JP3620105B2 - Method for producing gallium nitride crystal - Google Patents

Method for producing gallium nitride crystal Download PDF

Info

Publication number
JP3620105B2
JP3620105B2 JP19149295A JP19149295A JP3620105B2 JP 3620105 B2 JP3620105 B2 JP 3620105B2 JP 19149295 A JP19149295 A JP 19149295A JP 19149295 A JP19149295 A JP 19149295A JP 3620105 B2 JP3620105 B2 JP 3620105B2
Authority
JP
Japan
Prior art keywords
gas
crystal
nitrogen
hydrogen
gan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19149295A
Other languages
Japanese (ja)
Other versions
JPH0940490A (en
Inventor
隆一 中園
春典 坂口
恒弘 海野
彰二 隈
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP19149295A priority Critical patent/JP3620105B2/en
Publication of JPH0940490A publication Critical patent/JPH0940490A/en
Application granted granted Critical
Publication of JP3620105B2 publication Critical patent/JP3620105B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Led Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は窒化ガリウム結晶の製造方法に係り、特にp型不純物を活性化するための熱処理方法を改善したものに関する。
【0002】
【従来の技術】
低消費電力で長寿命な発光素子である発光ダイオードは、インジケータランプ、警告表示、公告表示などに広く用いられている。現在、実用化されている発光ダイオードの発光色は、赤色、橙色、黄色、緑色である。赤・緑・青の光の三原色のうち、青色だけが実用化されていない。青色発光ダイオードが実用化できればフルカラー表示が可能となり、情報表示を多彩に行なうことができる。
【0003】
青色を発光させるためには、広い禁制帯幅をもつ半導体結晶が必要であり、そのため、窒化ガリウム(GaN)、SiC、ZnSe等の広い禁制帯幅の半導体結晶について開発が進められている。なかでも、GaNは直接遷移型であるため、高い発光効率が期待されている。
【0004】
発光ダイオード用GaNエピタキシャルウェハの構造は、基板にサファイアを、その上に窒化アルミニウム(AlN)やGaNのバッファ層を設け、さらにその上に、n型GaN、p型GaNのエピタキシャル層を成長させた構造となっている。
【0005】
これらのエピタキシャル層の成長には、水素ガスをキャリアガスとして、有機金属ガスであるトリメチルガリウム(TMG)、トリメチルアルミニウム(TMA)、及びアンモニア(NH)ガスを用いて行なう。ドープ不純物には、n型としてはシラン(SiH)をp型にはビスシクロペンタディエニルマグネシウム(CpMg)を用いる。成長過程、冷却過程とも水素雰囲気で行なわれる。
【0006】
【発明が解決しようとする課題】
上述したGaNの成長方法において、p型不純物を十分にドープしてGaN結晶の成長を行なっても、成長後の結晶には、p型キャリアは非常に少なく、結晶は高抵抗を示す。これはp型不純物の活性化が低いためである。
【0007】
発光ダイオードが高輝度で発光するためには電子と正孔が必要であり、正孔はp型不純物が活性化してできる。p型不純物の活性化が低いと輝度が低くなってしまう。
【0008】
p型不純物を活性化させるために、従来は、成長過程、冷却過程を経て結晶を成長した後、成長装置から結晶を取り出し、電子線照射や窒素雰囲気でのアニール処理工程が行なわれている。すなわち、成長プロセス以外にp型不純物を活性化させるためだけの別工程を必要としていた。なお、ここで、成長プロセスとは、成膜過程後の冷却過程までも含めた工程をいう。
【0009】
本発明の目的は、前記した従来技術の欠点を解消し、成長プロセスだけでp型不純物の活性化を大幅に高めることができる新規なGaN結晶の製造方法を提供することにある。
【0010】
【課題を解決するための手段】
本発明のGaN結晶の製造方法は、GaN結晶の原料となる有機金属及びアンモニアを用いた気相成長法によってpn接合をもつGaN結晶を製造する方法おいて、p型GaN結晶の成膜を水素ガス雰囲気において行なった後の冷却過程の内、1000℃以上の温度域における雰囲気として水素ガスとアンモニアガスを使用し、1000℃以下にて前記水素ガスとアンモニアガスを窒素ガスのみに切り替えて冷却するようにしたものである。
【0011】
この場合、窒素ガスのみとせずに、窒素ガスと水素ガスからなる混合ガスとしてもよく、そのとき窒素ガスの割合は70%〜100%未満である。
【0012】
GaN結晶の成長プロセスは、前処理過程、成膜過程、冷却過程の3つの過程を備える。前処理過程は表面処理などを行ない、成膜過程はバッファ層やGaN層をエピタキシャル成長させる。冷却過程は、GaN層の成膜に必要な高温の成長温度から降温するためにエピタキシャルウェハを冷却する。
【0013】
GaN結晶の成長を行なうためにサファイア基板を用いる。また、本発明に用いる有機金属は、TMG、TMAなどの有機金属ガスである。水素ガス雰囲気下でNHとTMAまたはTMGによりサファイア基板上にAlNまたはGaNのバッファ層を設け、その上にNHとTMGによりGaNの成長を行なう。
【0014】
pn接合を形成するためのドープ不純物には、n型としてはSiHを、p型にはCpMgを用いる。成膜過程は水素雰囲気で行なわれるが、冷却過程は窒素ガスのみか、または窒素と水素との混合ガス雰囲気とする。これにより、p型不純物の活性化が大幅に高められる。
【0015】
エピタキシャル成長は、有機金属気相成長法(MOVPE法)で行なうことができる。その場合、縦型炉を使用することもできるが、横型炉を使用することが好ましい。
【0016】
GaN結晶の成長を水素キャリアにおいて行なった後の冷却過程において、雰囲気として窒素ガスを使用するのは、結晶の温度が1000℃以下の温度になってからとする。1000℃以上の状態では、水素ガスとアンモニアガスを用いる。これは、1000℃以上の状態では、雰囲気が窒素ガスだけでは、GaN結晶からの窒素解離が起きるからである。
【0017】
成膜後の結晶冷却過程において、雰囲気ガスとして水素ガスではなく、窒素ガスまたは水素との混合ガス(窒素雰囲気等)を使用すると、従来、p型不純物の活性化のために、成長プロセスとは別工程で行なっていた窒素雰囲気下でのアニールと同じ条件が形成される。すなわち、GaN結晶を窒素雰囲気等で冷却熱処理すると、解離されないまま結晶中に取り込まれてp型不純物と結びつき、p型不純物の活性化を抑え込んでいた結晶原料原子の結びつきが解かれて、、結晶中にドープしたp型不純物原子の活性化あるいはp型不純物原子への分解が促進される。その結果、p型不純物の活性化が向上する。
【0018】
このように本発明によれば、GaN結晶の成長プロセス中にp型活性化のためのアニール処理を組み込んでしまうので、結晶製造工程の簡素化が図れる。
【0019】
【発明の実施の形態】
以下、本発明のGaN結晶の製造方法の実施例を説明するが、ここでは次の3つの特性比較に基づいて説明していく。
【0020】
(1) p型不純物をドープしたGaNのエピタキシャル成長を行ない、従来技術で処理した従来例の結晶と、本発明方法で処理した実施例の結晶との特性比較をウェハレベルで行なった。また、水素ガスに代えて窒素ガスをキャリアガスとして成長させた比較例の結晶についての特性も併せて評価した。
【0021】
(2) pn接合を有するGaN結晶のエピタキシャル成長を行ない、従来技術で処理した従来例の結晶と、本発明方法で処理した実施例の結晶とのそれぞれから発光ダイオードを作製し、ダイオードレベルの特性比較を行なった。
【0022】
(3) 冷却過程の雰囲気ガスを、窒素のみとせずに、窒素と水素の混合ガスとし、その割合を変えて処理した結晶の特性比較をウェハレベルで行なった。
【0023】
(ウェハレベルの特性比較)
エピタキシャル成長は、有機金属気相成長法(MOVPE法)で行なった。横型炉を使用し、成長圧力は1.3×10Paで行なった。基板には表面を鏡面仕上げしたサファイア基板を用いた。
【0024】
図1に示すように、冷却過程の前までは従来例、本実施例とも条件は同じである。成長は、まず、流量10l/minの水素雰囲気下で1125℃でサファイア基板を20分間保持し、表面処理を行なった(前処理過程)。
【0025】
次に、550℃に降温させた後、25μmol/minのTMA、5l/minのNH、および5l/minの水素を3分間流し、AlNのバッファ層を成長させた(バッファ層成膜過程)。
【0026】
そして、次に、1000℃に昇温し、80μmol/minのTMG、5l/minのNH、2nmmol/minのCpMg、および5l/minの水素を20分間流し、p型GaN層を成長させた。GaN層は約1μm成長した(GaN層成膜過程)。
【0027】
ここで、成膜後の冷却過程では、水素雰囲気のままで冷却する従来技術による従来例の方法と、窒素雰囲気で冷却する本発明による実施例の方法とで、それぞれ別個に処理し、両者の特性比較を行なった。両者の成長プログラムは図1に示す。
【0028】
