JPH04265906A - Phase difference film and liquid crystal display device using this film - Google Patents

Phase difference film and liquid crystal display device using this film

Info

Publication number
JPH04265906A
JPH04265906A JP3047442A JP4744291A JPH04265906A JP H04265906 A JPH04265906 A JP H04265906A JP 3047442 A JP3047442 A JP 3047442A JP 4744291 A JP4744291 A JP 4744291A JP H04265906 A JPH04265906 A JP H04265906A
Authority
JP
Japan
Prior art keywords
film
liquid crystal
copolymer
intrinsic birefringence
uniaxially stretched
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3047442A
Other languages
Japanese (ja)
Inventor
Sumio Otani
純生 大谷
Kohei Arakawa
公平 荒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP3047442A priority Critical patent/JPH04265906A/en
Publication of JPH04265906A publication Critical patent/JPH04265906A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)

Abstract

PURPOSE:To improve the heat resistance of a phase difference film and the visual field angle of the liquid crystal display device formed by using this film. CONSTITUTION:This liquid crystal display device consists of a liquid crystal element formed by sandwiching a nematic liquid crystal twist-oriented between two sheets of electrode substrates facing each other, at least two sheets of double refractive films, and a pair of polarizing plates disposed on both sides of these films. The above-mentioned double refractive films consist of at least one sheet of uniaxially stretched films having a positive intrinsic double refraction value and at least one sheet of uniaxially stretched films having a negative intrinsic double refraction value. In addition, the film having the negative intrinsic double refraction value is formed by uniaxially stretching a styrene copolymer film at the glass transition temp. thereof or at a high temp. which is not higher by 10 deg.C than this temp.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、位相差フィルム及びツ
イステッドネマテイック液晶、又はコレステリック液晶
を使った液晶表示装置に関するものである。もっと詳細
には、該液晶装置の着色補正および視野角増大のために
用いる位相差フィルム及びそれを用いた液晶表示装置に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid crystal display device using a retardation film and twisted nematic liquid crystal or cholesteric liquid crystal. More specifically, the present invention relates to a retardation film used for correcting coloration and increasing the viewing angle of the liquid crystal device, and a liquid crystal display device using the same.

【0002】液晶表示装置は、低電圧、低消費電力でI
C回路への直結が可能であること、表示機能が多様であ
ること、高生産性軽量化が可能であること等多くの特長
を有し、その用途は拡大してきた。ワードプロセッサや
パーソナルコンピュータ等のOA関連機器に用いるドッ
トマトリクス形液晶表示装置には現在、液晶分子のツイ
スト角が160°以上のツイステッドネマティック液晶
表示装置(以後STN−LCD)が実用化され主流にな
っている。それはSTN−LCDが従来のツイスト角が
90°のツイステッドネマティック液晶表示装置(TN
−LCD)に比べ、高マルチプレックス駆動時において
も高コントラストが維持できることによっている。
[0002] Liquid crystal display devices have low voltage, low power consumption, and
It has many features such as being able to be directly connected to a C circuit, having a variety of display functions, and being able to achieve high productivity and light weight, and its applications have been expanding. Twisted nematic liquid crystal display devices (hereinafter referred to as STN-LCDs), in which the twist angle of liquid crystal molecules is 160 degrees or more, are currently in practical use as dot matrix type liquid crystal display devices used in OA-related equipment such as word processors and personal computers, and have become mainstream. There is. STN-LCD is a twisted nematic liquid crystal display device (TN
-LCD), it is possible to maintain high contrast even during high multiplex driving.

【0003】STNは液晶表示装置の外観の色相を白く
することは不可能であり、緑色から黄赤色の色味を呈し
、表示装置として不適当であった。この問題を解決する
ために一対の偏光板の間に一層又は複数3層の光学異方
体を備える方法が提案されている。この場合一対の偏光
板の一方を通過した直線偏光が液晶素子の液晶層と光学
異方体を通過したとき約400nmから約700nmの
波長域において長軸方向のほぼ揃った楕円偏光が得られ
る。結果的には、もう一方の偏光板を通過した時に特定
の波長域が遮断されることはなく、白色光となるもので
ある。
[0003] STN cannot make the external appearance of a liquid crystal display device white, and exhibits a green to yellow-red color, making it unsuitable for use as a display device. In order to solve this problem, a method has been proposed in which one or more three layers of optically anisotropic material are provided between a pair of polarizing plates. In this case, when the linearly polarized light that has passed through one of the pair of polarizing plates passes through the liquid crystal layer of the liquid crystal element and the optically anisotropic body, elliptically polarized light whose major axes are substantially aligned in the wavelength range from about 400 nm to about 700 nm is obtained. As a result, when the light passes through the other polarizing plate, no specific wavelength range is blocked, and the light becomes white.

【0004】又、STN−LCDに着色除去用として利
用される位相差板単独の特許出願も見られる。例えば特
開昭63−189804号は、偏光顕微鏡によるレター
デーション(複屈折値とフィルム厚みの積)の測定値が
200〜350nmもしくは475〜625nmになる
ように一軸方向に延伸したポリカーボネートフィルムに
関するものである。又、特開昭63−167304号は
、一軸方向に延伸処理した複屈折性を有するフィルム又
はシートを、その光学的主軸が直交するように2枚又は
それ以上重ねたフィルム積層体に関するものである。 上記発明においては二枚の複屈折フィルム(各々のレタ
ーデーション値がR1 、R2 )を直交して2枚重ね
合わせると積層体のレターデーションが|R1 、R2
 |の位相差フィルムが得られることを利用して、R1
 、R2 が大きなレターデーション値を有していても
|R1 、R2 |を90〜180nm、200〜35
0nm、475〜625nm等の範囲に調節できるとい
う効果を狙ったものである。
[0004] There are also patent applications for a single retardation plate used for color removal in STN-LCDs. For example, JP-A-63-189804 relates to a polycarbonate film uniaxially stretched so that the retardation (product of birefringence value and film thickness) measured by a polarizing microscope is 200 to 350 nm or 475 to 625 nm. be. Furthermore, JP-A-63-167304 relates to a film laminate in which two or more uniaxially stretched birefringent films or sheets are stacked so that their optical principal axes are perpendicular to each other. . In the above invention, when two birefringent films (respective retardation values R1 and R2) are stacked orthogonally, the retardation of the laminate becomes |R1, R2.
By utilizing the fact that a retardation film of | can be obtained, R1
, R2 have large retardation values, |R1, R2 | is 90 to 180 nm, 200 to 35
This is aimed at the effect that it can be adjusted to a range of 0 nm, 475 to 625 nm, etc.

