JPH04265228A - Vented tube for glass furnace feeder - Google Patents

Vented tube for glass furnace feeder

Info

Publication number
JPH04265228A
JPH04265228A JP10990791A JP10990791A JPH04265228A JP H04265228 A JPH04265228 A JP H04265228A JP 10990791 A JP10990791 A JP 10990791A JP 10990791 A JP10990791 A JP 10990791A JP H04265228 A JPH04265228 A JP H04265228A
Authority
JP
Japan
Prior art keywords
tube
hole
stress
vented
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10990791A
Other languages
Japanese (ja)
Inventor
Takaaki Hirano
平野 隆明
Tatsuya Shimoda
達也 下田
Takeshi Eto
衛藤 健
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP10990791A priority Critical patent/JPH04265228A/en
Publication of JPH04265228A publication Critical patent/JPH04265228A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B7/00Distributors for the molten glass; Means for taking-off charges of molten glass; Producing the gob, e.g. controlling the gob shape, weight or delivery tact
    • C03B7/08Feeder spouts, e.g. gob feeders
    • C03B7/084Tube mechanisms

Abstract

PURPOSE:To prevent crack initiation and to prolong life by providing a through- hole for heating the inside of a tube so that it may be elliptical and an angle of the major axis of the ellipse to the rotational direction of the tube may be the prescribed one. CONSTITUTION:A through-hole 6 in the shape of an ellipse consisting of a major axis 7 and a minor axis 8 is provided for a vented tube 5. When the tube 5 is turned about an axis of rotation 11 in a direction of rotation 9 and let the direction of rotation of the tube be 0, the through-hole is made so that the major axis ascends at 0 to 9O deg. angle to form a vented tube for glass furnace feeder.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、ガラス窯フィーダー用
ベンテッドチューブに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vented tube for a glass oven feeder.

【0002】0002

【従来の技術】びん及び食器用ガラス製造プロセスにお
いて、ガラス溶解窯フィーダー部には、ガラスの撹拌用
にベンテッドチューブが使用されている。
2. Description of the Related Art In the glass manufacturing process for bottles and tableware, a vented tube is used in the feeder section of a glass melting furnace for stirring the glass.

【0003】フィーダーの役目は、ガラス溶解窯で溶解
清澄されたガラスを、成形に適した温度でゴブの形で、
また一定重量で成形機などへ供給することである。
The role of the feeder is to melt and clarify glass in a glass melting kiln in the form of a gob at a temperature suitable for molding.
It also means supplying a constant weight to a molding machine, etc.

【0004】図1にガラス窯フィーダー部1の大体の構
造を示す。窯より供給されたガラスは多くの場合冷却さ
れ、スパウト部2で均一化されオリフィス3からプラン
ジャー4によって押出されゴブの形に切断される。
FIG. 1 shows the general structure of a glass oven feeder section 1. Glass supplied from a kiln is often cooled, homogenized in a spout section 2, extruded from an orifice 3 by a plunger 4, and cut into gob shapes.

【0005】ベンテッドチューブ5は、回転してガラス
を撹拌する。ベンテッドチューブ5は、チューブ内外の
温度差を最小限に抑制するために、真円形の貫通孔がチ
ューブのガラスに接する部分より上部の側面部周方向に
3〜4個設けられている。ベンテッドチューブ5の上側
は大気に、下側は熱いガラスに接している。そこで、チ
ューブ内外での温度差をおさえるため、貫通孔に熱風を
吹き込んでいる。
[0005] The vented tube 5 rotates to stir the glass. In order to minimize the temperature difference between the inside and outside of the tube, the vented tube 5 is provided with three to four perfect circular through holes in the circumferential direction of the side surface above the portion of the tube that contacts the glass. The upper side of the vented tube 5 is in contact with the atmosphere, and the lower side is in contact with hot glass. Therefore, in order to suppress the temperature difference between the inside and outside of the tube, hot air is blown into the through hole.

