JPH04264365A - Reaction gas piping structure for fuel cell - Google Patents

Reaction gas piping structure for fuel cell

Info

Publication number
JPH04264365A
JPH04264365A JP3023624A JP2362491A JPH04264365A JP H04264365 A JPH04264365 A JP H04264365A JP 3023624 A JP3023624 A JP 3023624A JP 2362491 A JP2362491 A JP 2362491A JP H04264365 A JPH04264365 A JP H04264365A
Authority
JP
Japan
Prior art keywords
water
drain pot
fuel cell
piping
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3023624A
Other languages
Japanese (ja)
Inventor
Ko Kondo
香 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP3023624A priority Critical patent/JPH04264365A/en
Publication of JPH04264365A publication Critical patent/JPH04264365A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To prevent the residence of condensed water bedewed in piping, check the water immersion accident of a unit cell or the flood fault accident of a reaction gas occurring due to the residence, and stabilize gas pressure by improving the structure of the outlet side piping of an offgas including produced water steam. CONSTITUTION:A drain pot 8 is connected to a low place of discharge system piping, including outlet collecting piping linked to an outlet manifold 3, to collect condensed water, and an discharging means 9 including a level switch and a drain valve is provided to discharge collected water outside without a gas pressure variation. Also a bursting tube and a discharge tube are added to the drain pot 8 and a water level is retained constant with the discharging means to also use the drain pot for a water sealing device to restrain the abnormal rise of gas pressure in the piping.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は、りん酸形燃料電池,
アルカリ形燃料電池,溶融炭酸塩形燃料電池,固体高分
子電解質形燃料電池等の燃料電池の出口側反応ガス配管
の構造、ことに配管内で凝縮した発電生成水の収集,放
出手段を有する配管構造に関する。
[Industrial Application Field] This invention relates to phosphoric acid fuel cells,
Structure of reactant gas piping on the outlet side of fuel cells such as alkaline fuel cells, molten carbonate fuel cells, and solid polymer electrolyte fuel cells, especially piping with means for collecting and discharging generated water condensed in the piping. Regarding structure.

【0002】0002

【従来の技術】電解質を挟んで燃料電極および酸化剤電
極を配した単位電池複数層の積層体として構成される燃
料電池(スタック)は、その四方の側面に取りつけた2
組のマニホールドを介して所定の運転温度に保持された
燃料電極に水素リッチな燃料ガスを,酸化剤電極に酸化
剤としての例えば反応空気を供給し、一対の電極間で電
気化学反応に基づく電極反応を起こさせることにより直
接発電を行うものであり、電極反応に伴っていずれか一
方の電極に水を生成する。生成水を生ずる電極は燃料電
池の種類により異なり、りん酸形燃料電池では酸化剤電
極(空気電極ともよぶ)側に、アルカリ形,溶融炭酸塩
形,および固体高分子電解質形燃料電池では燃料電極側
に生成する。いずれにしても、生成水は多孔質の電極基
材を透過して出口マニホールド内に放出され、反応を終
わったオフ空気またはオフガス(以下併せてオフガスと
も呼ぶ)中に高温の水蒸気として拡散した状態でマニホ
ールドに連結された出口集合配管を介して排出系に送ら
れる。オフガスの排出系は一般に、廃熱利用の為の熱交
換器および生成水回収の為の凝縮器を備え、回収した水
は例えば燃料改質用の添加水に、また水分を除去したオ
フガスは改質器バーナの燃料ガスあるいは支燃ガスとし
て利用される。したがって、オフガス中の水蒸気が配管
内で凝縮して配管内に滞留し、オフガスの流通を阻害す
ることを防ぐために排出系の配管は保温される。
[Prior Art] A fuel cell (stack) is constructed as a laminate of multiple layers of unit cells in which a fuel electrode and an oxidizer electrode are arranged with an electrolyte sandwiched between them.
Hydrogen-rich fuel gas is supplied to the fuel electrode maintained at a predetermined operating temperature through a pair of manifolds, and reaction air as an oxidant, for example, is supplied to the oxidizer electrode. Direct power generation is achieved by causing a reaction, and water is generated at one of the electrodes as a result of the electrode reaction. The electrode that generates generated water differs depending on the type of fuel cell; in phosphoric acid fuel cells, the electrode is located on the oxidizer electrode (also called air electrode) side, and in alkaline, molten carbonate, and solid polymer electrolyte fuel cells, it is located on the fuel electrode. Generate on the side. In any case, the produced water passes through the porous electrode base material, is released into the outlet manifold, and is diffused as high-temperature water vapor into the off-air or off-gas (hereinafter also referred to as off-gas) after the reaction. is sent to the exhaust system via an outlet collection pipe connected to the manifold. The off-gas discharge system is generally equipped with a heat exchanger for waste heat utilization and a condenser for recovering produced water. It is used as fuel gas or combustion supporting gas for quality equipment burners. Therefore, the piping of the exhaust system is kept warm in order to prevent water vapor in the off-gas from condensing and staying in the piping and obstructing the flow of the off-gas.

