JPH04265216A - Production of carbide of plant - Google Patents

Production of carbide of plant

Info

Publication number
JPH04265216A
JPH04265216A JP3046244A JP4624491A JPH04265216A JP H04265216 A JPH04265216 A JP H04265216A JP 3046244 A JP3046244 A JP 3046244A JP 4624491 A JP4624491 A JP 4624491A JP H04265216 A JPH04265216 A JP H04265216A
Authority
JP
Japan
Prior art keywords
microspheres
carbide
plant
heat
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3046244A
Other languages
Japanese (ja)
Other versions
JPH0772082B2 (en
Inventor
Yoichiro Nakanishi
洋一郎 中西
Kaneshige Fujii
藤井 兼栄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP3046244A priority Critical patent/JPH0772082B2/en
Publication of JPH04265216A publication Critical patent/JPH04265216A/en
Publication of JPH0772082B2 publication Critical patent/JPH0772082B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)

Abstract

PURPOSE:To obtain a carbide of a plant having excellent strength and shape holding property in relatively short time with high yield. CONSTITUTION:The dried plant wrapped into a microsphere of heat resistant inorganic material is pre-oxidized by heating at 200-300 deg.C and is heated to carbonize under a flow of non-oxidizing atmosphere.

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、植物の炭化物の製法に
関する。 【0002】 【従来技術とその問題点】従来からの技術として、樹木
などを半乾燥後、これを空気中で24時間以上加熱する
ことにより得られる枝炭、木炭等が植物の炭化物として
古くから知られていた。 【0003】一方、最近の植物の炭化物の製造方法に係
る技術としては、特開昭63−176199号に開示さ
れた方法、即ちドライフラワーを非酸化性雰囲気で加熱
・炭化させるという方法が知られている。しかしながら
、この方法で急速に温度を上げると有機物である植物(
ドライフラワー)が、急激且つ大幅な分解によって低分
子化を起こし、炭化物の強度が低下するという問題が生
じる。また、これを防ぐために上記方法では、炭化時間
に長時間(10時間)を要しており、しかもその炭化収
率も高いものではない。また、炭化物の形状保持手段と
して熱硬化性樹脂を含浸させる方法を用いているが充分
なものとはいえない。 【0004】 【問題点を解決するための手段】本発明者は、上記の問
題点に鑑み、鋭意研究を重ねた結果、乾燥した植物を炭
化処理に先立って酸化処理(予備酸化)することにより
上記の低分子化を防ぎ、得られる炭化物の強度を増大さ
せ、且つ炭化時間が短縮できることを見出し、さらには
乾燥した植物を耐熱性無機材料の微小球体中に埋包して
上記予備酸化あるいは炭化処理を施した場合には、均一
な加熱ができ、且つ植物の形状保持性が向上することを
見出した。 【0005】即ち、本発明は下記の植物の炭化物の製法
を提供するものである。 1.乾燥した植物を耐熱性無機材料の微小球体中に埋包
して200〜300℃で予備酸化処理し、次いで該植物
を該微小球体中に埋包したまま非酸化雰囲気の気流下で
加熱・炭化することを特徴とする植物の炭化物の製法。 2.乾燥した植物を耐熱性無機材料の微小球体中に埋包
して200〜300℃で予備酸化処理し、次いで該微小
球体を取り除いた後、非酸化雰囲気の気流下で加熱・炭
化することを特徴とする植物の炭化物の製法。 3.耐熱性無機材料の微小球体がシリカゲルである上記
第1項又は第2項に記載の炭化物の製法。 4.非酸化雰囲気の気流として窒素ガス、アルゴンガス
又は水素ガスのいずれかを用いる上記第1項又は第2項
に記載の植物の炭化物の製法。 【0006】以下、本発明について詳細に説明する。 【0007】本発明で対象とする植物は、乾燥したもの
であれば花、枝、葉、実又はこれらが一体となったもの
等、特に限定されるものではない。 【0008】まず、上記の植物を耐熱ガラス容器などに
入れた後、そこに耐熱性無機材料の微小球体をすきまな
く充填して植物を埋包する。この耐熱性無機材料の微小
球体としてはシリカゲルを用いることが好ましい。微小
球体の粒径は通常0.06〜0.5mm程度で使用する
。 【0009】次に、上記乾燥植物を炭化に先立って予備
酸化する。予備酸化は上記乾燥植物を空気中で200〜
300℃で加熱すればよい。加熱温度が200℃を下回
る場合には酸化に時間がかかり、しかも充分な酸化が行
えない。加熱温度が300℃を上回る場合には、炭化が
過度に進行し重量が大幅に減少ので好ましくない。また
、加熱時間及び昇温速度は、その植物の大きさ、種類等
によって一定ではないが、加熱時間は通常2〜6時間程
度である。 【0010】次いで、上記予備酸化での加熱温度を保持
したままで空気を窒素ガス、アルゴンガス、水素ガス等
で置換して非酸化雰囲気とする。置換したガスは、気流
として流入し続ける。 【0011】上記気流ガス中の乾燥植物を引き続き昇温
し炭化を行なう。炭化温度は植物の大きさ、種類等によ
って一定ではないが、通常600℃程度であり、必要に
応じて600℃以上まで昇温する場合もある。 【0012】昇温後、加熱を停止し、冷却されるまで気
流ガスを流入し続けることによって本発明の植物の炭化
物が御花炭等として得られる。この場合、炭化時におけ
るその植物の形状保持性を高めるために、その植物の大
きさ、種類等に応じて予備酸化から引き続いて耐熱性無
機材料の微小球体に埋包して炭化してもよい。 【0013】 【発明の効果】本発明によると、炭化に先立つ予備酸化
により有機物である植物の急激且つ大幅な分解による低
分子化を防ぐことにより、優れた強度の炭化物を比較的
高い炭化収率で得られ、且つ炭化時間も大幅に短縮され
、優れた生産性を発揮することができる。 【0014】さらに、予備酸化あるいは炭化をシリカゲ
ルなどの耐熱性無機材料の微小球体中に埋包して行うの
で、形状保持性に優れていて、花弁の厚みによる制限な
どを受けることなく炭化物をつくることができる。また
一方では、酸化および炭化時の温度制御を正確に行なう
ことができ、植物を均一に加熱することもできる。 【0015】また、炭化を気流下で行なうので、空気が
容器内に入って酸化されるようなことはなく、しかも分
解生成物は容器外へ排出され、きれいな炭化物表面を維
持することができる。 【0016】 【実施例】以下、実施例を示し、本発明の特徴とすると
ころをより一層明瞭にする。 【0017】 【実施例1】枝と葉の付いたバラの乾燥花をガラスビー
カーに入れ、その上からカラムクロマトグラフ用シリカ
ゲルを入れて花弁の間にすきまなく充填し、次いで乾燥
機中で室温から250℃まで1時間かけて加熱し、25
0℃で2時間保持し、さらに30分かけて300℃まで
加熱して酸化した。 【0018】300℃に到達した後、室温まで冷却しシ
リカゲルを取り除き、酸化したバラを石英容器に入れ、
アルゴンガスでその雰囲気を置換した。その後、300
℃から800℃まで120℃/hrで昇温し加熱・炭化
した。800℃に到達したと同時にアルゴンガスを流入
し続けながら200℃まで冷却して炭化物を取り出した
ところ、光沢のあるバラの御花炭が得られた。この全処
理工程の所要時間は、約7.7時間であった。 【0019】また、炭化物の炭化収率と寸法収率を調べ
た結果を表1に示す。 【0020】                          
         表1              
                  炭化収率   
     寸法収率                
                  (%)    
      (%)                
    バラ            35     
       70    【0021】 【実施例2】花弁が、細長いものと少し幅のあるものの
2種類の乾燥したキクの花の部分を耐熱シャーレに入れ
、その上からカラムクロマトグラフ用球状シリカゲルを
入れて花弁の間にすき間のないように充填する。次いで
200℃に加熱してある乾燥機に入れ、30分かけて2
50℃まで昇温させ、その温度で5時間保持して酸化す
る。 【0022】次に、一度冷却した後、耐熱シャーレごと
石英容器に入れ、アルゴンガスを流入して雰囲気を置換
した後に250℃から600℃まで120℃/hrの昇
温速度で加熱・炭化する600℃に到達したと同時に加
熱を停止し、次いで200℃までアルゴンガスを流しな
がら冷却した後に炭化物を取り出したところ、美しい炭
化菊が得られた。この全処理工程の所要時間は、約8.
4時間であった。 【0023】また、炭化物の炭化収率と寸法収率を調べ
た結果を表2に示す。 【0024】
Description: [0001] The present invention relates to a method for producing carbonized plant materials. [Prior art and its problems] As a conventional technology, branch charcoal, charcoal, etc. obtained by semi-drying trees and the like and then heating them in the air for 24 hours or more have been used as charcoal of plants for a long time. It was known. [0003] On the other hand, as a recent technique for producing carbonized plant materials, there is a method disclosed in Japanese Patent Application Laid-open No. 176199/1983, that is, a method in which dried flowers are heated and carbonized in a non-oxidizing atmosphere. ing. However, if the temperature is raised rapidly using this method, organic plants (
A problem arises in that dry flowers (dried flowers) undergo rapid and significant decomposition, resulting in lower molecular weight, and the strength of the carbide decreases. Further, in order to prevent this, the above method requires a long time (10 hours) for carbonization, and the carbonization yield is not high. In addition, a method of impregnating a thermosetting resin is used as a means for maintaining the shape of the carbide, but this method cannot be said to be sufficient. [Means for Solving the Problems] In view of the above-mentioned problems, the inventor of the present invention, as a result of extensive research, discovered that by subjecting dried plants to oxidation treatment (pre-oxidation) prior to carbonization treatment. We have discovered that it is possible to prevent the above-mentioned lower molecular weight, increase the strength of the resulting carbonized product, and shorten the carbonization time. Furthermore, we have found that the above-mentioned preoxidation or carbonization can be carried out by embedding dried plants in microspheres of heat-resistant inorganic material. It has been found that when the treatment is applied, uniform heating is possible and the shape retention of the plant is improved. [0005] That is, the present invention provides the following method for producing a carbonized plant. 1. Dried plants are embedded in microspheres made of heat-resistant inorganic material and pre-oxidized at 200 to 300°C, and then heated and carbonized under an air flow in a non-oxidizing atmosphere while the plants are embedded in the microspheres. A method for producing carbonized plant material, which is characterized by: 2. It is characterized by embedding dried plants in microspheres made of heat-resistant inorganic material, pre-oxidizing them at 200 to 300°C, then removing the microspheres, and then heating and carbonizing them in an air stream in a non-oxidizing atmosphere. A method for producing carbide from plants. 3. The method for producing a carbide according to item 1 or 2 above, wherein the microspheres of the heat-resistant inorganic material are silica gel. 4. The method for producing a carbide of a plant according to the above item 1 or 2, using either nitrogen gas, argon gas, or hydrogen gas as the non-oxidizing atmosphere airflow. The present invention will be explained in detail below. [0007] The plants targeted by the present invention are not particularly limited, and may include flowers, branches, leaves, fruits, or a combination of these as long as they are dried. [0008] First, the above-mentioned plant is placed in a heat-resistant glass container or the like, and then microspheres made of a heat-resistant inorganic material are filled in the container without any gaps to embed the plant. It is preferable to use silica gel as the microspheres of this heat-resistant inorganic material. The particle size of the microspheres is usually about 0.06 to 0.5 mm. Next, the dried plant is preoxidized prior to carbonization. Pre-oxidation is performed by oxidizing the above dried plants in the air to 200~
It may be heated at 300°C. If the heating temperature is lower than 200° C., oxidation takes time and sufficient oxidation cannot be achieved. If the heating temperature exceeds 300°C, carbonization will proceed excessively and the weight will decrease significantly, which is not preferable. Further, although the heating time and temperature increase rate are not constant depending on the size, type, etc. of the plant, the heating time is usually about 2 to 6 hours. Next, the air is replaced with nitrogen gas, argon gas, hydrogen gas, etc. to create a non-oxidizing atmosphere while maintaining the heating temperature in the preliminary oxidation. The replaced gas continues to flow in as an airflow. [0011] The temperature of the dried plant in the airflow gas is then raised to carbonize it. The carbonization temperature is not constant depending on the size, type, etc. of the plant, but is usually around 600°C, and may be raised to 600°C or higher if necessary. [0012] After the temperature has been raised, the heating is stopped and airflow gas is continued to flow until it is cooled, thereby obtaining the charcoal of the plant of the present invention as Ohana charcoal or the like. In this case, in order to enhance the shape retention of the plant during carbonization, depending on the size and type of the plant, the plant may be carbonized by being embedded in microspheres of heat-resistant inorganic material following preliminary oxidation. . [0013]According to the present invention, pre-oxidation prior to carbonization prevents the rapid and drastic decomposition of organic matter from plants, thereby producing carbonized materials with excellent strength at a relatively high carbonization yield. In addition, the carbonization time is significantly shortened, and excellent productivity can be achieved. Furthermore, since preliminary oxidation or carbonization is carried out by embedding it in microspheres of a heat-resistant inorganic material such as silica gel, it has excellent shape retention and can form a carbide without being limited by the thickness of the petal. be able to. On the other hand, it is possible to accurately control the temperature during oxidation and carbonization, and it is also possible to uniformly heat the plants. Furthermore, since the carbonization is carried out under an air flow, air will not enter the container and cause oxidation, and decomposition products will be discharged outside the container, allowing a clean carbide surface to be maintained. Examples [0016] Examples will be shown below to further clarify the features of the present invention. [Example 1] Dried rose flowers with branches and leaves are placed in a glass beaker, and silica gel for column chromatography is poured on top of the beaker, packed between the petals without any gaps, and then placed in a dryer at room temperature. Heat to 250℃ for 1 hour, and heat to 250℃.
The mixture was held at 0°C for 2 hours, and then heated to 300°C over 30 minutes for oxidation. After reaching 300°C, the silica gel was removed by cooling to room temperature, and the oxidized rose was placed in a quartz container.
The atmosphere was replaced with argon gas. After that, 300
The temperature was increased from 120°C to 800°C at a rate of 120°C/hr for heating and carbonization. As soon as the temperature reached 800°C, the charcoal was cooled to 200°C while continuing to flow argon gas and the carbide was taken out, resulting in shiny rose charcoal. The total time required for this entire process was approximately 7.7 hours. Table 1 shows the results of examining the carbonization yield and dimensional yield of the carbide. [0020]
Table 1
Carbonization yield
dimensional yield
(%)
(%)
rose 35
[Example 2] Two types of dried chrysanthemum flowers, one with elongated petals and one with slightly wide petals, are placed in a heat-resistant petri dish, and spherical silica gel for column chromatography is placed on top of the petals to separate the petals. Fill it so that there are no gaps. Next, put it in a dryer heated to 200℃ and dry it for 30 minutes.
The temperature is raised to 50°C and maintained at that temperature for 5 hours for oxidation. Next, after cooling once, the heat-resistant Petri dish was placed in a quartz container, argon gas was introduced to replace the atmosphere, and the mixture was heated and carbonized from 250°C to 600°C at a heating rate of 120°C/hr. As soon as the temperature reached ℃, the heating was stopped, and then the mixture was cooled to 200 ℃ while flowing argon gas, and the carbide was taken out, and a beautiful carbide chrysanthemum was obtained. The time required for this entire process is approximately 8.
It was 4 hours. Table 2 shows the results of examining the carbonization yield and dimensional yield of the carbide. [0024]

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】乾燥した植物を耐熱性無機材料の微小球体
中に埋包して200〜300℃で予備酸化処理し、次い
で該植物を該微小球体中に埋包したまま非酸化雰囲気の
気流下で加熱・炭化することを特徴とする植物の炭化物
の製法。
Claim 1: Dried plants are embedded in microspheres made of a heat-resistant inorganic material and subjected to preliminary oxidation treatment at 200 to 300°C, and then the plants are exposed to air flow in a non-oxidizing atmosphere while being embedded in the microspheres. A method for producing charred vegetable products, which is characterized by heating and carbonizing them under water.
【請求項2】乾燥した植物を耐熱性無機材料の微小球体
中に埋包して200〜300℃で予備酸化処理し、次い
で該微小球体を取り除いた後、非酸化雰囲気の気流下で
加熱・炭化することを特徴とする植物の炭化物の製法。
Claim 2: Dried plants are embedded in microspheres made of a heat-resistant inorganic material and subjected to preliminary oxidation treatment at 200 to 300°C.Then, after removing the microspheres, heating and A method for producing carbonized plant materials characterized by carbonization.
【請求項3】耐熱性無機材料の微小球体がシリカゲルで
ある請求項1又は2に記載の炭化物の製法。
3. The method for producing a carbide according to claim 1 or 2, wherein the microspheres of the heat-resistant inorganic material are silica gel.
【請求項4】非酸化雰囲気の気流として窒素ガス、アル
ゴンガス又は水素ガスのいずれかを用いる請求項1又は
2に記載の植物の炭化物の製法。
4. The method for producing a carbide of a plant according to claim 1 or 2, wherein any one of nitrogen gas, argon gas, or hydrogen gas is used as the non-oxidizing atmosphere air stream.
JP3046244A 1991-02-18 1991-02-18 How to make plant charcoal Expired - Lifetime JPH0772082B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3046244A JPH0772082B2 (en) 1991-02-18 1991-02-18 How to make plant charcoal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3046244A JPH0772082B2 (en) 1991-02-18 1991-02-18 How to make plant charcoal

Publications (2)

Publication Number Publication Date
JPH04265216A true JPH04265216A (en) 1992-09-21
JPH0772082B2 JPH0772082B2 (en) 1995-08-02

Family

ID=12741735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3046244A Expired - Lifetime JPH0772082B2 (en) 1991-02-18 1991-02-18 How to make plant charcoal

Country Status (1)

Country Link
JP (1) JPH0772082B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170044737A1 (en) * 2015-08-14 2017-02-16 Caterpillar Inc. Recovering energy from hydraulic system of a machine

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0377365A (en) * 1989-08-19 1991-04-02 Sony Corp Manufacture of semiconductor memory device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0377365A (en) * 1989-08-19 1991-04-02 Sony Corp Manufacture of semiconductor memory device

Also Published As

Publication number Publication date
JPH0772082B2 (en) 1995-08-02

Similar Documents

Publication Publication Date Title
RU2007101389A (en) HIGH DENSITY BORN CARBIDE PRODUCTION METHOD
CN103723703A (en) Method for preparing helical carbon nanotube at low temperature
EP0133874B1 (en) Process for the hot isostatic pressing of shaped ceramic parts
JPH04265216A (en) Production of carbide of plant
ATE485356T1 (en) METHOD FOR PRODUCING CELLULAR CARBON PRODUCTS
CN106276897A (en) A kind of preparation method of phosphoric acid activation monkey grass
JP2664047B2 (en) Method for producing carbon fiber reinforced carbon composite material
RO114218B1 (en) Smoking material expanding process
JPH04264001A (en) Production of carbide of plant
JPH07304601A (en) Production of dried flower
US3082310A (en) Furnace construction for drying garlic
US1777943A (en) Manufacture of activated carbon
KR101828777B1 (en) Manufacturing method for ball shape of bamboo charcoal
DE60203198D1 (en) METHOD FOR THE PRODUCTION OF SILICON CARBIDE CERAMICS FROM PLANT PROPAGERS
JP2001011469A (en) Production of carbonized product
TW201928032A (en) Continuous operation production method for vinegar fluid and activated carbon being suitable for treating a wood material to produce the vinegar fluid and activated carbon
SU736942A1 (en) Method of producing dry mashed potatoes
JPS6338446B2 (en)
US2548336A (en) Method of producing fishing rods and the like
JPH04144908A (en) Composite activated carbon molding produced from coconut fiber and its production
JPH02178201A (en) Production of dried green plant resistant to discoloration
JPS5847327B2 (en) Method of manufacturing bamboo shoots
RU2171692C1 (en) Method of manufacturing medical gypsum bandages
JPH08238605A (en) Modifying method of wood
JPH01212207A (en) Method for drying mesocarbon microbeads

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term