JPH0426556A - Aln sintered compact - Google Patents

Aln sintered compact

Info

Publication number
JPH0426556A
JPH0426556A JP2129291A JP12929190A JPH0426556A JP H0426556 A JPH0426556 A JP H0426556A JP 2129291 A JP2129291 A JP 2129291A JP 12929190 A JP12929190 A JP 12929190A JP H0426556 A JPH0426556 A JP H0426556A
Authority
JP
Japan
Prior art keywords
grain boundary
boundary phase
sintered compact
composition
thermal conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2129291A
Other languages
Japanese (ja)
Inventor
Taku Yamamura
卓 山村
Satoshi Uenosono
聡 上ノ薗
Eizo Maeda
榮造 前田
Makoto Yokoi
誠 横井
Masato Kumagai
正人 熊谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP2129291A priority Critical patent/JPH0426556A/en
Publication of JPH0426556A publication Critical patent/JPH0426556A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an AlN base with high thermal conductivity of >=190W/mK capable of being produced by means of pressureless sintering excellent in productivity and free from abnormal external appearance by providing an AlN sintered compact in which the composition of a grain boundary phase consists of Y4Al2O9 and Y2O3. CONSTITUTION:This sintered compact is an AlN sintered compact in which grain boundary phase consists of Al2O3 and Y2O3 and the composition of this grain boundary phase consists of Y4Al2O9 and Y2O3. The above-mentioned sintered compact can be produced in a proper nitrogen flow in proper temp. conditions, depending on the additive quantities of oxygen, carbon, and Y2O3 in an AlN green compact after removal of binder. It is necessary that the grain boundary phase of the sintered compact has a composition consisting of Y4Al2O9 and Y2O3, and further, it is preferable that the mole ratio between Al2O3 and Y2O3 in the composition of the grain boundary phase is regulated to 0.1-0.30 or 0.4-0.5. It is preferable that, in the AlN powder to be used, mean grain size and the amount of oxygen incorporated in the powder are regulated to 1-2mu and <2wt.%, respectively, and further, it is preferable that Y2O3 has >=99.9% purity and <=5mu mean grain size.

Description

【発明の詳細な説明】 [産業上の利用分野1 本発明は熱伝導率の高いAl2N焼結体に関する。[Detailed description of the invention] [Industrial application field 1 The present invention relates to an Al2N sintered body with high thermal conductivity.

〔従来の技術] 近年、LSIなどの半導体素子の集積度が上がるにした
がってLSIなどの発熱量が増大するために、その発生
した熱を速やかに外部へ伝熱、放熱する必要が生じた。
[Prior Art] In recent years, as the degree of integration of semiconductor devices such as LSIs has increased, the amount of heat generated by LSIs has increased, and it has become necessary to quickly conduct and dissipate the generated heat to the outside.

また、パワートランジスタ、レーザダイオードなどの高
出力素子を実装するための基板およびパッケージにおい
ても、素子の動作時に発生する熱を短時間のうちに素子
外へ放出しなければならない。
Furthermore, in substrates and packages on which high-output devices such as power transistors and laser diodes are mounted, heat generated during operation of the device must be released outside the device in a short period of time.

このような発熱量の多い半導体素子を実装するために熱
伝導率の高い基板材料が必要とされ、従来このような熱
伝導率の高い絶縁性基板として酸化ベリリウム(Bed
)系焼結体が用いられてきたが毒性があるため便用範囲
が限定されてきた。
In order to mount such semiconductor elements that generate a large amount of heat, a substrate material with high thermal conductivity is required, and conventionally, beryllium oxide (Bed) is used as an insulating substrate with high thermal conductivity.
) type sintered bodies have been used, but their useful range has been limited due to their toxicity.

近年AρNは毒性がなく、高い熱伝導率をもち、その熱
膨張率がAl2O3より低くシリコンと同程度であるた
め、高熱伝導性基板として注目を集めている。
In recent years, AρN has attracted attention as a highly thermally conductive substrate because it is nontoxic, has high thermal conductivity, and its coefficient of thermal expansion is lower than Al2O3 and comparable to silicon.

A42Nを工業的に使用する場合、以下の最低限の特性
項目を満たす必要がある。すなわち、■ 焼結体が均一
で緻密である。機械的強度が大きい。
When A42N is used industrially, it is necessary to satisfy the following minimum characteristics. That is, (1) the sintered body is uniform and dense; High mechanical strength.

■ 熱伝導率ができるだけ大きい。■ Thermal conductivity is as high as possible.