【0006】[0006]

【発明が解決しようとする課題】真円形状の貫通孔を有
する従来のベンテッドチューブは、使用中すなわち回転
中に貫通孔周辺部に発生する応力により亀裂が生成し操
業停止が余儀なくされることがある。これは、チューブ
が、ガラスにより回転方向と逆方向の抵抗を受けるため
に起こると考えられる。チューブにねじれる力が働き、
貫通孔周辺部に応力が集中すると考えられる。
[Problems to be Solved by the Invention] Conventional vented tubes having perfectly circular through holes are prone to cracks due to stress generated around the through holes during use, that is, during rotation, forcing the operation to stop. There is. This is believed to occur because the tube is subjected to resistance from the glass in a direction opposite to the direction of rotation. Twisting force acts on the tube,
It is thought that stress is concentrated around the through hole.

【0007】[0007]

【課題を解決するための手段】本発明はガラス溶解窯フ
ィーダー部のベンテッドチューブにおいて、チューブ内
部加熱用の貫通孔を長円にし、かつチューブの回転方向
を0°としたときに、その長円の長軸が、上方へ0〜9
0°傾いていることを特徴とするガラス窯フィーダー用
ベンテッドチューブである。
[Means for Solving the Problem] The present invention provides a vented tube of a glass melting furnace feeder section, in which the through hole for internal heating of the tube is made oval, and when the rotation direction of the tube is set to 0°, the length of the through hole is oval. The long axis of the circle moves upwards from 0 to 9.
This is a vented tube for glass kiln feeders that is tilted at 0°.

【0008】本発明では、対策を検討するためコンピュ
ータによる応力解析を行なった。解析は汎用の有限要素
解析ソフトを使用し、3次元モデルについて行なった。 本発明では熱条件は考慮せず、機械的応力についてのみ
検討した。孔形状を限定することにより、ベンテッドチ
ューブ回転時の貫通孔周辺の発生応力が孔径、孔の位置
、孔の個数とは無関係にきわめて小さくなることを見出
した。
In the present invention, stress analysis was performed using a computer in order to examine countermeasures. The analysis was performed on a three-dimensional model using general-purpose finite element analysis software. In the present invention, thermal conditions were not considered, and only mechanical stress was studied. It has been found that by limiting the hole shape, the stress generated around the through hole during rotation of the vented tube becomes extremely small, regardless of the hole diameter, hole position, and number of holes.

【0009】図2は本発明のベンテッドチューブを模式
的に説明した図である。
FIG. 2 is a diagram schematically illustrating the vented tube of the present invention.

【0010】図2に示すように、ベンテッドチューブ5
の貫通孔6の形状は、長円にすることが好ましい。長円
は長軸7と短軸6を持つ。ベンテッドチューブ5は回転
軸11を軸にして回転方向9の方向へ回転するものとす
る。このときガラス12によって、回転方向9と逆方向
へ抵抗が生じるものと考えられる。
As shown in FIG. 2, the vented tube 5
The shape of the through hole 6 is preferably oval. The ellipse has a major axis 7 and a minor axis 6. It is assumed that the vented tube 5 rotates in a rotation direction 9 around a rotation shaft 11. At this time, it is considered that resistance is generated by the glass 12 in a direction opposite to the rotational direction 9.

【0011】実験によれば、チューブの回転方向9を0
゜としたときの長軸の上方への傾き10は、可能範囲が
1°〜89°、好適範囲が30°〜60°である。また
、長軸7と短軸8の比は、好適範囲が1.5:1〜3:
1である。少なくともこれらの範囲内では、ベンテッド
チューブへの応力緩和効果を認めることができる。
According to experiments, the direction of rotation 9 of the tube was set to 0.
The possible range of the upward inclination 10 of the long axis is 1° to 89°, and the preferable range is 30° to 60°. Further, the ratio of the long axis 7 to the short axis 8 is preferably in the range of 1.5:1 to 3:
It is 1. At least within these ranges, a stress relieving effect on the vented tube can be observed.

【0012】0012

【作用】貫通孔周辺の応力がきわめて小さくなるので、
チューブに亀裂が生成しにくくなる。
[Operation] The stress around the through hole becomes extremely small, so
Cracks are less likely to form in the tube.