【0003】0003

【発明が解決しようとする課題】燃料電池のオフガス温
度は燃料電池の種類により運転温度が異なるため100
ないし600°C の範囲で異なるが、配管を包む保温
材で配管温度をオフガス温度と同等に保持することはか
なり難しく、かつ経年劣化により保温効果が低下すると
管壁に水蒸気が結露し、結露した凝縮水が配管の低所に
流れ落ちて滞留する。ことに、出口集合配管は立ち上が
って上部でオフガスの排出系に連結される場合と、立ち
下がって低所で排出系に連結される場合があり、前者の
場合直立した出口集合配管の低部に溜まった凝縮水が出
口マニホールドとの連結部を介してスタック内に流入す
る事態が発生する。また後者の場合、集合管と排出系の
連結部分が配管の最も低所に位置し、この部分に凝縮水
が滞留してオフガスの流通障害とこれに起因するガス圧
の異常上昇を起こしやすくなる。ことに配管内でのガス
圧の異常上昇を回避するために排出系の入口に水封器を
備えた構造も知られているが、配管で凝縮した水が水封
器に流入し、本来一定水位を保つべき水封器の水位が上
昇し、その放出圧力が上昇する不都合が発生する。特に
、スタック内に凝縮水が進入して単位電池が濡れると、
電極間に保持された電解質が多孔質の電極基材内に溶け
出し、反応ガスの透過を阻害する事態が発生し、浸水し
た単位電池を新品に交換する分解修繕が必要になる。ま
た、配管内でガス圧の異常上昇が発生すると、単位電池
の電極間の差圧が増大して反応ガスの吹き抜けが起こり
、この場合も分解修繕が不可欠になる。
[Problem to be Solved by the Invention] The off-gas temperature of a fuel cell is 100% because the operating temperature differs depending on the type of fuel cell.
It is quite difficult to maintain the pipe temperature at the same level as the off-gas temperature using heat insulating material that wraps the pipes, and when the heat retention effect decreases due to aging, water vapor condenses on the pipe walls and condenses. Condensed water flows down to low points in the piping and accumulates. In particular, the outlet collection pipe may stand up and be connected to the off-gas exhaust system at the top, or it may fall down and be connected to the exhaust system at a lower location. A situation arises in which accumulated condensed water flows into the stack via the connection with the outlet manifold. In the latter case, the connecting part between the collecting pipe and the exhaust system is located at the lowest point of the piping, and condensed water accumulates in this part, which tends to cause off-gas flow problems and abnormal increases in gas pressure. . In particular, a structure is known in which a water seal is provided at the inlet of the discharge system in order to avoid an abnormal rise in gas pressure within the piping, but water that condenses in the piping flows into the water seal and is normally kept at a constant level. The water level in the water seal, which is supposed to maintain the water level, rises, causing the inconvenience that the discharge pressure rises. In particular, if condensed water enters the stack and wets the unit cells,
The electrolyte held between the electrodes dissolves into the porous electrode base material, which obstructs the permeation of the reactant gas, necessitating disassembly and repair to replace the flooded unit battery with a new one. Furthermore, if an abnormal rise in gas pressure occurs within the piping, the differential pressure between the electrodes of the unit cell will increase and the reaction gas will blow through, making disassembly and repair essential in this case as well.