【0005】上記発明は全てSTN−LCDの着色除去
を目的としたものであり、その点に関して大幅に改善さ
れ、白/黒表示に近いものが得られている。又、高分子
の複屈折フィルム(以後位相差フィルム)を使用する方
法はコストメリットもあり需要が急速に拡大している。
[0005] All of the above inventions are aimed at removing coloring from STN-LCDs, and in this respect they have been greatly improved and a display close to white/black has been obtained. In addition, a method using a polymeric birefringent film (hereinafter referred to as a retardation film) has cost advantages, and demand is rapidly increasing.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、この位
相差フィルムにおいては液晶ディスプレイを真正面から
見たときには着色の除去がほぼ達成できるものの斜めか
らディスプレイを見た場合には、わずかな角度変化によ
る着色や画面の表示内容が消失するというSTN−LC
D全般に見られる視角特性の問題点は解消されていない
のが実状である。又この問題はSTN−LCDの重大な
課題となっている。本発明は上記STN−LCDの視角
特性を大幅に改善し、新規な位相差フィルム及びそれを
用いた液晶表示装置を提供するものである。又本発明は
、液晶装置に位相差フィルムを組み込む工程で加えられ
る高熱によって複屈折値の変化が少く、従って視野角改
善効果の減少が少ない位相差フィルム及びそれを用いた
液晶表示装置を提供する。
[Problems to be Solved by the Invention] However, although this retardation film can almost eliminate coloring when the liquid crystal display is viewed from the front, when the display is viewed from an angle, coloring due to slight changes in angle can be removed. STN-LC that the displayed content on the screen disappears
The reality is that the problems with viewing angle characteristics seen in all D types have not been resolved. This problem is also a serious issue for STN-LCDs. The present invention significantly improves the viewing angle characteristics of the above-mentioned STN-LCD, and provides a novel retardation film and a liquid crystal display device using the same. The present invention also provides a retardation film in which the birefringence value changes little due to high heat applied during the process of incorporating the retardation film into a liquid crystal device, and therefore the viewing angle improvement effect is less reduced, and a liquid crystal display device using the same. .

【0007】[0007]

【課題を解決するための手段】本発明の目的は次の方法
により達成できた。 (1) スチレン系共重合体からなるフィルムを該共重
合体のガラス転移温度あるいはそれよりも10℃を越え
ない高い温度条件で、一軸延伸したことを特徴とする負
の固有複屈折を有する位相差フィルム。 (2) スチレン系共重合体がスチレン誘導体/アクリ
ロニトリル共重合体、スチレン誘導体/メタアクリロニ
トリル共重合体、スチレン誘導体/アクリル酸エステル
共重合体またはスチレン誘導体/メタアクリル酸エステ
ル共重合体であり、かつスチレン誘導体が共重合体中に
85重量%から50重量%の割合で存在することに特徴
がある前記(1)記載の負の固有複屈折を有する位相差
フィルム。 (3) 該フィルムのガラス転移温度が105℃以上で
あることを特徴とする前記(1)記載の負の固有複屈折
値を有する位相差フィルム。 (4) 対向する2枚の電極基板間にねじれ配向したネ
マチック液晶を挾持してなる液晶素子と、少くとも二枚
の複屈折フィルムと、それらを挾んで両側に配置された
一対の偏光板とを備え、前記複屈折フィルムが正の固有
複屈折値を有する少くとも1枚の一軸延伸フィルムと、
負の固有複屈折値を有する少くとも1枚の一軸延伸フィ
ルムからなる液晶表示装置において、負の固有複屈折を
有するフィルムが前記(1)記載のスチレン系共重合体
であることを特徴とする液晶表示装置。
[Means for Solving the Problems] The objects of the present invention were achieved by the following method. (1) A film made of a styrene-based copolymer is uniaxially stretched at the glass transition temperature of the copolymer or at a temperature not exceeding 10°C. Retardation film. (2) The styrenic copolymer is a styrene derivative/acrylonitrile copolymer, a styrene derivative/methacrylonitrile copolymer, a styrene derivative/acrylic ester copolymer, or a styrene derivative/methacrylic ester copolymer, and The retardation film having negative intrinsic birefringence according to (1) above, characterized in that the styrene derivative is present in the copolymer in a proportion of 85% to 50% by weight. (3) The retardation film having a negative intrinsic birefringence value as described in (1) above, wherein the glass transition temperature of the film is 105° C. or higher. (4) A liquid crystal element comprising twisted oriented nematic liquid crystal sandwiched between two opposing electrode substrates, at least two birefringent films, and a pair of polarizing plates placed on both sides sandwiching them. at least one uniaxially stretched film, the birefringent film having a positive intrinsic birefringence value;
A liquid crystal display device comprising at least one uniaxially stretched film having a negative intrinsic birefringence value, characterized in that the film having a negative intrinsic birefringence is the styrenic copolymer described in (1) above. LCD display device.