【0013】[0013]

【実施例】チューブの形状を変更することにより、チュ
ーブ側面の貫通孔周辺に発生する応力の変化をコンピュ
ータにより解析し、結果の比較を行った。
[Example] By changing the shape of the tube, changes in stress generated around the through hole on the side surface of the tube were analyzed using a computer, and the results were compared.

【0014】解析は、汎用の有限要素解析ソフトを用い
て3次元モデルにて構造解析を行った。ただし、本解析
においては熱の条件は考慮せず、機械的応力についての
み検討した。
[0014] In the analysis, structural analysis was performed using a three-dimensional model using general-purpose finite element analysis software. However, in this analysis, thermal conditions were not considered, and only mechanical stress was considered.

【0015】解析モデルとして図3に示す全体図から、
ガラスの接触部分とチューブ上部のつば状部分を除いた
部分を解析の対象範囲としてモデル化した。このモデル
を基本モデルとし、孔径、孔の高さ位置、孔の個数、孔
形状を変えたモデルを作成し、貫通孔周辺に発生する応
力を比較した。それぞれのモデルの各部の寸法を表1に
示す。表1中で*印の付いているモデルは、同一の形状
ではあるが、要素分割が同一ではないモデルである。
From the overall diagram shown in FIG. 3 as an analytical model,
The area excluding the glass contact area and the brim-like area at the top of the tube was modeled as the analysis target area. Using this model as a basic model, we created models with different hole diameters, hole height positions, number of holes, and hole shapes, and compared the stress generated around the through holes. Table 1 shows the dimensions of each part of each model. Models marked with * in Table 1 have the same shape, but the element divisions are not the same.

【0016】貫通孔の形状は真円と楕円の場合を比較し
た。楕円の形状と傾きを図4に示す。実施例1と比較例
15は、モデル形状も要素分割も同一ではあるが、後述
する強制変位の向きを逆にしている。
[0016] The shapes of the through holes were compared between a perfect circle and an ellipse. Figure 4 shows the shape and inclination of the ellipse. Example 1 and Comparative Example 15 have the same model shape and element division, but the direction of forced displacement, which will be described later, is reversed.

【0017】実使用時のチューブは、チューブの中心を
中心軸として回転しているため、ガラスに浸かっている
部分(ガラス接触部)はガラスにより回転と逆の抵抗を
受けており、チューブをねじるような力が働いていると
思われる。その力を表現するために本解析においては、
図5に示すような拘束条件を設定した。チューブ底面の
θ方向(円周方向)を拘束し、チューブ側面の上端より
約30mmの範囲をθ方向に強制的に変位させることに
より(向きは図中の矢印方向)チューブをねじる力を表
現した。この強制変位の向きは、比較例15についての
み逆になっている。強制変位量は、0.02667ラジ
アン(円周方向約5mm)と設定したが、この値は特に
意味を持つ値ではなく、任意に設定した値である。
[0017] During actual use, the tube rotates around the center of the tube, so the part immersed in the glass (glass contact part) receives resistance from the glass that is opposite to the rotation, causing the tube to twist. It seems that similar forces are at work. In order to express that power, in this analysis,
Constraint conditions as shown in FIG. 5 were set. The force that twists the tube is expressed by constraining the bottom of the tube in the θ direction (circumferential direction) and forcibly displacing a range of about 30 mm from the upper end of the tube side in the θ direction (direction is in the direction of the arrow in the figure). . The direction of this forced displacement is reversed only in Comparative Example 15. The forced displacement amount was set to 0.02667 radian (approximately 5 mm in the circumferential direction), but this value does not have any particular meaning and is an arbitrarily set value.

【0018】解析に使用した物性値は下記の値とした。The physical property values used in the analysis were as follows.