まず、従来例の方法で冷却した。この冷却過程では、1000℃での成長終了後、直ちに雰囲気ガスを10l/minの水素だけにしてから冷却を開始し、100℃まで冷却した。冷却速度は1000℃から600℃までは0.25℃/秒で、600℃から100℃までは0.75℃/秒で行なった。
【0029】
次に、本実施例の方法で冷却した。この冷却過程では、1000℃での成長終了後、直ちに雰囲気ガスを10l/minの窒素だけにしてから冷却を開始し、100℃まで冷却した。冷却速度は、従来例と同じく、1000℃から600℃までは0.25℃/秒で、600℃から100℃までは0.75℃/秒で行なった。
【0030】
この2つの結晶の比抵抗をvan der Pauw法により測定した。その結果を図2に示す。従来例による結晶では10Ω・cm以上の高比抵抗を示し、成長プロセスのみではp型不純物の活性化が非常に低いことがわかった。一方、本実施例による結晶では成長プロセスのみでも30Ω・cmの低比抵抗を示し、p型不純物の活性化が高いことがわかった。
【0031】
次に、成膜および冷却をすべて、窒素ガスをキャリアガスとして成長させた比較例により成長させたところ、結晶表面はくもり、結晶は異常成長していた。したがって、窒素ガスのみでの成長は適さないことがわかった。
【0032】
(発光ダイオードレベルの特性比較)
次に、図3に示した青色発光ダイオードチップを製作し、発光出力を比較した。結晶成長は上記したMOVPE法を用いて同様に行なった。すなわち、サファイア基板1上に、AlNバッファ層2を成長した後、n型不純物をドープして層厚2.5μm、キャリア濃度1×1018cm−3のn型GaN層3を成長させ、その上に前述したのと同条件のCpMgをドープしたp型GaN層4を1μm成膜させた。
【0033】
n型GaN層3はドープ不純物としてSiHを用いた。1ppm濃度で10cc/min流した。このときのTMG、NH、水素の条件は、CpMgをドープしたp型GaN層4の場合と同じである。
【0034】
ここで、成膜後の冷却では、水素雰囲気のままで冷却する従来例の方法と、窒素雰囲気で冷却する本発明による実施例の方法とで、それぞれ別個に処理してGaNエピタキシャルウェハを得た。
【0035】
両ウェハに所定のプロセス(エッチング等)を施し、電極5を取り付けて図3の発光ダイオードチップを製作した。
【0036】
製作した各チップに電流を20mA流し、発光出力を測定した。従来例の方法で冷却したウェハから製作した発光ダイオードチップの発光出力は25μWであったが、本実施例の方法で冷却したウェハから製作した発光ダイオードチップの発光出力は200μWと8倍高い値であった。本実施例で作製した結晶の方が高い発光出力が得られることが確かめられた。
【0037】
(窒素と水素の割合を変えたときのウェハレベルの特性比較)
上記の実施例においては、冷却過程の雰囲気ガスが窒素のみの場合で、p型不純物の活性化が高くなることが確かめられた。次に冷却過程の雰囲気ガスが窒素と水素の混合ガスの場合について調べてみよう。
【0038】
p型不純物をドープしたGaN層のエピタキシャル成長を行ない、冷却過程を窒素と水素の混合ガスで行なった。そして、結晶の特性評価をした。成長方法は、ウェハレベルでの実施例と同様である。冷却過程の冷却速度も同様とした。冷却過程の窒素と水素の混合ガスの流量は全体で10l/minとした。そして、窒素と水素の割合を変えて冷却し、結晶の比抵抗を調べた。図4にその結果を示す。
【0039】
窒素の割合が70%から100%の場合、比抵抗が30Ω・cmから60Ω・cmとなったが、窒素の割合が70%より低い場合には10Ω・cm以上の高抵抗を示した。これよりp型不純物を活性化させる上で、成長後の冷却過程で、雰囲気ガスとして窒素の割合が70%から100%の窒素と水素の混合ガスで効果があることがわかった。
【0040】
【発明の効果】
(1) 請求項1に記載の発明によれば、冷却過程を窒素ガス雰囲気で行なうようにしたので、1回の成長プロセスでGaN結晶にドープしたp型不純物の活性化を高めることができ、成長プロセスとは別に活性化の工程を設ける必要がない。その結果、工程の簡素化が図れてGaN結晶を安価に製造することができる。
【0041】
(2) 請求項2に記載の発明によれば、特定割合の窒素ガスと水素ガスの混合ガスによっても(1) と同様の効果を発揮できる。
【図面の簡単な説明】
【図1】本発明の実施例と従来例の冷却過程を含む成長プロセスの温度、ガス流量のプログラム図。
【図2】本実施例と従来例の方法から得た結晶の比抵抗を示す比較図。
【図3】本実施例と従来例の発光ダイオードの発光出力特性を比較するために製作した発光ダイオードチップの断面図。
【図4】本発明の他の実施例での冷却過程における混合ガスの窒素の割合と結晶の比抵抗の関係を示す図。
【符号の説明】
1 サファイア基板
2 AlNバッファ層
3 n型GaN層
4 p型GaN層
5 電極
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a gallium nitride crystal, and more particularly to an improved heat treatment method for activating p-type impurities.
[0002]
[Prior art]
Light-emitting diodes, which are light-emitting elements with low power consumption and long life, are widely used for indicator lamps, warning displays, announcement displays, and the like. Currently, light emitting diodes in practical use are red, orange, yellow, and green. Of the three primary colors of red, green and blue light, only blue has not been put into practical use. If a blue light-emitting diode can be put into practical use, full-color display becomes possible, and information display can be performed in various ways.
[0003]
In order to emit blue light, a semiconductor crystal having a wide forbidden band width is required. Therefore, development of a semiconductor crystal having a wide forbidden band width such as gallium nitride (GaN), SiC, ZnSe or the like is underway. Especially, since GaN is a direct transition type, high luminous efficiency is expected.
[0004]
The structure of the GaN epitaxial wafer for light-emitting diodes was such that sapphire was provided on the substrate, an aluminum nitride (AlN) or GaN buffer layer was provided thereon, and an n-type GaN or p-type GaN epitaxial layer was further grown thereon. It has a structure.
[0005]
These epitaxial layers are grown using hydrogen gas as a carrier gas and using organometallic gases such as trimethyl gallium (TMG), trimethyl aluminum (TMA), and ammonia (NH 3 ) gas. For the doped impurities, silane (SiH 4 ) is used as the n-type, and biscyclopentadienyl magnesium (Cp 2 Mg) is used as the p-type. Both the growth process and the cooling process are performed in a hydrogen atmosphere.
[0006]
[Problems to be solved by the invention]
In the GaN growth method described above, even if p-type impurities are sufficiently doped to grow a GaN crystal, the grown crystal has very few p-type carriers and the crystal exhibits high resistance. This is because the activation of p-type impurities is low.
[0007]
In order for the light emitting diode to emit light with high brightness, electrons and holes are required, and holes are formed by activating p-type impurities. If the activation of the p-type impurity is low, the luminance is lowered.
[0008]