【0008】本発明は、STN−LCDの視野角の問題
点を位相差フィルムの三次元方向の屈折率を変化させる
ことによって改善できないかどうか検討したことによっ
て達成されたものである。具体的にはフィルムの複屈折
値(△n)と厚み(d)の積として定義されるレターデ
ーション(Re)の視角依存性とLCDの視野角が密接
な関係にあることが判明し、レターデーションの視角依
存性について検討を重ねた結果、フィルムの法線方向に
実質的に光軸を有するフィルム、具体的には負の固有複
屈折値を有する二軸延伸フィルムと正の固有複屈折値を
有する一軸延伸フィルムとの積層フィルムを液晶セルと
偏光板の間に挿入することによって視野角を大幅に改善
できることを突き止め特許出願(特願昭63−2785
92号)した。しかし鋭意研究を進めた結果、総合的に
大幅な視野角改善があったものの、特定の方向にまた視
角不十分な部分があることが判明し、更に研究を進めた
結果、正の固有複屈折を有するポリマーの一軸延伸フィ
ルムと負の固有複屈折値を有するポリマーの一軸延伸フ
ィルムの積層体を液晶セルと偏光板の間に挿入すること
により液晶表示装置における視角特性を大幅に改善でき
ることを突き止めた(特願平2−242982号)。
The present invention was achieved by examining whether the viewing angle problem of STN-LCDs could be improved by changing the refractive index of the retardation film in three-dimensional directions. Specifically, it was found that there is a close relationship between the viewing angle dependence of retardation (Re), which is defined as the product of the film's birefringence value (Δn) and thickness (d), and the viewing angle of the LCD. As a result of repeated studies on the viewing angle dependence of dation, we found that a film with an optical axis substantially in the normal direction of the film, specifically a biaxially stretched film with a negative intrinsic birefringence value, and a biaxially stretched film with a positive intrinsic birefringence value. It was discovered that the viewing angle could be significantly improved by inserting a laminated film with a uniaxially stretched film having
No. 92). However, as a result of intensive research, it was discovered that although there was a significant overall improvement in the viewing angle, there were still areas where the viewing angle was insufficient in certain directions. It was discovered that the viewing angle characteristics of a liquid crystal display device can be significantly improved by inserting a laminate of a uniaxially stretched polymer film with a uniaxially stretched polymer having a negative intrinsic birefringence value and a uniaxially stretched polymer film with a negative intrinsic birefringence value between a liquid crystal cell and a polarizing plate ( (Patent Application No. 2-242982).

【0009】現在、位相差フィルムとして利用されてい
るフィルム素材の固有複屈折値は全て正である。固有複
屈折値が正のポリマーの縦一軸延伸フィルムの延伸軸方
向の屈折率をnMD、延伸軸と直交する方向の屈折率を
nTD、フィルム面法線方向の屈折率をnNDとすると
、各々の屈折率の大小関係はnMD>nTD≧nNDと
なる。従って入射光がフィルム面に垂直に入る場合、R
e=(nMD−nTD)dとなる。次に入射光が延伸方
向に直交する面を通る場合、複屈折値は入射角の変化に
伴って△n=nMD−nTDから△n=nMD−nND
の範囲で変化する。ここでnMD−nTD≦nMD−n
NDであるため、△nは斜入射によって無変化又は増大
する。一方光路長は斜入射によって増大するため、Re
=△n・dは斜入射に伴って急激に増大することになる
。又、入射光をフィルム法線方向から延伸軸方向に傾け
て入射した場合、△nはnMD−nNDからnND−n
TDまで急激な変化を伴うため、光路長の増大によって
もその減少を補償しきれず斜入射に伴ってRe=△n・
dは急激に減少する。原理的にはレターデーションの変
化率が最も小さい一軸延伸フィルムはnMD>nTD=
nNDの場合であるが、この場合においてもReは斜入
射に伴う光路長の増大によって大きく変化する。
All film materials currently used as retardation films have positive birefringence values. If the refractive index in the direction of the stretching axis of a longitudinally uniaxially stretched film of a polymer with a positive intrinsic birefringence value is nMD, the refractive index in the direction perpendicular to the stretching axis is nTD, and the refractive index in the direction normal to the film surface is nND, each The magnitude relationship of the refractive index is nMD>nTD≧nND. Therefore, when the incident light enters the film plane perpendicularly, R
e=(nMD-nTD)d. Next, when the incident light passes through a plane perpendicular to the stretching direction, the birefringence value changes from △n=nMD-nTD to △n=nMD-nND as the incident angle changes.
Varies within the range of . Here nMD-nTD≦nMD-n
Since it is ND, Δn does not change or increases due to oblique incidence. On the other hand, since the optical path length increases due to oblique incidence, Re
=Δn·d increases rapidly with oblique incidence. In addition, when the incident light is incident at an angle from the normal direction of the film to the direction of the stretching axis, △n changes from nMD-nND to nND-n
Since there is a sudden change up to TD, the decrease cannot be compensated for even by increasing the optical path length, and with oblique incidence, Re=△n・
d decreases rapidly. In principle, the uniaxially stretched film with the smallest rate of change in retardation has nMD>nTD=
In the case of nND, Re also changes greatly due to an increase in the optical path length due to oblique incidence.

【0010】ところで、本発明における、正の固有複屈
折値を有するポリマーから形成される一軸延伸フィルム
と負の固有複屈折値を有するポリマーから形成される一
軸延伸フィルムとの積層体においてはフィルム法線方向
のレターデーションは互いに加算され消滅されることな
しに全方位斜入射に対してレターデーションの変化が極
めて小さいフィルムや適度なレターデーション変化を有
するフィルムなど目的により自在にコントロールできる
という優れた効果があることが判明した。特にこれらの
効果が顕著に現われるケースは、正の固有複屈折値を有
するポリマーの一軸延伸フィルムと負の固有複屈折値を
有するポリマーの一軸延伸フィルムがその延伸軸が互い
に直交するように積層されたときであることが判明した
。これと同様の効果即ち全方位に対してレターデーショ
ン変化の小さいフィルム積層体は、正の固有複屈折値を
有するポリマーから形成される一軸延伸フィルムと正の
固有複屈折値を有するポリマーから形成される一軸延伸
フィルムとの直交積層体や、負の固有複屈折値を有する
ポリマーから形成される一軸延伸フィルムと負の固有複
屈折値を有するポリマーから形成される一軸延伸フィル
ムとの直交積層体においては共に実現されないものであ
り、特願平2−242982号の構成によってのみ実現
されるものである。
By the way, in the present invention, in the case of a laminate of a uniaxially stretched film formed from a polymer having a positive intrinsic birefringence value and a uniaxially stretched film formed from a polymer having a negative intrinsic birefringence value, the film method is used. The retardation in the linear direction does not add up and disappear, and can be freely controlled depending on the purpose, such as films with extremely small changes in retardation or films with moderate changes in retardation in response to oblique incidence in all directions. It turned out to be effective. In particular, these effects are particularly noticeable when a uniaxially stretched polymer film with a positive intrinsic birefringence value and a uniaxially stretched polymer film with a negative intrinsic birefringence value are laminated such that their stretching axes are orthogonal to each other. It turned out to be the case. A film laminate with a similar effect, that is, a small retardation change in all directions, is obtained by forming a uniaxially stretched film made of a polymer having a positive intrinsic birefringence value and a polymer having a positive intrinsic birefringence value. In an orthogonal laminate of a uniaxially stretched film formed from a polymer having a negative intrinsic birefringence value and a uniaxially stretched film formed from a polymer having a negative intrinsic birefringence value, Both cannot be realized, and can only be realized by the configuration of Japanese Patent Application No. 2-242982.

