickness of the resulting layer, making it impossible to maintain the flatness of the top surface, and also making it difficult to maintain uniform properties of the upper layer to be formed. cannot be made into something.

【0007】以上のようにn− 型GaP層4に形成さ
れる発光領域のドナー濃度を安定した条件で十分に低い
ものとすることができず、発光効率の向上が行い難い状
況にある。
As described above, the donor concentration in the light emitting region formed in the n- type GaP layer 4 cannot be made sufficiently low under stable conditions, making it difficult to improve the light emitting efficiency.

【0008】[0008]

【発明が解決しようとする課題】上記のような発光効率
の向上が困難な状況に鑑みて本発明はなされたもので、
その目的とするところは安定した条件のもとで再現性よ
く発光効率の向上したものが得られるりん化ガリウム緑
色発光素子の製造方法を提供することにある。
[Problems to be Solved by the Invention] The present invention has been made in view of the above-mentioned situation in which it is difficult to improve luminous efficiency.
The purpose is to provide a method for manufacturing a gallium phosphide green light emitting device that can produce a gallium phosphide green light emitting device with improved luminous efficiency with good reproducibility under stable conditions.

【0009】[発明の構成][Configuration of the invention]

【0010】0010

【課題を解決するための手段】本発明のりん化ガリウム
緑色発光素子の製造方法は、n型りん化ガリウム基板上
に液相エピタキシャル成長法により少なくとも一層のn
型りん化ガリウム層とp型りん化ガリウム層とを順次形
成した後に、 300℃乃至 650℃の温度雰囲気中
に保持して熱処理することを特徴とするものである。
[Means for Solving the Problems] A method for manufacturing a gallium phosphide green light-emitting device of the present invention includes forming at least one layer of n-type gallium phosphide on an n-type gallium phosphide substrate by liquid phase epitaxial growth.
This method is characterized by sequentially forming a type gallium phosphide layer and a p-type gallium phosphide layer, followed by heat treatment while maintaining the layer in an atmosphere at a temperature of 300°C to 650°C.

【0011】[0011]

【作用】上記のように構成されたりん化ガリウム緑色発
光素子の製造方法は、エピタキシャル成長後に 300
℃乃至 650℃の温度に保持して熱処理するようにし
ており、このためp型りん化ガリウム層中の亜鉛を、発
光領域が形成されるn型りん化ガリウム層に拡散してこ
の層のドナー不純物を補償することとなり、n型りん化
ガリウム層のpn接合のドナー濃度を十分に低下させる
ことができる。これにより発光効率が向上したりん化ガ
リウム緑色発光素子を、簡単な工程を経るのみで容易に
得られるようにすることが実現できる。
[Function] The method for manufacturing the gallium phosphide green light emitting device constructed as described above is based on
The heat treatment is carried out by maintaining the temperature at a temperature of 650°C to 650°C. Therefore, zinc in the p-type gallium phosphide layer is diffused into the n-type gallium phosphide layer where the light-emitting region is formed, and becomes a donor for this layer. This compensates for impurities, and the donor concentration of the pn junction of the n-type gallium phosphide layer can be sufficiently reduced. This makes it possible to easily obtain a gallium phosphide green light-emitting element with improved luminous efficiency through simple steps.

【0012】0012

【実施例】以下、本発明の一実施例を図面を参照して説
明する。図1は製造工程の温度を模式的に示す図であり
、図2は発光効率の向上率を示す図である。図において
、10は液相エピタキシャル成長装置の成長炉の温度で
あり、11は同じく気化炉の温度であり、12は熱処理
炉の温度である。なお、説明するに際し、GaP緑色発
光素子の構成を示した図3に対応する部分については、
その該当符号を付して説明を行う。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram schematically showing the temperature in the manufacturing process, and FIG. 2 is a diagram showing the improvement rate of luminous efficiency. In the figure, 10 is the temperature of the growth furnace of the liquid phase epitaxial growth apparatus, 11 is the temperature of the vaporization furnace, and 12 is the temperature of the heat treatment furnace. In addition, when explaining, the parts corresponding to FIG. 3 showing the configuration of the GaP green light emitting device are as follows.
The explanation will be given by attaching the corresponding symbol.