In order to activate the p-type impurity, conventionally, after a crystal is grown through a growth process and a cooling process, the crystal is taken out from the growth apparatus and subjected to an electron beam irradiation or an annealing process in a nitrogen atmosphere. That is, a separate process only for activating the p-type impurity is required in addition to the growth process. Here, the growth process refers to a process including a cooling process after the film formation process.
[0009]
An object of the present invention is to provide a novel method for producing a GaN crystal that can eliminate the above-mentioned drawbacks of the prior art and can significantly increase the activation of p-type impurities only by a growth process.
[0010]
[Means for Solving the Problems]
Method for producing a GaN crystal of the present invention, Oite to a method of manufacturing the GaN crystal having a pn junction by vapor deposition using an organometallic and ammonia as a raw material for the GaN crystal, the formation of the p-type GaN crystal In the cooling process after performing in a hydrogen gas atmosphere, hydrogen gas and ammonia gas are used as an atmosphere in a temperature range of 1000 ° C. or higher , and cooling is performed by switching the hydrogen gas and ammonia gas to nitrogen gas only at 1000 ° C. or lower. It is what you do.
[0011]
In this case, not only nitrogen gas but also a mixed gas composed of nitrogen gas and hydrogen gas may be used, and the ratio of nitrogen gas is 70% to less than 100%.
[0012]
The GaN crystal growth process includes three processes: a pretreatment process, a film formation process, and a cooling process. In the pretreatment process, surface treatment is performed, and in the film formation process, a buffer layer and a GaN layer are epitaxially grown. In the cooling process, the epitaxial wafer is cooled in order to lower the temperature from a high growth temperature necessary for forming the GaN layer.
[0013]
A sapphire substrate is used to perform GaN crystal growth. The organic metal used in the present invention is an organic metal gas such as TMG or TMA. A buffer layer of AlN or GaN is provided on the sapphire substrate by NH 3 and TMA or TMG in a hydrogen gas atmosphere, and GaN is grown thereon by NH 3 and TMG.
[0014]
SiH 4 is used for the n-type and Cp 2 Mg is used for the p-type as the doped impurity for forming the pn junction. The film forming process is performed in a hydrogen atmosphere, but the cooling process is performed using only nitrogen gas or a mixed gas atmosphere of nitrogen and hydrogen. Thereby, the activation of the p-type impurity is greatly enhanced.
[0015]
Epitaxial growth can be performed by metal organic vapor phase epitaxy (MOVPE method). In that case, although a vertical furnace can be used, it is preferable to use a horizontal furnace.
[0016]
In the cooling process after the growth of the GaN crystal in the hydrogen carrier, the nitrogen gas is used as the atmosphere after the temperature of the crystal reaches 1000 ° C. or less. In a state of 1000 ° C. or higher, hydrogen gas and ammonia gas are used. This is because in a state of 1000 ° C. or higher, nitrogen dissociation from the GaN crystal occurs when the atmosphere is only nitrogen gas.
[0017]
In the crystal cooling process after film formation, when a nitrogen gas or a mixed gas with hydrogen (such as a nitrogen atmosphere) is used as an atmosphere gas instead of hydrogen gas, conventionally, a growth process is used to activate p-type impurities. The same conditions are formed as in the annealing in a nitrogen atmosphere that has been performed in a separate process. That is, when a GaN crystal is cooled and heat-treated in a nitrogen atmosphere or the like, it is taken into the crystal without being dissociated and is associated with the p-type impurity, and the crystal raw material atoms that have suppressed the activation of the p-type impurity are unbound, and the crystal Activation of p-type impurity atoms doped therein or decomposition into p-type impurity atoms is promoted. As a result, the activation of the p-type impurity is improved.
[0018]
As described above, according to the present invention, the annealing process for p-type activation is incorporated into the growth process of the GaN crystal, so that the crystal manufacturing process can be simplified.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, examples of the method for producing a GaN crystal of the present invention will be described. Here, description will be made based on the following three characteristic comparisons.