【0011】さて、正の固有複屈折直交を有するポリマ
ーから形成される一軸延伸フィルムと負の固有複屈折値
を有するポリマーから形成される一軸延伸フィルムとの
積層体においては、各々の一軸延伸フィルムの分子の配
向レベルを延伸等によって制御することによって、積層
体のレターデーションの視角依存性をほとんどなくする
ことも適度の変化をつけることも自在にコントロールで
きるため、STN−LCDの光学特性に応じて、レター
デーションの視角特性を適合できるため、STN−LC
Dにおける偏光板と液晶セルの間に位相差フィルムとし
て配設した場合にSTN−LCDの視野角を大幅に拡大
できることが認められた。
Now, in a laminate of a uniaxially stretched film formed from a polymer having a positive intrinsic birefringence orthogonal to a uniaxially stretched film formed from a polymer having a negative intrinsic birefringence value, each uniaxially stretched film is By controlling the orientation level of the molecules by stretching, etc., it is possible to freely control the viewing angle dependence of the laminate's retardation, either almost eliminating it or making a moderate change. STN-LC
It was found that when a retardation film was disposed between the polarizing plate and the liquid crystal cell in D, the viewing angle of the STN-LCD could be significantly expanded.

【0012】更に詳細に説明すると、本発明は90°以
上特に180°〜330°のねじれ角を有するツイステ
ッドネマティック液晶、又はコレステリック液晶を使っ
た液晶表示装置における液晶セルの複屈折性に起因する
着色現象をなくすると共に視野角、高コントラスト域の
拡大を可能とする液晶表示装置に関するものであり、フ
ィルム法線方向のレターデーションに関しては、正の固
有複屈折値を有するポリマーから形成されるフィルムの
一軸延伸におけるレターデーションと負の固有複屈折値
を有するポリマーから形成されるフィルムの一軸延伸に
おけるレターデーションの加算値がえられる。ただし、
該正、負の固有複屈折値を有するポリマーの一軸延伸フ
ィルムの延伸軸が一致した場合にはレターデーションは
打ち消され、好ましくはない。従って該フィルム積層体
の延伸軸は互いに略直交に配置されるのが好ましい。具
体的には相対角が70°乃至110°が最も好ましい。
More specifically, the present invention is directed to coloring caused by the birefringence of a liquid crystal cell in a liquid crystal display device using twisted nematic liquid crystal or cholesteric liquid crystal having a twist angle of 90° or more, particularly from 180° to 330°. This invention relates to a liquid crystal display device that eliminates this phenomenon and enables expansion of the viewing angle and high contrast region.Regarding the retardation in the normal direction of the film, the film is made of a polymer with a positive intrinsic birefringence value. The sum of the retardation in uniaxial stretching and the retardation in uniaxial stretching of a film formed from a polymer having a negative intrinsic birefringence value is obtained. however,
If the stretching axes of the uniaxially stretched film of the polymer having positive and negative intrinsic birefringence values coincide, retardation is canceled out, which is not preferable. Therefore, it is preferable that the stretching axes of the film laminate are arranged substantially perpendicular to each other. Specifically, the relative angle is most preferably 70° to 110°.

【0013】ただし、該正、負の固有複屈折値を有する
フィルムが液晶セルを介して配置される場合はその限り
ではない。つまり該フィルムは常に積層されて使われな
くても、液晶セルの両サイドに配置されてもよいし、偏
光板の液晶セル側の保護フィルムを兼用しても構わない
。特に偏光板保護フィルムとして使った場合は視野角拡
大の機能と共に低コスト化を実現できるメリットがある
。又、本発明におけるフィルムとは、一般的に考えられ
ているフィルムだけでなく、ある基材に塗布された膜状
物も含まれる。又、一軸延伸フィルムとは、純粋な一軸
性フィルムだけでなく、若干二軸性が付与されていても
本質的に一軸性フィルムとして機能するものであれば本
発明の対象となる。従って、テンター法による横一軸延
伸、ロール間の周速の差を利用した縦一軸延伸、この場
合幅方向の延伸時の自然収縮を行う場合も制限する場合
も含まれる。
However, this is not the case when the films having positive and negative intrinsic birefringence values are arranged via a liquid crystal cell. That is, the films do not have to be always used in a laminated manner, but may be placed on both sides of the liquid crystal cell, or may also serve as a protective film on the liquid crystal cell side of the polarizing plate. In particular, when used as a polarizing plate protective film, it has the advantage of widening the viewing angle and reducing costs. Further, the film in the present invention includes not only a film as generally considered, but also a film-like material coated on a certain base material. Moreover, the uniaxially stretched film is not only a pure uniaxial film, but also a film that essentially functions as a uniaxial film even if it is imparted with some biaxiality, and is subject to the present invention. Therefore, it includes horizontal uniaxial stretching using a tenter method, longitudinal uniaxial stretching using the difference in circumferential speed between rolls, and in this case, cases in which natural shrinkage during width direction stretching is performed or limited.

【0014】さて、本発明において正の固有複屈折値を
有するフィルムは、光の透過性が70%以上で無彩色で
あることが好ましく、更に好ましくは光の透過性が90
%以上で無彩色である。ここで固有複屈折値(△n°)
は分子が理想的に一方向に配向したときの複屈折値を意
味し、近似的に下記数式(1) で表わされる。
In the present invention, the film having a positive intrinsic birefringence value preferably has a light transmittance of 70% or more and is achromatic, more preferably a light transmittance of 90% or more.
% or more, it is achromatic. Here, the intrinsic birefringence value (△n°)
is the birefringence value when molecules are ideally oriented in one direction, and is approximately expressed by the following formula (1).