【0004】この発明の目的は、オフガスの出口側配管
の構造を改善することにより、凝縮水の滞留を防止し、
これが原因で生ずる単位電池の浸水事故や反応ガスの流
通障害事故を防止し、かつ配管内のガス圧を安定化する
ことにある。
[0004] The purpose of the present invention is to prevent the accumulation of condensed water by improving the structure of the off-gas outlet side piping.
The purpose is to prevent accidents such as flooding of unit batteries and failure of flow of reactant gas caused by this, and to stabilize the gas pressure in the piping.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
に、この発明によれば、単位電池の積層体からなるスタ
ックが、前記単位電池の燃料電極および酸化剤電極にそ
れぞれ反応ガスを供給する入口マニホールドおよびこれ
を反応ガス供給系に連結する入口集合配管と、反応済ガ
スを排出する出口マニホールドおよびこれを反応ガスの
排出系に連結する出口集合配管とを有する燃料電池にお
いて、前記出口集合配管を含む排出系の低所に連結され
て配管内で凝縮した発電生成水を収集するドレーンポッ
トと、このドレーンポット内の収集水を外部に排出する
放出手段とを、前記出口集合配管を含む排出系の配管よ
り低い位置に設けるものとする。
[Means for Solving the Problems] In order to solve the above problems, according to the present invention, a stack consisting of a laminate of unit cells supplies a reactive gas to a fuel electrode and an oxidizer electrode of the unit cells, respectively. In a fuel cell having an inlet manifold, an inlet collection pipe that connects the inlet manifold to a reaction gas supply system, an outlet manifold that discharges reacted gas, and an exit collection pipe that connects the same to the reaction gas discharge system, the outlet collection pipe A drain pot connected to a lower part of the discharge system including the outlet collecting pipe to collect the generated water condensed in the pipe, and a discharge means for discharging the collected water in the drain pot to the outside. It shall be installed at a position lower than the system piping.

【0006】また、放出手段が、ポット内の水位の変化
を所定の調節幅で検知して動作するレベルスイッチと、
このレベルスイッチにより開閉制御される排水弁とから
なるものとする。
[0006] Also, a level switch in which the discharge means operates by detecting a change in the water level in the pot within a predetermined adjustment range;
It shall consist of a drain valve whose opening and closing are controlled by this level switch.

【0007】さらに、収集水の放出手段がドレーンポッ
ト内の水位を一定レベルに保持するよう設定されるとと
もに、ドレーンポットがその液面上の空間を大気圧に保
持する放出管と、下端部が前記ドレーンポットの収集水
内に開口し上端部が出口集合配管を含む排出系に連通し
た放圧管とを備え、ドレーンポットが反応ガスの過度の
圧力上昇を阻止する水封器を兼ねたものとする。
Further, the means for discharging the collected water is set to maintain the water level in the drain pot at a constant level, and the drain pot has a discharge pipe that maintains the space above the liquid level at atmospheric pressure, and a lower end thereof. A pressure relief pipe that opens into the collected water of the drain pot and has an upper end communicating with a discharge system including an outlet collecting pipe, and the drain pot also serves as a water seal to prevent excessive pressure rise of the reaction gas. do.

【0008】[0008]

【作用】生成水が反応済反応ガス(オフガス)中に水蒸
気として放出される出口マニホールドに連結された出口
集合配管を含む排出系の低所にドレーンポットを連結し
、かつドレーンポットの水位を調節する収集水の放出手
段を設けるよう構成したことにより、出口側配管内で結
露した凝縮水を自然流下によってドレーンポットに収集
し、かつ放出手段によりドレーンポット内の水位を所定
の調節範囲に保持することが可能となり、凝縮水にまつ
わるトラブルを阻止して燃料電池を正常な運転状態に安
定して保持できる機能が得られる。
[Function] A drain pot is connected to the lower part of the exhaust system including the outlet collection pipe connected to the outlet manifold where the produced water is released as steam into the reacted reaction gas (off-gas), and the water level of the drain pot is adjusted. By being configured to include a discharge means for collected water, the condensed water condensed in the outlet side piping is collected into the drain pot by gravity, and the water level in the drain pot is maintained within a predetermined adjustment range by the discharge means. This makes it possible to prevent problems related to condensed water and to stably maintain the fuel cell in a normal operating state.

【0009】また、放出手段を、ポット内の水位の変化
を所定の幅で検知して動作するレベルスイッチと、この
レベルスイッチにより開閉制御される排水弁とで構成す
れば、オフガスを放出することなくドレーンポット内の
水位を調節できるので、電池内のガス圧に影響を及ぼさ
ずに収集水を外部に放出して凝縮水の滞留にまつわるト
ラブルを防止する機能が得られる。
[0009] Furthermore, if the discharge means is composed of a level switch that operates by detecting changes in the water level in the pot within a predetermined range, and a drain valve that is controlled to open and close by this level switch, off-gas can be discharged. Since the water level in the drain pot can be adjusted without affecting the gas pressure inside the battery, the collected water can be released to the outside without affecting the gas pressure inside the battery, thereby providing a function to prevent troubles related to the accumulation of condensed water.