[0020]
(1) Epitaxial growth of GaN doped with a p-type impurity was performed, and the characteristics of the crystal of the conventional example processed by the conventional technique and the crystal of the example processed by the method of the present invention were compared at the wafer level. In addition, the characteristics of the comparative crystal grown using nitrogen gas instead of hydrogen gas as a carrier gas were also evaluated.
[0021]
(2) Epitaxial growth of a GaN crystal having a pn junction, a light emitting diode is fabricated from each of the conventional crystal processed by the conventional technique and the crystal of the exemplary embodiment processed by the method of the present invention, and the diode level characteristic comparison Was done.
[0022]
(3) The atmosphere gas in the cooling process was not limited to nitrogen, but a mixed gas of nitrogen and hydrogen, and the characteristics of the processed crystals were changed at the wafer level at a different ratio.
[0023]
(Wafer level characteristics comparison)
Epitaxial growth was performed by metal organic vapor phase epitaxy (MOVPE method). A horizontal furnace was used and the growth pressure was 1.3 × 10 4 Pa. A sapphire substrate having a mirror-finished surface was used as the substrate.
[0024]
As shown in FIG. 1, the conditions are the same for the conventional example and the present example until the cooling process. In the growth, first, a sapphire substrate was held at 1125 ° C. for 20 minutes in a hydrogen atmosphere at a flow rate of 10 l / min, and surface treatment was performed (pretreatment process).
[0025]
Next, after the temperature was lowered to 550 ° C., 25 μmol / min TMA, 5 l / min NH 3 , and 5 l / min hydrogen were allowed to flow for 3 minutes to grow an AlN buffer layer (buffer layer deposition process) .
[0026]
Next, the temperature is raised to 1000 ° C., and 80 μmol / min TMG, 5 l / min NH 3 , 2 nmol / min Cp 2 Mg, and 5 l / min hydrogen are allowed to flow for 20 minutes to grow a p-type GaN layer. I let you. The GaN layer grew about 1 μm (GaN layer formation process).
[0027]
Here, in the cooling process after the film formation, the conventional method according to the prior art that cools in a hydrogen atmosphere and the method according to the embodiment according to the present invention that cools in a nitrogen atmosphere are processed separately. A characteristic comparison was made. Both growth programs are shown in FIG.
[0028]
First, it was cooled by the conventional method. In this cooling process, after the growth at 1000 ° C. was completed, the atmosphere gas was immediately changed to only 10 l / min of hydrogen, and then cooling was started to cool to 100 ° C. The cooling rate was 0.25 ° C./second from 1000 ° C. to 600 ° C., and 0.75 ° C./second from 600 ° C. to 100 ° C.
[0029]
Next, it was cooled by the method of this example. In this cooling process, immediately after the growth at 1000 ° C., the atmosphere gas was changed to nitrogen at 10 l / min immediately, and then cooling was started to cool to 100 ° C. The cooling rate was 0.25 ° C./second from 1000 ° C. to 600 ° C. and 0.75 ° C./second from 600 ° C. to 100 ° C. as in the conventional example.
[0030]
The specific resistance of these two crystals was measured by the van der Pauw method. The result is shown in FIG. The crystal according to the conventional example showed a high specific resistance of 10 6 Ω · cm or more, and it was found that the activation of the p-type impurity was very low only by the growth process. On the other hand, it was found that the crystal according to this example showed a low specific resistance of 30 Ω · cm only by the growth process, and the activation of the p-type impurity was high.
[0031]
Next, when film formation and cooling were all performed by a comparative example in which nitrogen gas was used as a carrier gas, the crystal surface was cloudy and the crystal was abnormally grown. Therefore, it was found that growth using only nitrogen gas is not suitable.
[0032]
(Characteristic comparison of light emitting diode level)