【0015】[0015]

【数1】[Math 1]

【0016】該、正の固有複屈折値を有するフィルムに
用いるポリマーとして制約はないが、具体的にはポリカ
ーボネート、ポリアリレート、ポリエチレンテレフタレ
ート、ポリエーテルスルホン、ポリフェニレンサルファ
イド、ポリフェニレンオキサイド、ポリアリルスルホン
、ポリアミドイミド、ポリイミド、ポリオレフィン、ポ
リオレフィン、ポリ塩化ビニル、セルロース、ポリエス
テル系高分子等が好ましく、特にポリカーボネート系高
分子、ポリアリレート系高分子、ポリエステル系高分子
等、固有複屈折値が大きく溶液製膜により面状の均質な
フィルムを作りやすい高分子が好ましい。又、上記ポリ
マーは、単にホモポリマーだけでなく、コポリマー、そ
れらの誘導体、ブレンド物等であってもよい。
There are no restrictions on the polymer used for the film having a positive intrinsic birefringence value, but specific examples include polycarbonate, polyarylate, polyethylene terephthalate, polyether sulfone, polyphenylene sulfide, polyphenylene oxide, polyallyl sulfone, and polyamide. Imides, polyimides, polyolefins, polyolefins, polyvinyl chloride, cellulose, polyester polymers, etc. are preferred, and in particular polycarbonate polymers, polyarylate polymers, polyester polymers, etc., which have a large intrinsic birefringence value and can be used by solution film formation. Polymers that can easily form a planar, homogeneous film are preferred. Moreover, the above-mentioned polymer may be not only a homopolymer but also a copolymer, a derivative thereof, a blend thereof, and the like.

【0017】本発明における負の固有複屈折値を有する
フィルムとは、光の透過性が70%以上で無彩色である
ことが好ましく、更に好ましくは光の透過性が90%以
上で無彩色である。ところで、固有複屈折値の絶対値が
小さくても厚みを大きくするか延伸倍率を大きくするこ
とによって十分に利用できるのであるがそれらの制約を
受けないためには、固有複屈折値は好ましくは絶対値で
0.02以上、より好ましくは0.04以上である。 又、一旦延伸によって配向した分子がLCDの製造工程
や表示中での昇温による配向緩和を防ぐために本発明の
スチレン系共重合体のガラス転移温度(Tg)は100
℃以上、好ましくは105℃以上より好ましくは110
℃以上である。
In the present invention, the film having a negative intrinsic birefringence value is preferably an achromatic film with a light transmittance of 70% or more, and more preferably an achromatic film with a light transmittance of 90% or more. be. By the way, even if the absolute value of the intrinsic birefringence value is small, it can be fully utilized by increasing the thickness or increasing the stretching ratio, but in order to avoid these restrictions, the intrinsic birefringence value should preferably be an absolute value. The value is 0.02 or more, more preferably 0.04 or more. In addition, in order to prevent molecules once oriented by stretching from relaxing their orientation due to temperature rise during the LCD manufacturing process or display, the glass transition temperature (Tg) of the styrenic copolymer of the present invention is set to 100.
℃ or higher, preferably 105℃ or higher, preferably 110℃ or higher
℃ or higher.

【0018】また、一軸延伸されて複屈折値を持つフィ
ルムの厚みは特に制限がないが、10μ〜1mmの範囲
が好ましい。共重合体フィルムの分子量は特別に小さい
ものでなければ特に大きな制約はないが、好ましくは重
量平均分子量で20万から90万がよく、特に好ましく
は35万から70万がよい。重合方法は普通行なわれる
どんな方法でも適用可能であるが、乳化重合方法で重合
した共重合体は分子量を大きくしやすいので特に好まし
い。
The thickness of the uniaxially stretched film having a birefringence value is not particularly limited, but is preferably in the range of 10 μm to 1 mm. The molecular weight of the copolymer film is not particularly limited unless it is particularly small, but the weight average molecular weight is preferably from 200,000 to 900,000, particularly preferably from 350,000 to 700,000. Although any commonly used polymerization method can be used, copolymers polymerized by emulsion polymerization are particularly preferred because their molecular weight can be easily increased.

【0019】ここでスチレン誘導体とはスチレン及びα
−メチルスチレン、o−メチルスチレン、p−メチルス
チレン、p−クロロスチレン、p−ニトロスチレン、p
−アミノスチレン、p−カルボキシスチレン、p−フェ
ニルスチレン、2,5−ジクロロスチレンの如きスチレ
ン誘導体を含む。ここで用いることのできる共重合体成
分には特に制約はないが具体例としてアクリル酸メチル
、アクリル酸エチル、アクリル酸プロピルの如きアクリ
ル酸エステル類、メタアクリル酸メチル、メタアクリル
酸エチル、メタアクリル酸ブチルの如きメタアクリル酸
エステル類、アクリル酸、メタアクリル酸、アクリロニ
トリル、メタアクリロニトリル、αクロロアクリロニト
リル、ブタジエン、イソプレン、無水マレイン酸、酢酸
ビニル、エチレン、プロピレンなどがあり、これらの単
独成分あるいは複数成分から成っていてもよい。スチレ
ン誘導体と共重合体成分との重量比は85/15から5
0/50であることが好ましく、75/25から60/
40であることが特に好ましい。この比が高いと耐熱性
が低くなり、この比が小さいと複屈折の発現性が小さく
なって、共に好ましくない。耐熱性を高くするためには
共重合体成分としてアクリロニトリル、あるいはメタア
クリロニトリル、あるいはアクリル酸エステル類、ある
いはメタアクリル酸エステル類を前記重量比で用いるの
がよい。
Here, the styrene derivatives include styrene and α
-Methylstyrene, o-methylstyrene, p-methylstyrene, p-chlorostyrene, p-nitrostyrene, p
- Styrene derivatives such as aminostyrene, p-carboxystyrene, p-phenylstyrene, and 2,5-dichlorostyrene. There are no particular restrictions on the copolymer component that can be used here, but specific examples include acrylic esters such as methyl acrylate, ethyl acrylate, and propyl acrylate, methyl methacrylate, ethyl methacrylate, and methacrylate. Methacrylic acid esters such as butyl acid, acrylic acid, methacrylic acid, acrylonitrile, methacrylonitrile, α-chloroacrylonitrile, butadiene, isoprene, maleic anhydride, vinyl acetate, ethylene, propylene, etc., and these ingredients may be used singly or in combination. It may consist of ingredients. The weight ratio of styrene derivative and copolymer component is 85/15 to 5.
Preferably 0/50, from 75/25 to 60/
40 is particularly preferred. If this ratio is high, the heat resistance will be low, and if this ratio is low, the development of birefringence will be low, both of which are undesirable. In order to increase heat resistance, it is preferable to use acrylonitrile, methacrylonitrile, acrylic esters, or methacrylic esters in the above weight ratio as a copolymer component.