■ 体積抵抗が大きい、(>1012Ωcm)■ 焼き
上がりの焼結体表面が平滑平坦である。
■ High volume resistance (>1012 Ωcm) ■ The surface of the fired sintered body is smooth and flat.

■ 焼結体の外観は、色むら、11色がなく均一な色調
である。
■ The appearance of the sintered body is a uniform color tone with no uneven color or 11 colors.

上記のうち■の項目は必須ではないといいなからA12
N基板を商品として考えた場合重要な問題となってくる
。Al2N基板に回路を形成した後、回路の検査が必要
である。Al2N基板の表面の一部分に着色などの異常
があると商品イメージが損なわれるばかりでなく、回路
検査が困難となり事実上商品価値がなくなる。またその
他の外観の異常としては網目状の模様が基板の表面に発
生することもある。
I hope that the items marked ■ above are not mandatory.A12
This becomes an important issue when considering the N-substrate as a product. After forming a circuit on an Al2N substrate, it is necessary to inspect the circuit. If there is an abnormality such as discoloration on a portion of the surface of the Al2N substrate, not only will the product image be damaged, but circuit inspection will become difficult, effectively eliminating the product's value. Another abnormality in appearance is that a mesh pattern may appear on the surface of the substrate.

したがってAl2N基板には高熱伝導率であることはも
ちろんのこと、基板の表面に着色や網目状の模様といっ
た外観異常のない、−様な色調であることが求められて
いる。
Therefore, the Al2N substrate is required not only to have high thermal conductivity but also to have a negative color tone without any abnormalities in appearance such as coloring or mesh patterns on the surface of the substrate.

従来の技術では、Aj2Nは本来難焼結性であるため、
Y2O3などの焼結助剤を添加する製造方法が検討され
てきた。(特開昭60−127267号公報) 最近、焼結助剤としてY2O3に加え炭素を添加するこ
とにより高熱伝導化が検討されてきた。
With conventional technology, since Aj2N is inherently difficult to sinter,
Manufacturing methods that add sintering aids such as Y2O3 have been considered. (Japanese Unexamined Patent Publication No. 60-127267) Recently, studies have been made to improve thermal conductivity by adding carbon in addition to Y2O3 as a sintering aid.

特開昭61−127667号公報では主成分のAβNに
対して、Y2O3を4.4〜15.2重量%及び遊離炭
素を0.65重量%以上加えた混合物を焼成し、粒界相
がY4 Al22 osとYAg、03からなる焼結体
により最高156W/mKの熱伝導率を達成した。
In JP-A-61-127667, a mixture in which 4.4 to 15.2% by weight of Y2O3 and 0.65% by weight or more of free carbon are added to the main component AβN is fired, and the grain boundary phase becomes Y4. A maximum thermal conductivity of 156 W/mK was achieved with a sintered body made of Al22 os and YAg,03.

特開昭64−3075号公報では、焼結助剤としてY2
O3を加え、粒界相がYAI2.03とY4Al2O9
からなる焼結体では181W/mK、YAI2O3とY
、Aff2O9とY2O3からなる焼結体では145 
W / m Kの熱伝導率を達成した。しかし、粒界相
にYAI2O3を含むAβN焼結体は外観異常が発生し
易い。
In JP-A No. 64-3075, Y2 is used as a sintering aid.
Adding O3, the grain boundary phase becomes YAI2.03 and Y4Al2O9
181 W/mK for the sintered body consisting of YAI2O3 and Y
, 145 for a sintered body consisting of Aff2O9 and Y2O3
A thermal conductivity of W/mK was achieved. However, AβN sintered bodies containing YAI2O3 in the grain boundary phase tend to have abnormal appearance.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明は生産性に優れる常圧焼結を用いて製造すること
ができ、外観異常のない190W/mK以上のA42N
高熱伝導性基板を提供するものである。
The present invention can be manufactured using pressureless sintering, which has excellent productivity, and has an A42N of 190 W/mK or more without any abnormal appearance.
A highly thermally conductive substrate is provided.

[課題を解決するための手段] 本発明は、粒界相がAβ2o3とy2 o3から成るA
J2N焼結体であって、粒界相がY4 Ag2OsとY
2O3であり、外観異常の発生率がきわめて低く、かつ
190W/mK以上の高熱伝導性基板を提供するもので
ある。
[Means for Solving the Problems] The present invention provides A
It is a J2N sintered body, and the grain boundary phase is Y4Ag2Os and Y
2O3, the occurrence rate of appearance abnormalities is extremely low, and a high thermal conductivity substrate of 190 W/mK or more is provided.