Next, the blue light emitting diode chip shown in FIG. 3 was manufactured and the light output was compared. Crystal growth was performed in the same manner using the MOVPE method described above. That is, after growing an AlN buffer layer 2 on a sapphire substrate 1, an n-type impurity is doped to grow an n-type GaN layer 3 having a layer thickness of 2.5 μm and a carrier concentration of 1 × 10 18 cm −3 , A p-type GaN layer 4 doped with Cp 2 Mg under the same conditions as described above was formed to a thickness of 1 μm.
[0033]
The n-type GaN layer 3 uses SiH 4 as a doping impurity. 10 cc / min was flowed at a concentration of 1 ppm. The conditions of TMG, NH 3 and hydrogen at this time are the same as in the case of the p-type GaN layer 4 doped with Cp 2 Mg.
[0034]
Here, in the cooling after the film formation, a GaN epitaxial wafer was obtained by separately treating the conventional method of cooling in a hydrogen atmosphere and the method of the embodiment according to the present invention of cooling in a nitrogen atmosphere. .
[0035]
Both wafers were subjected to a predetermined process (etching or the like), and the electrode 5 was attached to produce the light emitting diode chip of FIG.
[0036]
A current of 20 mA was passed through each manufactured chip, and the light emission output was measured. The light emission output of the light emitting diode chip manufactured from the wafer cooled by the method of the conventional example was 25 μW, but the light emission output of the light emitting diode chip manufactured from the wafer cooled by the method of the present embodiment was 200 μW, which is eight times higher. there were. It was confirmed that the crystal produced in this example can obtain higher light output.
[0037]
(Comparison of wafer level characteristics when the ratio of nitrogen and hydrogen is changed)
In the above embodiment, it was confirmed that the activation of the p-type impurity is high when the atmospheric gas in the cooling process is only nitrogen. Next, let's examine the case where the atmosphere gas in the cooling process is a mixed gas of nitrogen and hydrogen.
[0038]
A GaN layer doped with a p-type impurity was epitaxially grown, and the cooling process was performed with a mixed gas of nitrogen and hydrogen. And the characteristic of the crystal was evaluated. The growth method is the same as that of the embodiment at the wafer level. The cooling rate in the cooling process was also the same. The total flow rate of the mixed gas of nitrogen and hydrogen during the cooling process was 10 l / min. And it cooled by changing the ratio of nitrogen and hydrogen, and examined the specific resistance of the crystal. FIG. 4 shows the result.
[0039]
When the ratio of nitrogen was 70% to 100%, the specific resistance was changed from 30 Ω · cm to 60 Ω · cm, but when the ratio of nitrogen was lower than 70%, a high resistance of 10 6 Ω · cm or more was exhibited. . From this, it was found that, in activating the p-type impurity, a mixed gas of nitrogen and hydrogen having a nitrogen ratio of 70% to 100% as an atmospheric gas is effective in the cooling process after growth.
[0040]
【The invention's effect】
(1) According to the invention described in claim 1, since the cooling process is performed in a nitrogen gas atmosphere, the activation of the p-type impurity doped in the GaN crystal in one growth process can be enhanced. There is no need to provide an activation step separately from the growth process. As a result, the process can be simplified and the GaN crystal can be manufactured at a low cost.
[0041]
(2) According to the invention described in claim 2, the same effect as in (1) can be exhibited even by a mixed gas of nitrogen gas and hydrogen gas at a specific ratio.
[Brief description of the drawings]
FIG. 1 is a program diagram of temperature and gas flow rate of a growth process including a cooling process according to an embodiment of the present invention and a conventional example.
FIG. 2 is a comparative diagram showing the specific resistance of crystals obtained by the methods of this example and the conventional example.
FIG. 3 is a cross-sectional view of a light-emitting diode chip manufactured for comparing the light-emitting output characteristics of the light-emitting diodes of this example and the conventional example.
FIG. 4 is a graph showing the relationship between the ratio of nitrogen in a mixed gas and the specific resistance of crystals in the cooling process in another embodiment of the present invention.
[Explanation of symbols]
1 Sapphire substrate 2 AlN buffer layer 3 n-type GaN layer 4 p-type GaN layer 5 electrode