【0020】重合の過程でモノマーが未反応のモノマー
や低分子のオリゴマーが多量に残っていると、フィルム
の耐熱性を損ない、熱による複屈折の低下を招きやすく
好ましくない。残留モノマー量は1重量%以下、好まし
くは0.2重量%以下にすべきである。本発明のスチレ
ン系共重合体は、組成の異なる2種以上の共重合成分を
混ぜあわせて用いてもよい。又スチレン系共重合体以外
のポリマーと混ぜ合わせて用いてもよい。このときは、
混ぜ合わせた結果としてスチレン成分の全体に占める構
成比が50%を下廻ると、複屈折特性の発現が低下し、
実用に耐えなくなるので注意が必要である。以下実施例
に従って更に説明する。
[0020] If a large amount of unreacted monomers or low-molecular oligomers remain during the polymerization process, the heat resistance of the film will be impaired and birefringence will tend to decrease due to heat, which is undesirable. The amount of residual monomer should be less than 1% by weight, preferably less than 0.2% by weight. The styrenic copolymer of the present invention may be used in combination of two or more copolymer components having different compositions. It may also be used in combination with polymers other than styrenic copolymers. At this time,
When the composition ratio of the styrene component to the whole becomes less than 50% as a result of mixing, the expression of birefringence properties decreases,
Care must be taken as this may not be practical. Further explanation will be given below according to examples.

【0021】[0021]

【実施例】実施例1 乳化重合法で合成したスチレン/アクリロニトリル(分
子量約40万)の重量比が65/35の共重合体をメチ
レンクロライドに溶解した後、ガラス板上に流延して約
120μmの透明なフィルムを得た。この共重合体のガ
ラス転移温度は112℃であった。このフィルムを延伸
温度を100℃から120℃の間で変化させて約40%
一軸延伸した後、その複屈折値を測定した。さらにこの
延伸フィルムを90℃のオーブン中で4時間熱処理をし
、その後もう一度複屈折を測定して熱処理後の複屈折低
下率を測定した。測定結果を表1に示す。この結果から
、延伸温度が高い程複屈折が小さくなり、位相差フィル
ムとして用をなさないことがわかる。一方延伸温度が1
05℃よりも低いと熱処理による複屈折の低下率が大き
くなり、フィルムの液晶表示装置への組み込み適性が低
下することがわかる。また延伸温度がガラス転移温度よ
りも低いと延伸むらが生じやすい。従って実用的な延伸
温度は本共重合体のガラス転移温度付近である110℃
から120℃の間にある。
[Example] Example 1 A copolymer of styrene/acrylonitrile (molecular weight approximately 400,000) with a weight ratio of 65/35 synthesized by an emulsion polymerization method was dissolved in methylene chloride, and then cast onto a glass plate to produce approximately A transparent film of 120 μm was obtained. The glass transition temperature of this copolymer was 112°C. This film was stretched by approximately 40% by varying the stretching temperature between 100°C and 120°C.
After uniaxial stretching, the birefringence value was measured. Further, this stretched film was heat-treated in an oven at 90° C. for 4 hours, and then the birefringence was measured once again to determine the rate of decrease in birefringence after the heat treatment. The measurement results are shown in Table 1. This result shows that the higher the stretching temperature, the smaller the birefringence, and the film is useless as a retardation film. On the other hand, the stretching temperature is 1
It can be seen that when the temperature is lower than 05°C, the rate of decrease in birefringence due to heat treatment increases, and the suitability of the film for incorporation into a liquid crystal display device decreases. Furthermore, if the stretching temperature is lower than the glass transition temperature, uneven stretching tends to occur. Therefore, the practical stretching temperature is 110°C, which is around the glass transition temperature of this copolymer.
and 120°C.

【0022】[0022]

【表1】[Table 1]

【0023】実施例2 乳化重合法で合成したスチレン/メタアクリル酸メチル
(分子量約40万)の重量比が65/35の共重合体を
メチレンクロライドに溶解した後、ガラス板上に流延し
て約130μmの透明なフィルムを得た。この共重合体
のガラス転移温度は108℃であった。このフィルムを
延伸温度を100℃から120℃の間で変化させて約4
0%一軸延伸した後、その複屈折値を測定した。さらに
この延伸フィルムを90℃のオーブン中で4時間熱処理
をし、その後もう一度複屈折を測定して熱処理後の複屈
折低下率を測定した。測定結果を表2に示す。この結果
から、延伸温度が高い程複屈折が小さくなり、位相差フ
ィルムとして用をなさないことがわかる。一方延伸温度
が105℃よりも低いと熱処理による複屈折の低下率が
大きくなり、フィルムの液晶表示装置への組み込み適性
が低下することがわかる。また延伸温度がガラス転移温
度よりも低いと延伸むらが生じやすい。従って実用的な
延伸温度は本共重合体合体のガラス転移温度付近である
105℃から115℃の間にある。
Example 2 A copolymer of styrene/methyl methacrylate (molecular weight approximately 400,000) with a weight ratio of 65/35 synthesized by emulsion polymerization was dissolved in methylene chloride and then cast onto a glass plate. A transparent film of about 130 μm was obtained. The glass transition temperature of this copolymer was 108°C. This film was stretched at a stretching temperature of 100°C to 120°C, and
After 0% uniaxial stretching, the birefringence value was measured. Further, this stretched film was heat-treated in an oven at 90° C. for 4 hours, and then the birefringence was measured once again to determine the rate of decrease in birefringence after the heat treatment. The measurement results are shown in Table 2. From this result, it can be seen that the higher the stretching temperature, the smaller the birefringence, and the film is useless as a retardation film. On the other hand, it can be seen that when the stretching temperature is lower than 105° C., the rate of decrease in birefringence due to heat treatment increases, and the suitability of the film for incorporation into a liquid crystal display device decreases. Furthermore, if the stretching temperature is lower than the glass transition temperature, uneven stretching tends to occur. Therefore, the practical stretching temperature is between 105°C and 115°C, which is around the glass transition temperature of the present copolymer.