【0013】まず、GaP緑色発光素子の製造するにあ
たり、ガリウム(Ga),りん化ガリウム多結晶(Ga
P poly )及び上面にテルル(Te)がドープさ
れたn型GaP層2が成層されたn型GaP基板1を、
石英製の横型スライドボートのそれぞれの所定収納凹部
に設置し、このスライドボートを液相エピタキシャル成
長装置の炉内に設置する。
First, in manufacturing a GaP green light emitting device, gallium (Ga), gallium phosphide polycrystalline (Ga
An n-type GaP substrate 1 on which an n-type GaP layer 2 doped with tellurium (Te) is layered on the upper surface of
Each horizontal slide boat made of quartz is installed in a predetermined storage recess, and this slide boat is installed in a furnace of a liquid phase epitaxial growth apparatus.

【0014】スライドボートを成長炉内に設置した後、
炉内を真空置換し、水素ガス(H2 )を毎分2リット
ルの流量で流しながら炉内温度を通常の昇温速度で10
00℃位にまで加熱上昇させる。昇温後炉内を1000
℃の温度に90分間保持し、そしてGa等のエピタキシ
ャル溶液をn型GaP基板1上のn型GaP層2の上面
に接触させ、さらにこの状態で60分間放置する。続い
て成長炉内の温度を、例えば2℃/分位の降温速度で 
970℃にまで冷却しながら、n型GaP基板1上のn
型GaP層2の上面にGaP層3をエピタキシャル成長
させる。このGaP層3はスライドボートの石英とH2
 ガスの反応によりGa溶液中に溶け込んだSi(ドナ
ーとなる)がドーピングされn+ 層となる。
After installing the slide boat in the growth furnace,
The inside of the furnace was replaced with a vacuum, and while hydrogen gas (H2) was flowing at a flow rate of 2 liters per minute, the temperature inside the furnace was raised to 10% at the normal heating rate.
Heat up to about 00°C. After raising the temperature, the inside of the furnace was heated to 1000
℃ for 90 minutes, an epitaxial solution such as Ga is brought into contact with the upper surface of the n-type GaP layer 2 on the n-type GaP substrate 1, and the substrate is left in this state for another 60 minutes. Next, the temperature inside the growth furnace is lowered at a cooling rate of, for example, 2°C/min.
While cooling the n-type GaP substrate 1 to 970°C,
A GaP layer 3 is epitaxially grown on the upper surface of the type GaP layer 2. This GaP layer 3 is made of quartz and H2 of the slide boat.
Due to the reaction of the gas, Si (which becomes a donor) dissolved in the Ga solution is doped to form an n+ layer.

【0015】成長炉内の温度が 970℃になった時点
でこの温度を保持したまま、成長炉内の雰囲気をアンモ
ニアガス(NH3 )が添加されたガス雰囲気、例えば
アルゴンガス(Ar)とNH3 の混合ガスとし、この
状態を 100分間保持する。そして再度炉内温度を 
970℃から、例えば2℃/分位の降温速度で 930
℃にまで冷却しながら、n− 型GaP層4を成長させ
る。このとき、雰囲気ガスにNH3 が添加されている
ために、Ga溶液中に溶け込んでいるSiはNH3 と
反応してSi3 N4 を形成し、成長するn− 型G
aP層4に取り込まれなくなる。 それ故、このとき成長するn− 型GaP層4のドナー
濃度は 2.0×1016/cm3 程度までの範囲で
低下する。
[0015] When the temperature inside the growth furnace reaches 970°C, while maintaining this temperature, the atmosphere inside the growth furnace is changed to a gas atmosphere to which ammonia gas (NH3) is added, for example, a mixture of argon gas (Ar) and NH3. Create a mixed gas and maintain this state for 100 minutes. Then, check the temperature inside the furnace again.
From 970℃, for example, at a cooling rate of about 2℃/min 930
The n- type GaP layer 4 is grown while cooling to .degree. At this time, since NH3 is added to the atmospheric gas, the Si dissolved in the Ga solution reacts with NH3 to form Si3N4, and the growing n-type G
It is no longer taken into the aP layer 4. Therefore, the donor concentration of the n-type GaP layer 4 grown at this time is reduced to about 2.0×10 16 /cm 3 .