Claims (2)

窒化ガリウム結晶の原料となる有機金属及びアンモニアを用いた気相成長法によってpn接合をもつ窒化ガリウム結晶を製造する方法おいて、p型窒化ガリウムの成膜を水素ガス雰囲気において行なった後の冷却過程の内、1000℃以上の温度域における雰囲気として水素ガスとアンモニアガスを使用し、1000℃以下にて前記水素ガスとアンモニアガスを窒素ガスのみに切り替えて冷却することを特徴とする窒化ガリウム結晶の製造方法。Oite to a method of manufacturing a gallium nitride crystal having a pn junction by vapor deposition using an organometallic and ammonia as a raw material for gallium nitride crystals, the formation of p-type gallium nitride after performing in a hydrogen gas atmosphere Among the cooling processes, hydrogen gas and ammonia gas are used as an atmosphere in a temperature range of 1000 ° C. or higher, and cooling is performed by switching the hydrogen gas and ammonia gas to only nitrogen gas at 1000 ° C. or lower. Crystal production method. 請求項1に記載の窒化ガリウム結晶の製造方法において、上記窒素ガスのみを使用することに代えて、窒素ガスの割合が70%〜100%未満である窒素ガスと水素ガスからなる混合ガスを使用することを特徴とする窒化ガリウム結晶の製造方法。The method for producing a gallium nitride crystal according to claim 1, wherein instead of using only the nitrogen gas, a mixed gas composed of nitrogen gas and hydrogen gas with a nitrogen gas ratio of 70% to less than 100% is used. A method for producing a gallium nitride crystal.
JP19149295A 1995-07-27 1995-07-27 Method for producing gallium nitride crystal Expired - Fee Related JP3620105B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19149295A JP3620105B2 (en) 1995-07-27 1995-07-27 Method for producing gallium nitride crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19149295A JP3620105B2 (en) 1995-07-27 1995-07-27 Method for producing gallium nitride crystal