このような焼結体は、脱バインダ後のA42N成形体の
酸素、炭素、y2O3の添加量によって。
Such a sintered body depends on the amount of oxygen, carbon, and y2O3 added to the A42N molded body after binder removal.

適切な窒素気流中において適切な温度条件の下に製造す
ることができる。
It can be produced under appropriate temperature conditions in a suitable nitrogen flow.

〔作用〕[Effect]

本発明者らは前記課題を解決するため鋭意検討を行った
。常圧焼結では、炭素坩堝中で焼結することに代表され
る還元性の雰囲気では緻密化が困難であり、炭素を遮断
した窒素気流中では完全に緻密化することが知られてい
る。またY2 oaは原料中の不純物酸素と反応して液
相になり液相焼結により焼結体を緻密にする。冷却過程
において粒子の3重点で液相が固結し、粒界相へAβN
粒子の酸素が固溶したり、あるいは、粒界相がFe、S
iなどの不純物を取り込むため、焼結体中のAJ2N粒
子が高純化し高熱伝導化が達成されると考えられている
。本発明者は粒界相と基板外観、熱伝導率の関係を検討
した結果、粒界相がY、 Al22 o、、とY2 o
aであるとき高熱伝導化とともに外観異常の発生率がき
わめて小さくなることを見出した。外観異常については
、粒界相がYAJ2O3を含む場合にはYA氾03とA
ffNの濡れ等によって不均一な部分が生じるために発
生するものと考えられる。高熱伝導化については、粒界
組成がYAG−=YAI2Oa ”Ys AJ2Osと
Y2O3富化側になるにつれて、冷却中A42N粒子か
ら酸素を取り込む能力が大きくなるためと考えられる。
The present inventors conducted extensive studies to solve the above problems. It is known that in pressureless sintering, densification is difficult in a reducing atmosphere such as sintering in a carbon crucible, and complete densification is achieved in a nitrogen stream with carbon cut off. Further, Y2 oa reacts with impurity oxygen in the raw material to become a liquid phase, and the sintered body is made dense by liquid phase sintering. During the cooling process, the liquid phase solidifies at the triple points of the particles, and AβN flows into the grain boundary phase.
Oxygen in the particles is dissolved in solid solution, or the grain boundary phase is Fe, S.
It is believed that the AJ2N particles in the sintered body become highly purified and high thermal conductivity is achieved by incorporating impurities such as i. As a result of studying the relationship between grain boundary phases, substrate appearance, and thermal conductivity, the inventor found that the grain boundary phases are Y, Al22 o, and Y2 o.
It has been found that when the temperature is a, the incidence of appearance abnormalities becomes extremely small as well as the thermal conductivity becomes high. Regarding appearance abnormalities, when the grain boundary phase contains YAJ2O3, YA flood 03 and A
It is thought that this occurs because non-uniform areas are created due to wetting of ffN. The reason for the high thermal conductivity is considered to be that as the grain boundary composition becomes YAG-=YAI2Oa ''Ys AJ2Os and Y2O3 enriched, the ability to take in oxygen from the A42N particles during cooling increases.

炭素は焼結中原料粉末中のAn2O3の形で存在すると
考えられる酸素と反応し、粒界組成をY2O3富化側に
シフトさせる効果が奴測され、その結果、高熱伝導化に
きわめて効果があることがわかった。
It has been observed that carbon reacts with oxygen, which is thought to be present in the form of An2O3 in the raw material powder during sintering, and shifts the grain boundary composition to the Y2O3 enriched side, which is extremely effective in increasing thermal conductivity. I understand.

以下本発明の詳細な説明する。The present invention will be explained in detail below.

本発明の焼結体の製造に当っては、主成分のAl2Nに
、焼結助剤として、Y2 oaを0.5〜7重量%添加
するのがよい。Y2 oaが0.5重量%未満では焼結
中に生成する液相量が少ないため充分に緻密化せず、焼
結体の熱伝導率が低下する。添加量が7重量%を越える
と焼結体中の液相組成はY41!2O9とY2O3が共
存するが、液相量が多すぎるためかえって熱伝導率が低
下することが多くなり、かつ表面が荒れることになり、
同時に基板の一部に黄色い着色が起こりやすくなる。
In producing the sintered body of the present invention, it is preferable to add 0.5 to 7% by weight of Y2 oa as a sintering aid to Al2N as the main component. When Y2 oa is less than 0.5% by weight, the amount of liquid phase generated during sintering is small, so that sufficient densification is not achieved and the thermal conductivity of the sintered body is reduced. If the amount added exceeds 7% by weight, the liquid phase composition in the sintered body will be such that Y41!2O9 and Y2O3 coexist, but because the amount of liquid phase is too large, the thermal conductivity often decreases, and the surface becomes It will be rough,
At the same time, yellowing tends to occur in a part of the board.