【0016】次に、成長炉を炉内温度が 930℃に達
したところでこのままの状態に維持し、他方で亜鉛(Z
n)気化炉の運転を開始して炉内を昇温する。この昇温
によってZnを蒸発させ、この蒸発したZnを 930
℃に維持された成長炉内のスライドボート上に送り込む
。Zn気化炉の温度が 720℃に達し安定した時点で
成長炉へのNH3 の供給を停止し、炉内の雰囲気ガス
をArとNH3 の混合ガスからArのみのガス雰囲気
に切換え、気化炉は温度を 720℃に保ったままで成
長炉と並列運転する。 そして成長炉はガス雰囲気を切換えた後も炉内温度を 
930℃に維持し、100分経過した時点で、例えば2
℃/分位の降温速度で冷却を行い 750℃にまで冷却
し、その後、成長炉の運転を停止して自然放冷によって
炉内温度を6〜10時間かけて常温にまで降下させる。 同時に気化炉も成長炉の降温途中で、成長炉の温度が 
800℃に冷却された時点で運転を停止し、自然放冷に
よって炉内温度を降下させる。この様な成長炉の降温過
程でn−型GaP層4の上面にp型GaP層5をエピタ
キシャル成長させる。これによりn型GaP基板1上に
順次n− 型GaP層4やp型GaP層5等が成層され
、発光領域が形成されるn− 型GaP層4のpn接合
8を有するエピタキシャルウエハが得られる。
Next, when the furnace temperature reached 930°C, the growth furnace was maintained in this state, and on the other hand, zinc (Z
n) Start the operation of the vaporizing furnace and raise the temperature inside the furnace. Zn is evaporated by this temperature increase, and this evaporated Zn is
Pour onto a slide boat in a growth furnace maintained at °C. When the temperature of the Zn vaporization furnace reached 720°C and became stable, the supply of NH3 to the growth furnace was stopped, the atmosphere gas in the furnace was changed from a mixed gas of Ar and NH3 to a gas atmosphere containing only Ar, and the temperature of the vaporization furnace was The reactor is operated in parallel with the growth reactor while maintaining the temperature at 720°C. The growth furnace also maintains the temperature inside the furnace even after changing the gas atmosphere.
Maintain the temperature at 930°C, and after 100 minutes, e.g.
Cooling is carried out at a rate of temperature drop of about 0.degree. C./minute to 750.degree. C., and then the operation of the growth furnace is stopped and the temperature inside the furnace is allowed to cool down naturally to room temperature over 6 to 10 hours. At the same time, the vaporizer is also in the process of cooling down, and the temperature of the growth furnace is decreasing.
When the temperature reaches 800°C, the operation is stopped and the temperature inside the furnace is lowered by natural cooling. During the cooling process of the growth furnace, a p-type GaP layer 5 is epitaxially grown on the upper surface of the n-type GaP layer 4. As a result, an n- type GaP layer 4, a p-type GaP layer 5, etc. are sequentially formed on the n-type GaP substrate 1, and an epitaxial wafer having a pn junction 8 of the n- type GaP layer 4 where a light emitting region is formed is obtained. .

【0017】さらに、得られたエピタキシャルウエハを
熱処理炉に入れ、炉内雰囲気ガスをArとし、常圧で温
度を 500℃まで昇温する。そして炉内を 500℃
の温度にした状態で10時間保持した後、炉内温度を常
温にまで降下させてエピタキシャルウエハの熱処理を行
う。
Further, the obtained epitaxial wafer is placed in a heat treatment furnace, and the temperature is raised to 500° C. under normal pressure with Ar atmosphere in the furnace. Then the inside of the furnace is heated to 500℃
After maintaining the temperature for 10 hours, the temperature inside the furnace is lowered to room temperature and the epitaxial wafer is heat-treated.