Publications (2)

Publication Number Publication Date
JPH0940490A JPH0940490A (en) 1997-02-10
JP3620105B2 true JP3620105B2 (en) 2005-02-16

Family

ID=16275550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19149295A Expired - Fee Related JP3620105B2 (en) 1995-07-27 1995-07-27 Method for producing gallium nitride crystal

Country Status (1)

Country Link
JP (1) JP3620105B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10294490A (en) * 1997-04-17 1998-11-04 Toshiba Electron Eng Corp P-type gallium nitride compound semiconductor, manufacture thereof, and blue light-emitting element
WO1999023693A1 (en) * 1997-10-30 1999-05-14 Sumitomo Electric Industries, Ltd. GaN SINGLE CRYSTALLINE SUBSTRATE AND METHOD OF PRODUCING THE SAME
US6147363A (en) 1997-12-25 2000-11-14 Showa Denko K.K. Nitride semiconductor light-emitting device and manufacturing method of the same
US7056755B1 (en) 1999-10-15 2006-06-06 Matsushita Electric Industrial Co., Ltd. P-type nitride semiconductor and method of manufacturing the same
JP3569807B2 (en) 2002-01-21 2004-09-29 松下電器産業株式会社 Method for manufacturing nitride semiconductor device
TWI295483B (en) 2002-01-31 2008-04-01 Sumitomo Chemical Co 3-5 group compound semiconductor, process for producing the same, and compound semiconductor element using the same
JP4720519B2 (en) * 2006-01-23 2011-07-13 パナソニック株式会社 Method for manufacturing p-type nitride semiconductor
KR100757801B1 (en) * 2006-06-30 2007-09-11 서울옵토디바이스주식회사 Method of forming p-type compound semiconductor layer
DE112007000059T5 (en) * 2006-06-30 2008-08-21 Seoul Opto Device Co. Ltd., Ansan A method of forming a compound semiconductor layer of P-type
JP2009177219A (en) * 2009-05-15 2009-08-06 Mitsubishi Chemicals Corp METHOD FOR MANUFACTURING GaN-BASED SEMICONDUCTOR DEVICE