焼結体の粒界相の組成は、Y4 Al2OsとY2O3
であることが必要である。さらには粒界相の組成のAl
22 oaとY2O3のモル比(A’2O3 /Y2O
3)がO,1〜0,30又は0.4〜0.5であること
が好ましい、なお、Y4 Al22 osはAl2Oa
 / Y2O3〜0.5である。粒界相がAl2O3 
、YAG相あるいはYAI2O3相を含有する場合は、
熱伝導率が低下する。また、網目状の模様や基板の一部
に着色が発生しゃすいa Y 4A A 2O s単相
の場合には、外観異常の発生はみられないが熱伝導率が
低い。
The composition of the grain boundary phase of the sintered body is Y4 Al2Os and Y2O3
It is necessary that Furthermore, the Al composition of the grain boundary phase
22 Molar ratio of oa and Y2O3 (A'2O3 /Y2O
3) is preferably O,1 to 0,30 or 0.4 to 0.5, and Y4 Al22 os is Al2Oa
/Y2O3~0.5. Grain boundary phase is Al2O3
, when containing YAG phase or YAI2O3 phase,
Thermal conductivity decreases. In addition, in the case of single-phase a Y 4 A A 2 O s in which a mesh pattern or a part of the substrate is colored, no appearance abnormality is observed, but the thermal conductivity is low.

また、Y4 Al22 osとY2O3からなる場合の
うち、粒界相組成のAl2O3とY2O3モル比(Aで
2O3 /Y2Oa )が0.1未満では熱伝導率高い
が色むらが起こりやすく、0,3を越え0゜4未満では
熱伝導率は高いが斑点状の模様が発生しやすい。
In addition, in the case of Y4 Al22 os and Y2O3, if the grain boundary phase composition Al2O3 and Y2O3 molar ratio (2O3/Y2Oa in A) is less than 0.1, thermal conductivity is high but color unevenness tends to occur. When the temperature exceeds 0°4 and is less than 0°4, the thermal conductivity is high, but spotty patterns are likely to occur.

本発明の焼結体を製造する一例を以下に示す。An example of manufacturing the sintered body of the present invention is shown below.

使用するAl2.N粉末は、平均粒径l〜2μm程度、
粉末に含有される酸素量は2重量%未滴が好ましい。ま
たY2O3は、純度99.9%以上、平均粒径5um以
下が好ましい。
Al2. The N powder has an average particle size of about 1 to 2 μm,
The amount of oxygen contained in the powder is preferably 2% by weight. Further, Y2O3 preferably has a purity of 99.9% or more and an average particle size of 5 um or less.

バインダとしてポリビニルブチラール (PVB)を適量添加、形成し、この成形体を窒素中で
脱脂した0次に、得られた成形体を雰囲気から炭素を遮
断するためAl2N坩堝に充填し常圧のもと窒素気流中
で焼成した。脱バインダ後の成形体の酸素、炭素とY2
O3の添加量より粒界相の組成を予想出来る。しかし、
Y2O3の添加量が少ない場合には粒界相組成はYAG
あるいはYl!03を含む組成、もしくはY4 Al2
2 os単相になる。この場合には、窒素気流によって
、焼成中にA℃酸成分蒸発させることにより、粒界相組
成をY2O3冨化側にシフトさせることができる。
An appropriate amount of polyvinyl butyral (PVB) was added as a binder to form the molded product, and the molded product was degreased in nitrogen.The resulting molded product was then filled in an Al2N crucible to block carbon from the atmosphere and placed under normal pressure. Calcined in a nitrogen stream. Oxygen, carbon and Y2 in the molded body after binder removal
The composition of the grain boundary phase can be predicted from the amount of O3 added. but,
When the amount of Y2O3 added is small, the grain boundary phase composition is YAG.
Or Yl! Composition containing 03 or Y4 Al2
2 OS becomes single phase. In this case, the grain boundary phase composition can be shifted to the Y2O3 enriched side by evaporating the A.degree. C. acid component during firing using a nitrogen stream.