【0024】[0024]

【表2】[Table 2]

【0025】実施例3 重量平均分子量10万のポリカーボネートをメチレンク
ロライドに溶解してステンレスベルト上に流延し、連続
的に剥ぎ取って乾燥しポリカーボネートフィルムを得た
。該フィルムを170℃の温度条件下で周束の異なるロ
ール間で縦一軸延伸し、複屈折値が+2.9×10−3
、厚さが105μmのポリカーボネート一軸延伸フィル
ムを得た。このフィルムを表1記載の複屈折値が−2.
3×10−3のスチレン・アクリロニトリル共重合体一
軸延伸フィルムと、延伸軸方向を直行させて重ねて積層
体フィルムを製作した。次に、エプソン(株)製パーソ
ナルワードプロセッサーPWP−LQX(製造番号02
G0000515)の位相差フィルムを取り除き、上記
製作したフィルム積層体のポリカーボネートフィルム延
伸軸が上下になるように且つポリカーボネートフィルム
が液晶セル側になるように、該積層体を液晶セルと偏光
板の間に配置し、表示特性を調べたところ鮮明な白黒表
示が得られるとともに、上下合計110°以上、左右合
計100°以上の広視野角が得られた。
Example 3 Polycarbonate having a weight average molecular weight of 100,000 was dissolved in methylene chloride, cast on a stainless steel belt, continuously peeled off and dried to obtain a polycarbonate film. The film was longitudinally uniaxially stretched between rolls with different circumferential bundles at a temperature of 170°C, and the birefringence value was +2.9 x 10-3.
A polycarbonate uniaxially stretched film having a thickness of 105 μm was obtained. This film has a birefringence value of -2.
A laminate film was produced by stacking a 3×10 −3 styrene/acrylonitrile copolymer uniaxially stretched film with the stretching axis directions perpendicular to each other. Next, personal word processor PWP-LQX (manufacturing number 02) manufactured by Epson Corporation.
G0000515) was removed, and the film laminate produced above was placed between the liquid crystal cell and the polarizing plate so that the stretching axis of the polycarbonate film was oriented up and down and the polycarbonate film was on the liquid crystal cell side. When the display characteristics were examined, a clear black and white display was obtained, and a wide viewing angle of more than 110 degrees in total vertically and more than 100 degrees in left and right directions was obtained.

【0026】実施例4 重量平均分子量10万のポリカーボネートをメチレンク
ロライドに溶解してステンレスベルト上に流延し、連続
的に剥ぎ取って乾燥しポリカーボネートフィルムを得た
。該フィルムを170℃の温度条件で周束の異なるロー
ル間で縦一軸延伸し、複屈折値が+2.9×10−3、
厚さが105μmのポリカーボネート一軸延伸フィルム
を得た。このフィルムを表2記載の複屈折値が−2.1
×10−3のスチレン・メタアクリル酸エステル共重合
体一軸延伸フィルムと、延伸軸方向を直行させて重ねて
積層体フィルムを製作した。次に、エプソン(株)パー
ソナルワードプロセッサーPWP−LQX(製造番号0
2G0000515)の位相差フィルムを取り除き、上
記製作したフィルム積層体のポリカーボネートフィルム
延伸軸が上下になるように且つポリカーボネートフィル
ムが液晶セル側になるように、該積層体を液晶セルと偏
光板の間に配置し、表示特性を調べたところ鮮明な白黒
表示が得られるとともに、上下合計110°以上、左右
合計100°以上の広視野角が得られた。
Example 4 Polycarbonate having a weight average molecular weight of 100,000 was dissolved in methylene chloride, cast on a stainless steel belt, continuously peeled off and dried to obtain a polycarbonate film. The film was longitudinally uniaxially stretched between rolls with different circumferential bundles at a temperature of 170°C, and the birefringence value was +2.9 × 10-3,
A polycarbonate uniaxially stretched film having a thickness of 105 μm was obtained. This film has a birefringence value of -2.1 as shown in Table 2.
A laminate film was produced by stacking a x10-3 styrene/methacrylic acid ester copolymer uniaxially stretched film with the stretching axis directions perpendicular to each other. Next, Epson Corporation personal word processor PWP-LQX (serial number 0
2G0000515) was removed, and the film laminate produced above was placed between the liquid crystal cell and the polarizing plate so that the polycarbonate film stretching axis of the film laminate was oriented up and down and the polycarbonate film was on the liquid crystal cell side. When the display characteristics were examined, a clear black and white display was obtained, and a wide viewing angle of more than 110 degrees in total vertically and more than 100 degrees in left and right directions was obtained.

【0027】比較例1 実施例3、4で使用したパーソナルワードプロセッサー
PWP−LQX(購入段階)の表示特性を調べたところ
、白黒表示は得られているが視野角が非常に狭く、上下
合計50°、左右合計45°であった。
Comparative Example 1 When examining the display characteristics of the personal word processor PWP-LQX (purchased stage) used in Examples 3 and 4, it was found that although a black and white display was obtained, the viewing angle was very narrow, with a total of 50° in the upper and lower directions. , the left and right sides totaled 45 degrees.

【0028】[0028]

【発明の効果】本発明の負の固有複屈折値を有する一軸
延伸スチレン系共重合体フィルムは、高熱下においても
複屈折値の変化が少なく、また本発明のフィルムと正の
固有複屈折値を有するフィルムと互いの延伸軸を直行ま
たは略直行させるように積層し、液晶セルと偏光板の間
に配置することにより、視野角が広い高品位の白黒表示
が得られるとともに、90℃もの高い熱処理を受けても
その光学特性は安定である。
Effects of the Invention: The uniaxially stretched styrenic copolymer film of the present invention having a negative intrinsic birefringence value shows little change in birefringence value even under high heat, and has a positive intrinsic birefringence value compared to the film of the present invention. By stacking the films with the film with the stretching axes perpendicular or almost perpendicular to each other and placing them between the liquid crystal cell and the polarizing plate, a high-quality black and white display with a wide viewing angle can be obtained. Its optical properties remain stable even when subjected to