【0018】そして、熱処理されたエピタキシャルウエ
ハの両面に所定のp側電極6及びn側電極7を形成し、
 0.3mm角のチップとしたGaP緑色発光素子を得
る。
Then, predetermined p-side electrodes 6 and n-side electrodes 7 are formed on both sides of the heat-treated epitaxial wafer,
A GaP green light emitting device is obtained in the form of a 0.3 mm square chip.

【0019】上述した本実施例により得られたGaP緑
色発光素子について、従来の製造方法により形成したも
のと比較した。なお、従来の製造方法により形成したも
のは、本実施例と同じ条件の下において、成長炉でのエ
ピタキシャル成長を行ったエピタキシャルウエハを、次
の 500℃,10時間の熱処理を行わずにそのまま 
0.3mm角のチップにして得たGaP緑色発光素子で
ある。
The GaP green light emitting device obtained in this example described above was compared with one formed by a conventional manufacturing method. In addition, for those formed by the conventional manufacturing method, an epitaxial wafer that was epitaxially grown in a growth furnace under the same conditions as in this example was used without further heat treatment at 500°C for 10 hours.
This is a GaP green light emitting device obtained as a 0.3 mm square chip.

【0020】これによると本実施例により得られたもの
のn− 型GaP層4のドナー濃度は1.0〜 1.5
×1016/cm3 となり、最適とされるドナー濃度
の 0.4〜 1.5×1016/cm3 の値を満足
する値を有するものであり、従来方法によるもののドナ
ー濃度が2.0〜 3.0×1016/cm3 である
のに対し、非常に向上した値であった。また、発光効率
も本発明により得られたものの値は高い値を示し、従来
方法によるものに比較して平均で約50% の向上率を
示した。
According to this, the donor concentration of the n- type GaP layer 4 obtained in this example is 1.0 to 1.5.
x 1016/cm3, which satisfies the optimum donor concentration of 0.4 to 1.5 x 1016/cm3, and the donor concentration of the conventional method is 2.0 to 3.0. ×1016/cm3, this was a much improved value. Furthermore, the luminous efficiency obtained by the present invention showed a high value, showing an average improvement rate of about 50% compared to that obtained by the conventional method.

【0021】さらに、上記した実施例では成長炉でエピ
タキシャル成長させた後のエピタキシャルウエハを、熱
処理炉に入れ 500℃の炉内温度で10時間保持して
熱処理を行ったが、炉内温度を 300℃から 700
℃の範囲で変えて発光効率の向上率を見たところ、図2
に横軸に熱処理温度、縦軸に発光効率の向上率をとって
示すように、300℃から 650℃の範囲で従来の発
光効率より向上するものである。また、特に400℃か
ら 600℃の範囲では平均の向上率が40%を超え、
著しい向上が得られるものである。
Further, in the above embodiment, the epitaxial wafer that had been epitaxially grown in the growth furnace was placed in a heat treatment furnace and kept at a temperature of 500°C for 10 hours for heat treatment, but the temperature in the furnace was lowered to 300°C. From 700
When we looked at the improvement rate of luminous efficiency by varying the temperature within the temperature range, Figure 2
As shown with the heat treatment temperature on the horizontal axis and the rate of improvement in luminous efficiency on the vertical axis, the luminous efficiency is improved over the conventional luminous efficiency in the range of 300°C to 650°C. In addition, especially in the range of 400℃ to 600℃, the average improvement rate exceeds 40%,
This is a significant improvement.

【0022】このように、 300℃から 650℃の
範囲で発光効率が向上し、それ以外の熱処理温度では向
上しないのは以下の理由によるものと考えられる。すな
わち 300℃から 650℃の範囲ではp型GaP層
5中のZnのn− 型GaP層4への拡散が行われ、n
− 型GaP層4のドナー不純物の十分な補償が成され
るため、pn接合近傍のドナー濃度をさらに低いものと
することができる。また 300℃より低い温度の場合
にはp型GaP層5中のZnのn− 型GaP層4への
拡散が少なくなり、n− 型GaP層4のドナー濃度が
低下しないためであり、 650℃を超える高い温度の
場合には電子あるいはホールが捕捉されるまでの時間が
短く、ライフタイムが短くなっており、これは高い温度
のためにpn接合近傍に結晶欠陥が生じるなどして結晶
性が悪化したことによるものであると考えられる。
The reason why the luminous efficiency improves in the range of 300° C. to 650° C. and does not improve at other heat treatment temperatures is considered to be due to the following reasons. That is, in the range of 300°C to 650°C, Zn in the p-type GaP layer 5 diffuses into the n- type GaP layer 4, and
Since donor impurities in the - type GaP layer 4 are sufficiently compensated for, the donor concentration near the pn junction can be further reduced. In addition, at a temperature lower than 300°C, Zn in the p-type GaP layer 5 diffuses into the n-type GaP layer 4 less, and the donor concentration in the n-type GaP layer 4 does not decrease. In the case of a high temperature exceeding This is thought to be due to deterioration.

【0023】以上、本実施例によれば、従来の製造方法
に比較してエピタキシャル成長を行った後、単に 30
0℃から 650℃の範囲で熱処理を行うのみという簡
単で、かつ安定した条件のもとで実行できる方法により
、各層の性状も良好に形成され、また再現性よく発光効
率を向上できるものであり、さらに液相エピタキシャル
成長装置で結晶成長を行うのとは分離して、熱処理炉に
おいて発光効率向上のための熱処理を行うことができ、
良好な量産性のもとで発光効率の向上を実現できるもの
である。
As described above, according to this embodiment, compared to the conventional manufacturing method, after epitaxial growth, only 30
This method is simple and can be carried out under stable conditions by simply performing heat treatment in the range of 0°C to 650°C, which allows formation of good properties for each layer and improves luminous efficiency with good reproducibility. Furthermore, separate from performing crystal growth in a liquid phase epitaxial growth apparatus, heat treatment can be performed in a heat treatment furnace to improve luminous efficiency,
This makes it possible to improve luminous efficiency with good mass productivity.

【0024】尚、上記の実施例においてはエピタキシャ
ル成長を行った後、常温にまで自然放冷して次の熱処理
を行うようにしているが、エピタキシャル成長を行った
後であるならば常温に戻さずに次の熱処理を行ってもよ
く、また熱処理も液相エピタキシャル成長装置とは別に
熱処理炉を設けて行う必要もない等、本発明は要旨を逸
脱しない範囲内で適宜変更して実施し得るものである。
[0024] In the above embodiment, after epitaxial growth is performed, the next heat treatment is performed after being naturally cooled to room temperature, but if epitaxial growth is performed, the temperature should not be returned to room temperature. The following heat treatment may be performed, and there is no need to provide a heat treatment furnace separate from the liquid phase epitaxial growth apparatus, etc., and the present invention can be implemented with appropriate modifications within the scope of the gist. .

【0025】[0025]

【発明の効果】以上の説明から明らかなように、本発明
は、エピタキシャル成長後に 300℃乃至 650℃
の温度に保持して熱処理する構成としたことにより、発
光効率が向上したりん化ガリウム緑色発光素子を安定し
た条件のもとで再現性よく得られる効果を有するもので
ある。
[Effects of the Invention] As is clear from the above explanation, the present invention is effective at heating temperatures of 300°C to 650°C after epitaxial growth.
By employing a structure in which the heat treatment is performed while maintaining the temperature at , it is possible to obtain a gallium phosphide green light-emitting element with improved luminous efficiency with good reproducibility under stable conditions.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の一実施例での製造工程のおける温度を
示す図である。
FIG. 1 is a diagram showing temperatures during a manufacturing process in an embodiment of the present invention.

【図2】図1の一実施例に係わる発光効率の向上率を示
す図である。
FIG. 2 is a diagram showing the improvement rate of luminous efficiency according to the example of FIG. 1;

【図3】りん化ガリウム緑色発光素子の一例を示す断面
図である。
FIG. 3 is a cross-sectional view showing an example of a gallium phosphide green light-emitting device.