【0019】 ヤング率  :0.447×106kg/cm2   
 ポアソン比:0.2
Young's modulus: 0.447×106 kg/cm2
Poisson's ratio: 0.2

【0020】[0020]

【基本形状の応力変化】図6Aおよび図6Bに基本形状
のモデル全体の外側と内側の応力分布を示した。図6A
はモデルを筒の外側の右上から見た図で、下方に集中す
る応力を確認し易い方向から表示してある。図6Bはモ
デルを筒の内側の右下から見た図で、上方に集中する応
力を確認し易い方向から表示してある。貫通孔周辺2ケ
所に引張応力が集中していることが確認できる。実験の
結果、応力の最大値は下方で490g/mm2上方で5
20g/mm2であった。貫通孔周辺部分を拡大したも
のと応力のベクトル図を図7に表示した。ベクトル図に
より引張応力の向きは、チューブ回転方向を0°とした
ときに上方へ約45度傾いた方向であることが確認でき
る。
[Stress Change in Basic Shape] Figures 6A and 6B show the stress distribution on the outside and inside of the entire basic shape model. Figure 6A
is a view of the model from the top right outside of the cylinder, and is shown from a direction that makes it easy to see the stress concentrated downward. FIG. 6B is a view of the model viewed from the lower right inside the cylinder, and is displayed from a direction that makes it easy to see the stress concentrated upward. It can be confirmed that tensile stress is concentrated in two places around the through hole. As a result of the experiment, the maximum stress value is 490 g/mm2 at the bottom and 5 at the top.
It was 20g/mm2. Figure 7 shows an enlarged view of the area around the through hole and a stress vector diagram. It can be confirmed from the vector diagram that the direction of the tensile stress is a direction tilted upward by about 45 degrees when the tube rotation direction is 0 degrees.

【0021】[0021]

【比較例1〜6】孔径を変更した場合の応力変化を知る
ために、比較例1〜6を行い、引張応力を比較した。
[Comparative Examples 1 to 6] In order to understand the change in stress when the pore diameter was changed, Comparative Examples 1 to 6 were conducted and the tensile stresses were compared.

【0022】実験の結果、応力の最大値は下方で460
g/mm2、上方で500g/mm2となり、下方より
上方の方が大きいことが確認できた。また、応力は孔径
が大きくなるに従い増大する傾向にあるが、下方に集中
する応力の最大値は孔径が35mm以上になるとあまり
変化しなくなることが確認できた。
[0022] As a result of the experiment, the maximum stress value was 460 at the bottom.
g/mm2, and it was 500 g/mm2 in the upper part, and it was confirmed that the upper part was larger than the lower part. Furthermore, although stress tends to increase as the hole diameter increases, it was confirmed that the maximum value of the stress concentrated downward does not change much when the hole diameter becomes 35 mm or more.

【0023】[0023]

【比較例7〜10】孔の高さ位置を変更した場合の応力
変化を知るために、比較例7〜10を行い、応力を比較
した。孔の高さ位置とは、チューブの下端より孔の中心
までの距離である。実験の結果、応力の最大値は下方で
520g/mm2、上方で535g/mm2となり、下
方より上方の方が大きいことが確認できた。また、集中
する応力は、孔の高さ位置が高くなるに従い増大する傾
向にあることも確認できた。
[Comparative Examples 7 to 10] In order to find out the change in stress when the height position of the hole is changed, Comparative Examples 7 to 10 were conducted and the stresses were compared. The height position of the hole is the distance from the bottom end of the tube to the center of the hole. As a result of the experiment, the maximum value of stress was 520 g/mm2 at the bottom and 535 g/mm2 at the top, confirming that it was larger at the top than at the bottom. It was also confirmed that the concentrated stress tends to increase as the height of the hole increases.

【0024】[0024]

【比較例11〜14】孔の個数を変更した場合の応力変
化を知るために、比較例11〜14を行い、応力を比較
した。それぞれのモデルにおいて、孔の円周方向の間隔
は等間隔としている。実験の結果、応力の最大値は下方
で505g/mm2、上方で545g/mm2となり、
下方より上方の方が大きいことが確認できた。また、集
中する応力は、孔の個数が多くなるに従い増大する傾向
にあるが、4個の場合についてのみ3個の場合より若干
ではあるが最大値は減少していることが確認できた。
[Comparative Examples 11 to 14] In order to find out the change in stress when the number of holes is changed, Comparative Examples 11 to 14 were conducted and the stresses were compared. In each model, the holes are spaced at equal intervals in the circumferential direction. As a result of the experiment, the maximum stress was 505 g/mm2 at the bottom and 545 g/mm2 at the top.
It was confirmed that the upper part was larger than the lower part. Furthermore, although the concentrated stress tends to increase as the number of holes increases, it was confirmed that only in the case of 4 holes, the maximum value decreased, albeit slightly, than in the case of 3 holes.

【0025】[0025]

【実施例1〜3および比較例15】孔を楕円にし方向を
変更した場合の応力変化を知るために、実施例1〜3お
よび比較例15を行い、応力を比較した。それぞれのモ
デルの楕円孔の面積は、約1979mm2である。これ
は直径50mmの真円孔の面積(約1964mm2)に
近ずけた値である。前述したとおり、実施例1と比較例
15は、モデル形状も要素分割も同一であるが、強制変
位の向きを逆にしている。すなわち比較例15だけは他
の実施例および比較例と逆の方向にチューブを回転させ
ている。実験の結果、応力の最大値は実施例2を除き、
下方より上方の方が大きくなる傾向にあることが確認で
きた。また、楕円孔の向きを変えると、応力の集中部分
も変わることが認められた。さらに、集中する応力は、
実施例1の場合は下方で410g/mm2、上方で43
5g/mm2と最小になり、比較例15の場合は下方で
675g/mm2、上方で750g/mm2と最大にな
ることが明らかに認められた。
[Examples 1 to 3 and Comparative Example 15] In order to find out the change in stress when the hole is made elliptical and the direction is changed, Examples 1 to 3 and Comparative Example 15 were conducted and the stresses were compared. The area of the oval hole in each model is approximately 1979 mm2. This value is close to the area (approximately 1964 mm2) of a perfect circular hole with a diameter of 50 mm. As described above, Example 1 and Comparative Example 15 have the same model shape and element division, but the directions of forced displacement are reversed. That is, only in Comparative Example 15, the tube was rotated in a direction opposite to that of the other Examples and Comparative Examples. As a result of the experiment, the maximum stress value was as follows except for Example 2.
It was confirmed that the upper part tends to be larger than the lower part. It was also found that changing the orientation of the elliptical hole also changed the stress concentration area. Furthermore, the concentrated stress is
In the case of Example 1, it was 410 g/mm2 at the bottom and 43 g/mm2 at the top.
It was clearly observed that in the case of Comparative Example 15, it was 675 g/mm2 at the bottom and maximum at 750 g/mm2 at the top.

【0026】図8Aおよび図8Bに実施例1のモデル全
体の外側と内側の応力分布を示した。図8Aはモデルを
筒の外側の右上から見た図で、下方に集中する応力を確
認し易い方向から表示してある。図8Bはモデルを筒の
内側の右下から見た図で、上方に集中する応力を確認し
易い方向から表示してある。引張応力は、図6Aおよび
図6Bに示された基本形状の応力分布と同様に、貫通孔
周辺2ケ所に集中していることが確認できる。図6Aと
図8Aを比較し、また、図6Bと図8Bを比較すると、
実施例1は基本形状に比べて貫通孔周辺への応力集中が
緩和されていることが明らかに認められる。
FIGS. 8A and 8B show stress distributions on the outside and inside of the entire model of Example 1. FIG. 8A is a view of the model viewed from the upper right outside of the cylinder, and is displayed from a direction that makes it easy to see the stress concentrated downward. FIG. 8B is a view of the model viewed from the lower right inside the cylinder, and is displayed from a direction that makes it easy to see the stress concentrated upward. It can be confirmed that the tensile stress is concentrated at two locations around the through hole, similar to the stress distribution in the basic shape shown in FIGS. 6A and 6B. Comparing FIG. 6A and FIG. 8A, and comparing FIG. 6B and FIG. 8B,
It is clearly recognized that in Example 1, the stress concentration around the through hole is relaxed compared to the basic shape.

【0027】実験によれば、チューブに発生する引張応
力は、チューブ側面の貫通孔周辺(2ケ所)に集中して
おり、そこが構造的に弱い部分であると考えられる。従
って、発生するクラックの起点はこの部分であると予想
される。この集中する引張応力を減少または分散させる
ためには、本解析の結果より以下の対応策が有効である
と考えられる。
According to experiments, the tensile stress generated in the tube is concentrated around the through hole (at two locations) on the side surface of the tube, and it is thought that this is a structurally weak point. Therefore, it is expected that this is the starting point of cracks. In order to reduce or disperse this concentrated tensile stress, the following countermeasures are considered to be effective from the results of this analysis.

【0028】a)孔径を小さくする。a) Decrease the pore size.

【0029】b)孔の高さ位置を低くする。b) Lowering the height of the hole.

【0030】c)孔の個数を4個にする。c) The number of holes is set to four.

【0031】d)孔の形状を楕円にし、チューブ回転方
向を0°としたときに上方へ長軸を45度傾ける。
d) The shape of the hole is made into an ellipse, and the long axis is tilted upward by 45 degrees when the direction of rotation of the tube is 0 degrees.

【0032】A社での実績では孔形状が楕円のベンテッ
ドチューブを使用したところ、明らかに機械的応力によ
ると思われるトラブルはなくなり8〜10ケ月の寿命が
12〜15ケ月に延命した。
[0032] In Company A's experience, when a vented tube with an elliptical hole shape was used, troubles apparently caused by mechanical stress disappeared, and the life span of 8 to 10 months was extended to 12 to 15 months.

【0033】[0033]

【発明の効果】本発明はガラス溶解窯フィーダー部のベ
ンテッドチューブにおいて、チューブ内部加熱用の貫通
孔を長円にし、かつチューブの回転方向を0°としたと
きに、その長円の長軸が、上方へ0〜90゜傾いている
ことを特徴とするガラス窯フィーダー用ベンテッドチュ
ーブである。
Effects of the Invention The present invention provides a vented tube in a glass melting furnace feeder section, in which the through hole for internal heating of the tube is made oval, and when the rotation direction of the tube is set to 0°, the long axis of the oval This is a vented tube for a glass kiln feeder, which is characterized by being inclined upward at an angle of 0 to 90 degrees.

【0034】貫通孔の形状を長円にし、前記傾きを持た
せたことにより、貫通孔周辺の応力発生による影響が緩
和される。従って、ベンテッドチューブへの亀裂発生の
防止につながり、ベンテッドチューブの寿命が長くなる
。1例では、8〜10ケ月の寿命であったものが、12
〜15ケ月に延命した。
By forming the through hole into an ellipse shape and giving it the above-mentioned inclination, the influence of stress generated around the through hole is alleviated. Therefore, the occurrence of cracks in the vented tube is prevented, and the life of the vented tube is extended. In one case, a lifespan of 8 to 10 months was reduced to 12 months.
His life was extended to ~15 months.

【0035】[0035]

【表1】[Table 1]

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】ガラス窯フィーダー部の断面図。FIG. 1 is a sectional view of a glass oven feeder section.

【図2】本発明のベンテッドチューブの概略を示す図。FIG. 2 is a diagram schematically showing a vented tube of the present invention.

【図3】解析のモデルの寸法図。FIG. 3 is a dimensional drawing of the analysis model.

【図4】実施例1〜3および比較例15の貫通孔形状と
傾きを示す図。
FIG. 4 is a diagram showing the shapes and inclinations of through holes in Examples 1 to 3 and Comparative Example 15.

【図5】解析のモデルの拘束条件を示す概念図。FIG. 5 is a conceptual diagram showing constraint conditions of an analysis model.

【図6A】基本形状モデルの外側から見た応力分布図。FIG. 6A is a stress distribution diagram seen from the outside of the basic shape model.

【図6B】基本形状モデルの内側から見た応力分布図。FIG. 6B is a stress distribution diagram seen from inside the basic shape model.

【図7】基本形状モデルの応力のベクトル図。FIG. 7 is a stress vector diagram of the basic shape model.

【図8A】実施例1の外側から見た応力分布図。FIG. 8A is a stress distribution diagram seen from the outside of Example 1.

【図8B】実施例1の内側から見た応力分布図。FIG. 8B is a stress distribution diagram seen from the inside of Example 1.

【符号の説明】[Explanation of symbols]

1    フィーダー部 2    スパウト部 3    オリフィス 4    プランジャー 5    ベンテッドチューブ 6    貫通孔 7    長軸 8    短軸 9    回転方向 10  傾き 11  回転軸 12  ガラス 1 Feeder part 2 Spout part 3 Orifice 4 Plunger 5 Vented tube 6 Through hole 7 Long axis 8 Short axis 9 Rotation direction 10 Tilt 11 Rotation axis 12 Glass

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  ガラス溶解窯フィーダー部のベンテッ
ドチューブにおいて、チューブ内部加熱用の貫通孔を長
円にし、かつチューブの回転方向を0°としたときに、
その長円の長軸が、上方へ0〜90°傾いていることを
特徴とするガラス窯フィーダー用ベンテッドチューブ。
Claim 1: In a vented tube of a glass melting furnace feeder section, when the through hole for internal heating of the tube is oval and the rotation direction of the tube is 0°,
A vented tube for a glass kiln feeder, characterized in that the long axis of the ellipse is inclined upward by 0 to 90 degrees.
JP10990791A 1991-02-20 1991-02-20 Vented tube for glass furnace feeder Pending JPH04265228A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10990791A JPH04265228A (en) 1991-02-20 1991-02-20 Vented tube for glass furnace feeder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10990791A JPH04265228A (en) 1991-02-20 1991-02-20 Vented tube for glass furnace feeder

Publications (1)

Publication Number Publication Date
JPH04265228A true JPH04265228A (en) 1992-09-21

Family

ID=14522179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10990791A Pending JPH04265228A (en) 1991-02-20 1991-02-20 Vented tube for glass furnace feeder

Country Status (1)

Country Link
JP (1) JPH04265228A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010127279A (en) * 2008-11-26 2010-06-10 General Electric Co <Ge> Method and system for cooling engine components
JP2019069874A (en) * 2017-10-06 2019-05-09 日本電気硝子株式会社 Method and apparatus for manufacturing glass article, and tube

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010127279A (en) * 2008-11-26 2010-06-10 General Electric Co <Ge> Method and system for cooling engine components
JP2019069874A (en) * 2017-10-06 2019-05-09 日本電気硝子株式会社 Method and apparatus for manufacturing glass article, and tube

Similar Documents

Publication Publication Date Title
TWI382963B (en) Manufacturing method and manufacturing apparatus of vitreous silica crucible
JP5094820B2 (en) Apparatus and method for conveying glass gob to glass container forming apparatus
CN111606556B (en) Bottle bottom burning process and device for tube-type glass bottle
JPH04265228A (en) Vented tube for glass furnace feeder
JPH0235784Y2 (en)
WO2021238143A1 (en) Quartz container manufacturing method and forming apparatus
CN110386754A (en) A kind of formation system of bottle Mechanism of I. S. Machine processed
KR20130080782A (en) Molten glass supply device
US7024889B2 (en) Method and apparatus for bending glass sheets
US2662347A (en) Glass forming mold
CN219934648U (en) Zirconia hearth with anti-offset mechanism
JP3997432B2 (en) Sealing glass and method for producing the same
CN205398717U (en) Two tungsten crucible structures based on electron beam evaporation
US4572730A (en) Method of making a ribbon blown glass article
JP3771517B2 (en) Method of stirring molten glass
EP1245540B1 (en) Refractory tube for forming gobs of molten glass
US4339263A (en) Gob feeder chutes for glass molding machines
AU779407B2 (en) Apparatus and method for conveying gobs of glass to a glass container forming machine
CN205501106U (en) Produce bottle -making machine of large -scale glass bottle
CN210458293U (en) Annealing frame for soot blower gun barrel
CN115029534B (en) Solid solution cooling device and method for variable-section nickel-based superalloy shaft component
CN111850242B (en) Use method of dip pipe
CN216890660U (en) Bushing plate device for producing continuous basalt ore
JP2003034539A (en) Stirrer for molten glass
JP6955208B2 (en) Glass article manufacturing method, glass article manufacturing equipment, and tube