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】  スチレン系共重合体からなるフィルム
を該共重合体のガラス転移温度あるいはそれよりも10
℃を越えない高い温度条件で、一軸延伸したことを特徴
とする負の固有複屈折を有する位相差フィルム。
Claim 1: A film made of a styrene copolymer is prepared at a temperature at or above the glass transition temperature of the copolymer.
A retardation film having negative intrinsic birefringence characterized by being uniaxially stretched under high temperature conditions not exceeding ℃.
【請求項2】  スチレン系共重合体がスチレン誘導体
/アクリロニトリル共重合体、スチレン誘導体/メタア
クリロニトリル共重合体、スチレン誘導体/アクリル酸
エステル共重合体またはスチレン誘導体/メタアクリル
酸エステル共重合体であり、かつスチレン誘導体が共重
合体中に85重量%から50重量%の割合で存在するこ
とに特徴がある請求項1記載の負の固有複屈折を有する
位相差フィルム。
2. The styrene copolymer is a styrene derivative/acrylonitrile copolymer, a styrene derivative/methacrylonitrile copolymer, a styrene derivative/acrylic ester copolymer, or a styrene derivative/methacrylic ester copolymer. 2. The retardation film having negative intrinsic birefringence according to claim 1, characterized in that the styrene derivative is present in the copolymer in an amount of 85% to 50% by weight.
【請求項3】  該共重合体のガラス転移温度が105
℃以上であることを特徴とする請求項1記載の負の固有
複屈折値を有する位相差フィルム。
3. The copolymer has a glass transition temperature of 105
2. The retardation film having a negative intrinsic birefringence value according to claim 1, wherein the retardation film has a negative intrinsic birefringence value of at least .degree.
【請求項4】  対向する2枚の電極基板間にねじれ配
向したネマチック液晶を挾持してなる液晶素子と、少く
とも二枚の複屈折フィルムと、それらを挾んで両側に配
置された一対の偏光板とを備え、前記複屈折フィルムが
正の固有複屈折値を有する少くとも1枚の一軸延伸フィ
ルムと、負の固有複屈折値を有する少くとも1枚の一軸
延伸フィルムからなる液晶表示装置において、負の固有
複屈折を有するフィルムが請求項1記載のスチレン系共
重合体であることを特徴とする液晶表示装置。
4. A liquid crystal element comprising twisted oriented nematic liquid crystal sandwiched between two opposing electrode substrates, at least two birefringent films, and a pair of polarized lights disposed on both sides sandwiching them. plate, wherein the birefringent film comprises at least one uniaxially stretched film having a positive intrinsic birefringence value and at least one uniaxially stretched film having a negative intrinsic birefringence value. 2. A liquid crystal display device, wherein the film having negative intrinsic birefringence is the styrenic copolymer according to claim 1.
JP3047442A 1991-02-21 1991-02-21 Phase difference film and liquid crystal display device using this film Pending JPH04265906A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3047442A JPH04265906A (en) 1991-02-21 1991-02-21 Phase difference film and liquid crystal display device using this film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3047442A JPH04265906A (en) 1991-02-21 1991-02-21 Phase difference film and liquid crystal display device using this film

Publications (1)

Publication Number Publication Date
JPH04265906A true JPH04265906A (en) 1992-09-22

Family

ID=12775260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3047442A Pending JPH04265906A (en) 1991-02-21 1991-02-21 Phase difference film and liquid crystal display device using this film

Country Status (1)

Country Link
JP (1) JPH04265906A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006010812A (en) * 2004-06-23 2006-01-12 Tosoh Corp Optical compensation film and its manufacturing method
JP2007263993A (en) * 2006-03-27 2007-10-11 Denki Kagaku Kogyo Kk Optical molding
JP2008262180A (en) * 2007-03-20 2008-10-30 Asahi Kasei Chemicals Corp Resin composition for optical material
JP2009169086A (en) * 2008-01-16 2009-07-30 Jsr Corp Method for manufacturing laminated optical film, laminated optical film, and its application
JP2009265302A (en) * 2008-04-24 2009-11-12 Jsr Corp Method of manufacturing multilayer optical film, multilayer optical film, polarizing plate, and liquid crystal display device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006010812A (en) * 2004-06-23 2006-01-12 Tosoh Corp Optical compensation film and its manufacturing method
JP2007263993A (en) * 2006-03-27 2007-10-11 Denki Kagaku Kogyo Kk Optical molding
JP2008262180A (en) * 2007-03-20 2008-10-30 Asahi Kasei Chemicals Corp Resin composition for optical material
JP2009169086A (en) * 2008-01-16 2009-07-30 Jsr Corp Method for manufacturing laminated optical film, laminated optical film, and its application
JP2009265302A (en) * 2008-04-24 2009-11-12 Jsr Corp Method of manufacturing multilayer optical film, multilayer optical film, polarizing plate, and liquid crystal display device

Similar Documents

Publication Publication Date Title
EP0424951B1 (en) Liquid crystal display
US5213852A (en) Phase difference film and liquid crystal display having the same
US5142393A (en) Electro-optical liquid crystal device with compensator having negative optical anisotropy
EP0367288B1 (en) Liquid crystal display
KR101594339B1 (en) Optical compensation film retardation film and composite polarizer
JP4790890B2 (en) Retardation film and continuous production method thereof
KR101197162B1 (en) In-plane swiching mode liquid crystal display
JP2857889B2 (en) Liquid crystal display
WO2003032060A1 (en) Liquid crystal display element, and use of phase difference film used the same for
JP2005274725A (en) Optical laminate, optical element, and liquid crystal display device
KR20090029537A (en) An optical anisotropic film with high heat resistance and a liquid crystal display device comprising the same
JPH04215602A (en) Phase difference film and liquid crystal display device using it
KR20140000431A (en) Retardation film and liquid crystal display including the same
JP2003015134A (en) Liquid crystal display device
JPH04265906A (en) Phase difference film and liquid crystal display device using this film
JPH0545520A (en) Polarizing plate and liquid crystal display device
JPH05297223A (en) Manufacture of complex refraction film and phase contrast plate and liquid crystal display device using film
JPH03141303A (en) Film laminate
JP3474618B2 (en) Elliptical polarizing plate and liquid crystal display device using the same
JP3203490B2 (en) Phase difference plate and liquid crystal display
JPH03206422A (en) Liquid crystal display device
JPH0497322A (en) Liquid crystal display device
JPH04194902A (en) Phase difference film
JP3206177B2 (en) Phase difference plate and liquid crystal display device using the same
JP2811392B2 (en) Birefringent film and liquid crystal display device using the same