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5645899A (en) * 1979-09-18 1981-04-25 Sanyo Electric Co Ltd Vapor phase growing method for gallium nitride
JPS6065798A (en) * 1983-09-19 1985-04-15 Toyota Central Res & Dev Lab Inc Growing of gallium nitride single crystal
JP2540791B2 (en) * 1991-11-08 1996-10-09 日亜化学工業株式会社 A method for manufacturing a p-type gallium nitride-based compound semiconductor.
JP2827794B2 (en) * 1993-02-05 1998-11-25 日亜化学工業株式会社 Method for growing p-type gallium nitride
JP3254931B2 (en) * 1994-10-17 2002-02-12 松下電器産業株式会社 Method for producing p-type gallium nitride-based compound semiconductor
JPH08125222A (en) * 1994-10-25 1996-05-17 Toyoda Gosei Co Ltd Method for manufacture of group iii nitride semiconductor
JP3353527B2 (en) * 1995-03-24 2002-12-03 松下電器産業株式会社 Manufacturing method of gallium nitride based semiconductor
JP3198912B2 (en) * 1995-03-30 2001-08-13 住友化学工業株式会社 Method for producing group 3-5 compound semiconductor
JPH08213656A (en) * 1995-11-29 1996-08-20 Nichia Chem Ind Ltd Gallium nitride based compound semiconductor light emitting element

Also Published As

Publication number Publication date
JPH0940490A (en) 1997-02-10

Similar Documents

Publication Publication Date Title
JPH09199758A (en) Vapor growth method of low-resistance p-type gallium nitride-based compound semiconductor
JPH08139361A (en) Compound semiconductor light emitting device
JPH03203388A (en) Semiconductor light emitting element and its manufacture
JP3620105B2 (en) Method for producing gallium nitride crystal
JP3603598B2 (en) Method for manufacturing group 3-5 compound semiconductor
CN111725371B (en) LED epitaxial bottom layer structure and growth method thereof
CN114927601A (en) Light emitting diode and preparation method thereof
JP2965709B2 (en) Method for manufacturing semiconductor light emitting device
JP2773597B2 (en) Semiconductor light emitting device and method of manufacturing the same
KR100604617B1 (en) Manufacturing Method of Group III-V Compound Semiconductor
CN114823999B (en) LED epitaxial structure with nitrogen polarity contact layer and preparation method thereof
JP2001156003A (en) Method of manufacturing p-type gallium nitride semiconductor, and light-emitting element using p-type gallium nitride semiconductor
JPH0864868A (en) Light emitting diode and gallium nitride crystal and manufacture thereof
JPH0797300A (en) Heat-treatment of gallium nitride crystal
CN113571607B (en) High-luminous-efficiency light-emitting diode epitaxial wafer and manufacturing method thereof
JP2002208732A (en) Compound semiconductor device
JPH0997921A (en) Manufacture of iii-v compd. semiconductor
JP3625686B2 (en) Compound semiconductor epitaxial wafer, method for manufacturing the same, and light emitting diode manufactured using the same
JPH05243613A (en) Light-emitting device and its manufacture
KR100881053B1 (en) Nitride based light emitting device
JPH10163523A (en) Manufacturing iii-v compd. semiconductor and light-emitting element
JPH09148626A (en) Manufacture of iii-v group compound semiconductor
JP3633806B2 (en) Epitaxial wafer and light-emitting diode manufactured using the same
CN111128689B (en) Polarity control method, nitride film preparation method and nitride film
JP2007067397A (en) Method of manufacturing 3-5 group compound semiconductor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040917

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041026

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041108

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071126

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081126

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081126

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091126

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101126

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101126

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111126

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111126

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121126

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131126

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees