JPH01212207A - Method for drying mesocarbon microbeads - Google Patents

Method for drying mesocarbon microbeads

Info

Publication number
JPH01212207A
JPH01212207A JP63034551A JP3455188A JPH01212207A JP H01212207 A JPH01212207 A JP H01212207A JP 63034551 A JP63034551 A JP 63034551A JP 3455188 A JP3455188 A JP 3455188A JP H01212207 A JPH01212207 A JP H01212207A
Authority
JP
Japan
Prior art keywords
mesocarbon microbeads
drying
dried
washing
mesocarbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63034551A
Other languages
Japanese (ja)
Other versions
JP2782193B2 (en
Inventor
Kazuo Hanmyo
半明 和夫
Katsumi Fujita
勝美 藤田
Kazuo Tanaka
一夫 田中
Yoshiteru Nakagawa
喜照 中川
Toshimasa Kagajo
加賀城 俊正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP63034551A priority Critical patent/JP2782193B2/en
Publication of JPH01212207A publication Critical patent/JPH01212207A/en
Application granted granted Critical
Publication of JP2782193B2 publication Critical patent/JP2782193B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain mesocarbon microbeads having excellent mechanical characteristic, by purifying raw mesocarbon microbeads by washing after separating the raw mesocarbon produced by heat-treating heavy coal oil, and thereafter, by carrying out a specified drying treatment. CONSTITUTION:When the raw mesocarbon microbeads produced by heat-treating the heavy coal oil are separated, purified by washing and dried, the following drying treatment is carried out. The mesocarbon microbeads purified by washing are dried in an inert atmosphere controlled the oxygen content while heating to regulate the oxygen content increased by drying in the mesocarbon microbeads to <=1%. As the atmosphere for drying above-mentioned, the gas consisting of mainly inert gas such as nitrogen, argon, is used. The drying treatment is preferably carried out with a rotary evaporator, paddle dryer, vacuum drying apparatus, etc., while stirring.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、高密度で高強度の等方性カーボン材料や各種
の複合材料の原料となる乾燥メソカーボンマイクロビー
ズおよびメソカーボンマイクロビーズの乾燥方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to dried mesocarbon microbeads and a method for drying mesocarbon microbeads, which are raw materials for high-density, high-strength isotropic carbon materials and various composite materials. .

従来技術とその問題点 コールタール、コールタールピッチなどの石炭系重質油
を熱処理することにより得られる粗メソカーボンマイク
ロビーズは、洗浄により精製し、乾燥した後、例えば、
放電加工用電極、メカニカルシールなどの高密度で高強
度の等方性カーボン材料の原料などとして利用されてい
る。従来、洗浄されたメソカーボンマイクロビーズの乾
燥は、乾燥時間の短縮及び乾燥時のメソカーボンマイク
ロビーズの凝集防止のために、空気含有雰囲気中で行わ
れている。しかしながら、この様な従来法により乾燥さ
れたメソカーボンマイクロビーズを例えば等方性カーボ
ン材料の原料として使用する場合には、必要以上の酸化
を受けているため、製品の強度が低下するなどの弊害が
生ずる。
Prior art and its problems Crude mesocarbon microbeads obtained by heat treating coal-based heavy oils such as coal tar and coal tar pitch are purified by washing and dried, and then, for example,
It is used as a raw material for high-density, high-strength isotropic carbon materials such as electrical discharge machining electrodes and mechanical seals. Conventionally, the washed mesocarbon microbeads are dried in an air-containing atmosphere in order to shorten the drying time and prevent agglomeration of the mesocarbon microbeads during drying. However, when mesocarbon microbeads dried by such conventional methods are used as a raw material for isotropic carbon materials, for example, they are oxidized more than necessary, resulting in negative effects such as a decrease in the strength of the product. occurs.

本発明者は、上記の如き従来技術の問題点に鑑みて種々
研究を重ねた結果、乾燥によるメソカーボンマイクロビ
ーズの酸素増加量が1%以下となるように、洗浄済みメ
ソカーボンマイクロビーズを乾燥する際の雰囲気中の酸
素含濃度を抑制する場合には、βレジン含有量の減少を
実質的に抑制し得ることを見出した。
As a result of various studies in view of the problems of the prior art as described above, the present inventor dried washed mesocarbon microbeads so that the amount of oxygen increase in the mesocarbon microbeads due to drying was 1% or less. It has been found that if the oxygen concentration in the atmosphere during the process is suppressed, the decrease in the β-resin content can be substantially suppressed.

すなわち、本発明は、下記のメソカーボンマイクロビー
ズおよびその乾燥方法を提供するものである: ■石炭系重質油を熱処理し、生成した粗メソカーボンマ
イクロビーズを分離し、洗浄精製し、乾燥するに際し、
洗浄精製したメソカーボンマイクロビーズを加熱下に酸
素含有量を抑制した不活性ガス雰囲気中で乾燥し、乾燥
によるメソカーボンマイクロビーズの酸素増加量を1%
以下とすることを特徴とするメソカーボンマイクロビー
ズの乾燥方法; 及び ■乾燥による酸素増加量が1%以下である乾燥メソカー
ボンマイクロビーズ。
That is, the present invention provides the following mesocarbon microbeads and a method for drying the same: ■ Heat treating coal-based heavy oil, separating the generated crude mesocarbon microbeads, washing and purifying them, and drying them. On this occasion,
The washed and purified mesocarbon microbeads are dried under heating in an inert gas atmosphere with suppressed oxygen content, and the amount of oxygen increase in the mesocarbon microbeads due to drying is reduced to 1%.
A method for drying mesocarbon microbeads characterized by the following; and (1) dried mesocarbon microbeads in which the amount of oxygen increased by drying is 1% or less.

本発明における乾燥工程以前の工程は、公知の方法にし
たがって行えば良い。すなわち、粗メソカーボンマイク
ロビーズは、常法にしたがって、石炭系重質油を熱処理
することにより得られる。
The steps before the drying step in the present invention may be performed according to known methods. That is, crude mesocarbon microbeads are obtained by heat-treating coal-based heavy oil according to a conventional method.

次いで、得られた粗メソカーボンマイクロビーズは、例
えば、遠心分離処理により、固形分として清澄液から分
離された後、適当な溶剤により洗浄される。この様な粗
メソカーボンマイクロビーズの製造、分離及び洗浄方法
の一例は、特開昭60−51612号に開示されている
。ただし、粗メソカーボンマイクロビーズの製造から分
離及び洗浄に至る過程は、特に限定されず、任意の方法
により実施可能である。
Next, the obtained crude mesocarbon microbeads are separated as solids from the clear liquid by, for example, centrifugation treatment, and then washed with an appropriate solvent. An example of such a method for producing, separating and washing crude mesocarbon microbeads is disclosed in Japanese Patent Application Laid-open No. 51612/1983. However, the process from production of crude mesocarbon microbeads to separation and washing is not particularly limited, and can be carried out by any method.

洗浄されたメソカーボンマイクロビーズは、酸素濃度を
一定値以下に制御した雰囲気中で50〜200℃の加熱
下に0.5〜20時間程度乾燥処理される。乾燥雰囲気
中の酸素濃度は、乾燥温度、乾燥時間などにより変わる
が、乾燥後のメソカーボンマイクロビーズの酸素増加量
が1%以下となる様な酸素濃度であれば特に限定されな
い。乾燥雰囲気ガスとしては、窒素、アルゴンなどの不
活性ガスを主とするものを使用する。乾燥は、ロータリ
ーエバポレーター、パドルドライヤー、減圧式乾燥機な
どを使用して、攪拌下に行うことが好ましい。
The washed mesocarbon microbeads are dried under heating at 50 to 200° C. for about 0.5 to 20 hours in an atmosphere where the oxygen concentration is controlled to be below a certain value. The oxygen concentration in the drying atmosphere varies depending on the drying temperature, drying time, etc., but is not particularly limited as long as the oxygen concentration is such that the increase in oxygen in the mesocarbon microbeads after drying is 1% or less. As the drying atmosphere gas, one mainly composed of an inert gas such as nitrogen or argon is used. Drying is preferably carried out with stirring using a rotary evaporator, paddle dryer, vacuum dryer, or the like.

発明の効果 かくして得られた乾燥メソカーボンマイクロビーズは、
酸素増加量が1%以下に抑制されており、βレジンの減
少量は比較的少ない。したがって、例えば、これを原料
として等方性カーボン材料を製造する場合には、曲げ強
度などの機械的特性に優れた製品が得られる。
Effects of the invention The dried mesocarbon microbeads thus obtained are
The increase in oxygen was suppressed to 1% or less, and the decrease in β-resin was relatively small. Therefore, for example, when producing an isotropic carbon material using this as a raw material, a product with excellent mechanical properties such as bending strength can be obtained.

実施例 以下実施例を示し、本発明の特徴とするところをより一
層明らかにする。
EXAMPLES Hereinafter, examples will be shown to further clarify the features of the present invention.

実施例1〜2 特開昭60−51612号公報の実施例1に記載された
方法により得たベンゼン洗浄メソカーボンマイクロビー
ズ100gをロータリーエバポレーター(容量1001
00Oを使用して、室温下0.9Q1分の雰囲気ガスで
30分間系内をβレジン、続いて同量の雰囲気ガスを吹
き込みつつ、130℃で1時間回転乾燥して、乾燥メソ
カーボンマイクロビーズを得た。この乾燥メソカーボン
マイクロビーズの200℃、2時間における低温揮発分
は、0.3%であった。
Examples 1 to 2 100 g of benzene-washed mesocarbon microbeads obtained by the method described in Example 1 of JP-A-60-51612 were heated in a rotary evaporator (capacity 1001
Using 00O, the β-resin was injected into the system for 30 minutes at room temperature with atmospheric gas for 0.9Q1 minute, and then the same amount of atmospheric gas was blown into the system and rotary-dried at 130°C for 1 hour to produce dried mesocarbon microbeads. I got it. The low-temperature volatile content of these dried mesocarbon microbeads at 200° C. for 2 hours was 0.3%.

吹き込みガスは、1lJ2単独(実施例1)及びN2 
:空気−0,7:0.2(モル比)の混合ガス(実施例
2)を使用した。
The blowing gas was 1lJ2 alone (Example 1) and N2
:Air-0,7:0.2 (molar ratio) mixed gas (Example 2) was used.

乾燥メソカーボンマイクロビーズの物性を比較例1〜2
の結果とともに第1表に示す。
Comparative Examples 1 and 2 of physical properties of dried mesocarbon microbeads
The results are shown in Table 1.

次いで、乾燥メソカーボンマイクロビーズを直径37.
5mm、厚さ10mmの円板状に1.5ton/cIl
lの圧力で成形した。得られた成形体を不活性雰囲気中
150°C/hrの速度で1000°Cまで昇温し、同
温度で1時間保持した後、500℃/hrの速度で28
00℃まで昇温し、同温度で20分間保持した。かくし
て得られた黒鉛化焼成体から10+nmX 10mmX
 30關のテストピースを切り出し、物性を測定した。
The dried mesocarbon microbeads were then sized to a diameter of 37mm.
1.5ton/cIl in a disc shape of 5mm and thickness 10mm
It was molded at a pressure of 1 liter. The obtained molded body was heated to 1000°C at a rate of 150°C/hr in an inert atmosphere, held at the same temperature for 1 hour, and then heated at a rate of 500°C/hr for 28 hours.
The temperature was raised to 00°C and held at the same temperature for 20 minutes. 10+nmX 10mmX from the graphitized fired body thus obtained
Thirty test pieces were cut out and their physical properties were measured.

第2表に成形体の密度、黒鉛化焼結体の密度及び曲げ強
度を比較例1〜2の結果とともに示す。
Table 2 shows the density of the molded body, the density and bending strength of the graphitized sintered body together with the results of Comparative Examples 1 and 2.

比較例I N2 :空気=0. 5ho、 4 Cモル比)の混合
ガスを吹き込みガスとして使用する以外は実施例1と同
様にして、乾燥メソカーボンマイクロビーズを得た後、
実施例1と同様にして成形体を作り、次いで黒鉛化品を
得た。
Comparative Example I N2: Air = 0. After obtaining dry mesocarbon microbeads in the same manner as in Example 1 except that a mixed gas of 5ho, 4C molar ratio) was used as the blowing gas,
A molded body was produced in the same manner as in Example 1, and then a graphitized product was obtained.

比較例2 N2 :空気=0.7:0,2 (モル比)の混合ガス
を吹き込みガスとして使用するするとともに乾燥温度を
150℃とする以外は実施例1と同様にして、乾燥メソ
カーボンマイクロビーズを得た後、実施例1と同様にし
て成形体を作り、次いで黒鉛化品を得た。
Comparative Example 2 Dry mesocarbon microscopy was carried out in the same manner as in Example 1 except that a mixed gas of N2:air = 0.7:0.2 (molar ratio) was used as the blowing gas and the drying temperature was 150°C. After obtaining the beads, a molded body was produced in the same manner as in Example 1, and then a graphitized product was obtained.

第1表 物    性 TI   Ql  低温  酸素  酸素揮発分 含有
量 増加量 (%)(%)(%)  (%)  (%)実施例 1 96.1 85.3 0.3 1.15   02
 97.0 8g、1 0.1 1.90   0.7
5比較例 1 98.2 93.2 0.0 2.53   1.
3g2 98.0 92J  O,02,301,15
第2表 (g/cJ)  (g/c♂)  (kg/cd)実施
例 1  1.29  1.93  11002  1.2
9  1.93  1050比較例 1  1.28  1.86   6702  1.2
8  1.87   720第1表及び第2表に示す結
果から、乾燥メソカーボンマイクロビーズの酸素増加量
が1%以下の場合には、曲げ強度に極めて優れた黒鉛化
品が得られることが明らかである。
Table 1 Physical properties TI Ql Low temperature Oxygen Oxygen volatile content Increase (%) (%) (%) (%) (%) Example 1 96.1 85.3 0.3 1.15 02
97.0 8g, 1 0.1 1.90 0.7
5 Comparative Example 1 98.2 93.2 0.0 2.53 1.
3g2 98.0 92J O,02,301,15
Table 2 (g/cJ) (g/c♂) (kg/cd) Example 1 1.29 1.93 11002 1.2
9 1.93 1050 Comparative Example 1 1.28 1.86 6702 1.2
8 1.87 From the results shown in Tables 1 and 2 of 720, it is clear that when the amount of oxygen increase in dried mesocarbon microbeads is 1% or less, graphitized products with extremely excellent bending strength can be obtained. It is.

(以 上)(that's all)

Claims (2)

【特許請求の範囲】[Claims] (1)石炭系重質油を熱処理し、生成した粗メソカーボ
ンマイクロビーズを分離し、洗浄精製し、乾燥するに際
し、洗浄精製したメソカーボンマイクロビーズを加熱下
に酸素含有量を抑制した不活性ガス雰囲気中で乾燥し、
乾燥によるメソカーボンマイクロビーズの酸素増加量を
1%以下とすることを特徴とするメソカーボンマイクロ
ビーズの乾燥方法。
(1) When coal-based heavy oil is heat-treated and the generated crude mesocarbon microbeads are separated, washed and purified, and dried, the washed and purified mesocarbon microbeads are heated to suppress the oxygen content and become inert. Dry in a gas atmosphere,
A method for drying mesocarbon microbeads, characterized in that the amount of oxygen increase in the mesocarbon microbeads due to drying is 1% or less.
(2)乾燥による酸素増加量が1%以下である乾燥メソ
カーボンマイクロビーズ。
(2) Dried mesocarbon microbeads with an increase in oxygen of 1% or less upon drying.
JP63034551A 1988-02-17 1988-02-17 How to dry mesocarbon microbeads Expired - Lifetime JP2782193B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63034551A JP2782193B2 (en) 1988-02-17 1988-02-17 How to dry mesocarbon microbeads

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63034551A JP2782193B2 (en) 1988-02-17 1988-02-17 How to dry mesocarbon microbeads

Publications (2)

Publication Number Publication Date
JPH01212207A true JPH01212207A (en) 1989-08-25
JP2782193B2 JP2782193B2 (en) 1998-07-30

Family

ID=12417444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63034551A Expired - Lifetime JP2782193B2 (en) 1988-02-17 1988-02-17 How to dry mesocarbon microbeads

Country Status (1)

Country Link
JP (1) JP2782193B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993002988A1 (en) * 1991-08-02 1993-02-18 Osaka Gas Company Ltd. Process for producing sintered mesocarbon microbeads and quality control therefor
CN114963693A (en) * 2022-04-19 2022-08-30 河北言明化工设备有限公司 Intermediate phase carbon microsphere drying and recycling process and drying and recycling equipment

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4924348A (en) * 1972-06-27 1974-03-04
JPS54133513A (en) * 1978-04-07 1979-10-17 Sumitomo Aluminium Smelting Co Method for drying wet pitch
JPS54157791A (en) * 1978-05-11 1979-12-12 Kawatetsu Kagaku Kk Manufacture of high density carbon material
JPS5778486A (en) * 1980-11-05 1982-05-17 Nippon Steel Chem Co Ltd Preparation of meso-phase pitch
JPS6051612A (en) * 1983-08-31 1985-03-23 Osaka Gas Co Ltd Preparation of fine carbon particle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4924348A (en) * 1972-06-27 1974-03-04
JPS54133513A (en) * 1978-04-07 1979-10-17 Sumitomo Aluminium Smelting Co Method for drying wet pitch
JPS54157791A (en) * 1978-05-11 1979-12-12 Kawatetsu Kagaku Kk Manufacture of high density carbon material
JPS5778486A (en) * 1980-11-05 1982-05-17 Nippon Steel Chem Co Ltd Preparation of meso-phase pitch
JPS6051612A (en) * 1983-08-31 1985-03-23 Osaka Gas Co Ltd Preparation of fine carbon particle

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993002988A1 (en) * 1991-08-02 1993-02-18 Osaka Gas Company Ltd. Process for producing sintered mesocarbon microbeads and quality control therefor
US5395562A (en) * 1991-08-02 1995-03-07 Osaka Gas Company, Ltd. Method of producing mesocarbon microbeads and method for quality control of sintered mesocarbon products
CN114963693A (en) * 2022-04-19 2022-08-30 河北言明化工设备有限公司 Intermediate phase carbon microsphere drying and recycling process and drying and recycling equipment

Also Published As

Publication number Publication date
JP2782193B2 (en) 1998-07-30

Similar Documents

Publication Publication Date Title
US4742040A (en) Process for manufacturing a carbon molecular sieve
US4458022A (en) Process for manufacturing molecular sieving carbon
KR100396457B1 (en) Method for preparing porous silica, porous silica based molding material, and nano-sized silica particle derived from rice husk
Bansal et al. Surface characteristics and surface behavior of polymer carbons—I: Associated oxygen and hydrogen
JPH01212207A (en) Method for drying mesocarbon microbeads
AU567885B2 (en) Preparation of carbon molecular sieves
US4443324A (en) Low melting mesophase pitches
EP0575748B1 (en) Self-adhesive carbonaceous grains and high density carbon artifacts derived therefrom
CA1330387C (en) Preparation of elastic graphite materials
US4986895A (en) Process for treating coal tar or coal tar pitch
JP2003514741A (en) Method for obtaining activated carbon from activated carbon and partially mesophased and partially mesogenicized pitch
US4053435A (en) Catalysts for the polymerization of ethylene
JPH07187658A (en) Production of molecular sieving carbon adsorbent
JPS62138361A (en) Manufacture of high density formed body from carbon material
JPH03169339A (en) Production of carbonaceous adsorbing material having pores
JPH05331B2 (en)
JPH06173119A (en) Production of molecular sieve carbon fiber
SU1127891A1 (en) Process for producing carbon black
JPS60130676A (en) Production of pitch for carbon material
US1262770A (en) Absorbent material and process of producing the same.
JP2003267715A (en) Activated carbon and its producing method
JP2651445B2 (en) Method for producing spherical graphite particles
JPH01219010A (en) Production of spherical carbon
JPH0375212A (en) Preparation of elastic graphite
CA1238768A (en) Method for producing carbon powders

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080522

Year of fee payment: 10