焼結温度は1750から1950℃が好適である。17
50℃未満では完全な緻密体が得られない。1950℃
を越えても焼結体の特性は変わらないが、焼成にかかる
エネルギーコストがかさむだけで実際的ではない。窒素
気流量は、1〜100j2/minとする。
The sintering temperature is preferably 1750 to 1950°C. 17
If the temperature is lower than 50°C, a complete dense body cannot be obtained. 1950℃
Although the properties of the sintered body do not change even if the temperature exceeds 100%, the energy cost for firing increases and is not practical. The nitrogen flow rate is 1 to 100j2/min.

〔実施例J 平均粒径0.8 a m 、酸素含有量160重量%、
純度98%のAβN粉末を主成分とし、これに平均粒径
1.OumのY2O3粉末を添加した。バインダとして
ポリビニルブチラール(PVB)を適量添加、成形し、
この成形体を窒素中で脱脂した。
[Example J Average particle size 0.8 am, oxygen content 160% by weight,
The main component is AβN powder with a purity of 98%, and an average particle size of 1. Oum's Y2O3 powder was added. Add an appropriate amount of polyvinyl butyral (PVB) as a binder, mold,
This molded body was degreased in nitrogen.

次に、得られた成形体をAl2N坩堝に充填し、常圧の
もと窒素気流1〜10012 / m i n 。
Next, the obtained molded body was filled into an Al2N crucible, and a nitrogen gas flow of 1 to 10012/min was applied under normal pressure.

182O℃で4時間焼成し、レーザフラッシュ法で熱伝
導率を測定、粉末X線回折で焼結体の粒界相組成を確認
した。粒界相組成のモル比(Al2O3/Y2O3 )
については粉末X線回折の回折強度より検量線を作製し
て求めた。
The sintered body was fired at 1820° C. for 4 hours, and the thermal conductivity was measured using a laser flash method, and the grain boundary phase composition of the sintered body was confirmed using powder X-ray diffraction. Molar ratio of grain boundary phase composition (Al2O3/Y2O3)
This was determined by preparing a calibration curve from the diffraction intensity of powder X-ray diffraction.

Y2O3添加量、窒素気流量、焼結体の粒界相、焼結体
の熱伝導率、及び同じ条件で2O回焼成した場合、焼結
体外観異常の発生する割合について、実施例を第1表に
、比較例を第2表に示した。第1表には、粒界相組成の
Al2O3とY2O3 ノモル比(Al2O3 /Y2
O3 ) も併せて示した。
The amount of Y2O3 added, the flow rate of nitrogen, the grain boundary phase of the sintered body, the thermal conductivity of the sintered body, and the rate of appearance abnormalities of the sintered body when fired 20 times under the same conditions were evaluated using Example 1. Comparative examples are shown in Table 2. Table 1 shows the grain boundary phase composition Al2O3 and Y2O3 nomolar ratio (Al2O3 /Y2
O3) is also shown.

実施例1〜22 実施例1から22は主成分のAP!Nに、焼結助剤とし
て、Y2O3を0.5〜7重量%添加した混合物を、成
形脱脂した後で常圧焼成することにより190W/mK
以上の高熱伝導化が達成され、Al2N焼結体の粒界相
がY4 Al2O9とY2 oaからなる場合は網目や
着色といった焼結体表面の外観異常の発生がほとんどな
くなることを示した。窒素気流を増やすことにより粒界
相はY2O3冨化側にシフトする。
Examples 1 to 22 Examples 1 to 22 are based on the main component AP! A mixture of 0.5 to 7% by weight of Y2O3 added as a sintering aid to N was molded and degreased and then fired at normal pressure to produce 190W/mK.
It was shown that when the above-mentioned high thermal conductivity was achieved and the grain boundary phase of the Al2N sintered body consisted of Y4Al2O9 and Y2oa, appearance abnormalities such as mesh and coloration on the surface of the sintered body almost disappeared. By increasing the nitrogen flow, the grain boundary phase shifts to the Y2O3 enriched side.

実施例3,6.9,11.15.17.2O゜21.2
2では5粒界相組成のAε2O3とY2O3のモル比(
Al2O3 /Y2Oa )が0.1未満あるいは0.
3を越え0.4未満となっており、このときは熱伝導率
は高いが%10%以下の若干の外観異常が発生した。
Example 3, 6.9, 11.15.17.2O゜21.2
In 2, the molar ratio of Aε2O3 and Y2O3 with a 5-grain boundary phase composition (
Al2O3 /Y2Oa) is less than 0.1 or 0.
The value exceeded 3 and was less than 0.4, and although the thermal conductivity was high at this time, some appearance abnormalities of %10% or less occurred.

比較f!11−11 粒界相がYAG+YAj2Og又はYAI2o3+Y4
 A12Osである場合には、外観の異常の発生が多(
みられ熱伝導率も低い。粒界相がY4Aβ2O1!単相
の場合には外観異常は発生しないが、熱伝導率が182
W/mKと若干低いことがわかかる。
Comparison f! 11-11 Grain boundary phase is YAG+YAj2Og or YAI2o3+Y4
In the case of A12Os, abnormalities in appearance often occur (
It also has low thermal conductivity. The grain boundary phase is Y4Aβ2O1! In the case of single phase, no appearance abnormality occurs, but the thermal conductivity is 182
It can be seen that the value is slightly low at W/mK.

〔発明の効果] 本発明により生産性に優れる常圧焼結を用いて、外観の
異常のない190W/mK以上の高熱伝導性AffN基
板を容易に製造することができる。
[Effects of the Invention] According to the present invention, an AffN substrate with high thermal conductivity of 190 W/mK or more without any abnormality in appearance can be easily manufactured using pressureless sintering which has excellent productivity.

Claims (1)

【特許請求の範囲】[Claims] 1 粒界相がAl_2O_3とY_2O_3からなるA
lN焼結体において、粒界相の組成がY_4Al_2O
_9とY_2O_3であるAlN焼結体。
1 A whose grain boundary phase consists of Al_2O_3 and Y_2O_3
In the 1N sintered body, the composition of the grain boundary phase is Y_4Al_2O
_9 and Y_2O_3 AlN sintered body.
JP2129291A 1990-05-21 1990-05-21 Aln sintered compact Pending JPH0426556A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2129291A JPH0426556A (en) 1990-05-21 1990-05-21 Aln sintered compact

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2129291A JPH0426556A (en) 1990-05-21 1990-05-21 Aln sintered compact

Publications (1)

Publication Number Publication Date
JPH0426556A true JPH0426556A (en) 1992-01-29

Family

ID=15005948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2129291A Pending JPH0426556A (en) 1990-05-21 1990-05-21 Aln sintered compact

Country Status (1)

Country Link
JP (1) JPH0426556A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008034473A (en) * 2006-07-26 2008-02-14 Toyoda Gosei Co Ltd Surface light source

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008034473A (en) * 2006-07-26 2008-02-14 Toyoda Gosei Co Ltd Surface light source

Similar Documents

Publication Publication Date Title
KR960006250B1 (en) High thermal conductive silicon nitride sintered body and the method of producing the same
KR19990088209A (en) High thermal conductivity silicon nitride sintered body and method for manufacturing the same
US5482905A (en) Aluminum nitride sintered body and method of producing the same
JPH06135771A (en) High heat conductivity silicon nitride sintered compact and its production
JPH0426556A (en) Aln sintered compact
JPH0492864A (en) Aluminum nitride powder, sintered material and production thereof
JPH046161A (en) Production of aln sintered body
JPH01252584A (en) Sintered composite ceramic compact and production thereof
JPH0442861A (en) Preparation of highly strong aluminum nitride sintered product
JPH09157030A (en) Production of silicon nitride sintered compact
JPH046162A (en) Aln-bn-based composite sintered body and production thereof
JPH04144967A (en) Aluminum nitride sintered compact and production thereof
JPH03261664A (en) Production of aluminum nitride sintered body
JP2536448B2 (en) Aluminum nitride sintered body
JPS63236765A (en) Aluminum nitride sintered body
JP2541150B2 (en) Aluminum nitride sintered body
EP0260865A1 (en) Process for preparation of aluminium nitride sintered material
JPH01133911A (en) Production of aluminum nitride powder
JPH0345562A (en) Preparation of aluminum nitride sintered product
JPH02107569A (en) Production of aluminum nitride sintered body
JPS63319266A (en) Production of aluminum nitride sintered body
JP2009179557A (en) Method of producing high thermal conductive silicon nitride sintered body
JPH11180772A (en) Hexagonal boron nitride sintered compact and its production
JPH0489359A (en) Light-nontransmittant aluminum nitride sintered body and production thereof
JPH11147767A (en) Production of aluminum nitride sintered product