【符号の説明】[Explanation of symbols]

4  n− 型GaP層 5  p型GaP層 8  pn接合 10  成長炉の温度 11  気化炉の温度 12  熱処理炉の温度 4 n-type GaP layer 5 p-type GaP layer 8 pn junction 10 Temperature of growth furnace 11 Temperature of vaporizer 12 Temperature of heat treatment furnace

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  n型りん化ガリウム基板上に液相エピ
タキシャル成長法により少なくとも一層のn型りん化ガ
リウム層とp型りん化ガリウム層とを順次形成した後に
、 300℃乃至 650℃の温度雰囲気中に保持して
熱処理することを特徴とするりん化ガリウム緑色発光素
子の製造方法。
Claim 1: After sequentially forming at least one n-type gallium phosphide layer and a p-type gallium phosphide layer on an n-type gallium phosphide substrate by liquid phase epitaxial growth, in an atmosphere at a temperature of 300°C to 650°C. A method for manufacturing a gallium phosphide green light-emitting device, which comprises holding the gallium phosphide green light-emitting device in a heat-treated state.
JP3047823A 1991-02-20 1991-02-20 Manufacture of phosphor gallium phosphide green light-emitting element Pending JPH04266074A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3047823A JPH04266074A (en) 1991-02-20 1991-02-20 Manufacture of phosphor gallium phosphide green light-emitting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3047823A JPH04266074A (en) 1991-02-20 1991-02-20 Manufacture of phosphor gallium phosphide green light-emitting element

Publications (1)

Publication Number Publication Date
JPH04266074A true JPH04266074A (en) 1992-09-22

Family

ID=12786076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3047823A Pending JPH04266074A (en) 1991-02-20 1991-02-20 Manufacture of phosphor gallium phosphide green light-emitting element

Country Status (1)

Country Link
JP (1) JPH04266074A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5406093A (en) * 1993-05-31 1995-04-11 Shin-Etsu Handotai Co., Ltd. Gap pure green light emitting element substrate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5406093A (en) * 1993-05-31 1995-04-11 Shin-Etsu Handotai Co., Ltd. Gap pure green light emitting element substrate

Similar Documents

Publication Publication Date Title
US5656832A (en) Semiconductor heterojunction device with ALN buffer layer of 3nm-10nm average film thickness
US5432808A (en) Compound semicondutor light-emitting device
JP3929017B2 (en) Semiconductor layer growth method
US20130153858A1 (en) Nitride semiconductor template and light-emitting diode
US5909040A (en) Semiconductor device including quaternary buffer layer with pinholes
US6890809B2 (en) Method for fabricating a P-N heterojunction device utilizing HVPE grown III-V compound layers and resultant device
JPH09134878A (en) Manufacture of gallium nitride compound semiconductor
TW494587B (en) Gallium phosphide green- emitting component
JP3620105B2 (en) Method for producing gallium nitride crystal
JP3143040B2 (en) Epitaxial wafer and method for manufacturing the same
TW200415675A (en) MBE growth of a semiconductor layer structure
KR101026952B1 (en) 3-5 Group compound semiconductor, process for producing the same, and compound semiconductor element using the same
JP2001156003A (en) Method of manufacturing p-type gallium nitride semiconductor, and light-emitting element using p-type gallium nitride semiconductor
JP2004533725A (en) Semiconductor layer growth method
JP3146874B2 (en) Light emitting diode
JP3174257B2 (en) Method for producing nitride-based compound semiconductor
JPH04266074A (en) Manufacture of phosphor gallium phosphide green light-emitting element
JPH09107124A (en) Method for manufacturing iii-v compound semiconductor
JP3104218B2 (en) Method for growing nitrogen-doped GaP epitaxial layer
JP2001308017A (en) Method for manufacturing p-type iii-v nitride compound semiconductor, and method for manufacturing semiconductor element
JPH08335555A (en) Fabrication of epitaxial wafer
JP3214349B2 (en) Semiconductor wafer having InGaN layer, method of manufacturing the same, and light emitting device having the same
JP4137223B2 (en) Method for producing compound semiconductor
JPH04328823A (en) Manufacture of epitaxial wafer for light emitting diode
JPH06342935A (en) Gap pure green light-emitting device substrate