【0010】さらに、ドレーンポットが水封器を兼ねる
よう構成すれば、凝縮水にまつわるトラブルと、ガス圧
の上昇にまつわるトラブルを一つの装置によって同時に
解決できるとともに、放出手段を備えることにより、ポ
ット内の水位を一定レベルに調節して水封器の動作圧力
を安定に保持する機能が得られる。
Furthermore, if the drain pot is configured to double as a water seal, troubles related to condensed water and problems related to increase in gas pressure can be solved simultaneously with one device, and by providing a discharge means, the water inside the pot can be solved simultaneously. This provides the ability to keep the operating pressure of the water seal stable by adjusting the water level to a constant level.

【0011】[0011]

【実施例】以下、こき発明を実施例に基づいて説明する
。図1はこの発明の実施例になる燃料電池の反応ガス配
管構造を簡略化して示す一部破砕断面図、図2は実施例
装置の要部を示す構成図であり、加圧式のりん酸形燃料
電池への適用例を示してある。図において、1は単位電
池の積層体からなる燃料電池(スタック)であり、反応
ガスと同じ圧力の不活性ガス(窒素)を包蔵した加圧タ
ンク10内に収納される。2は上下に複数分割された反
応空気の入口マニホールドであり、それぞれの下端近く
に連結された入口集合配管4を介して加圧タンクの底部
から外部に引き出され、反応空気の供給系6に連結され
て酸化剤としての反応空気が供給される。一方、3は反
応済み空気(オフ空気)の出口マニホールドであり、各
単位電池の酸化剤電極で生成した生成水の蒸気を含む反
応済みのオフ空気は、出口マニホールド3の上端近くに
連結された出口集合配管5を介して加圧タンクの底部か
ら外部に引き出され、オフ空気の排出系7に送られる。 ドレーンポット8は出口集合配管3および排出系7より
低い位置に配されて出口集合配管5の下端にフランジ結
合され、オフ空気中の水蒸気が出口集合配管5および排
出系7の管壁で結露することにより生じた凝縮水は自然
流下してドレーンポット8に収集水8Aとして収集され
る。
[Examples] The present invention will be explained below based on examples. FIG. 1 is a partially exploded cross-sectional view showing a simplified reaction gas piping structure of a fuel cell according to an embodiment of the present invention, and FIG. An example of application to a fuel cell is shown. In the figure, 1 is a fuel cell (stack) consisting of a stack of unit cells, and is housed in a pressurized tank 10 containing an inert gas (nitrogen) at the same pressure as the reaction gas. Reference numeral 2 denotes a reaction air inlet manifold divided into a plurality of upper and lower parts, which is drawn out from the bottom of the pressurized tank via an inlet collection pipe 4 connected near the lower end of each manifold, and connected to a reaction air supply system 6. reaction air is supplied as an oxidizing agent. On the other hand, 3 is an outlet manifold for reacted air (off-air), and the reacted off-air containing vapor of produced water generated at the oxidizer electrode of each unit cell is connected near the upper end of the outlet manifold 3. The air is drawn out from the bottom of the pressurized tank via the outlet collection pipe 5 and sent to the off-air exhaust system 7. The drain pot 8 is arranged at a lower position than the outlet collecting pipe 3 and the discharge system 7 and is flange-connected to the lower end of the outlet collecting pipe 5, so that water vapor in the off-air condenses on the pipe walls of the outlet collecting pipe 5 and the discharge system 7. The resulting condensed water flows down by gravity and is collected in the drain pot 8 as collected water 8A.

【0012】収集水の放出手段9は図2に示すように、
ドレーンポット8内の収集水の液面をレベルセンサ9B
により上限レベルおよび加減レベルの2点で検出し、レ
ベルスイッチ9Aが上限レベルでオンし,下限レベルで
オフすることにより、操作弁で構成される排水弁9Cが
開閉し、収集水の液面が上限レベルから下限レベルに低
下するまで収集水を外部に放出するよう構成される。
The collected water discharge means 9 is as shown in FIG.
The level sensor 9B measures the level of collected water in the drain pot 8.
The level switch 9A is turned on at the upper limit level and turned off at the lower limit level, which opens and closes the drain valve 9C, which is an operating valve, and the level of the collected water increases. The collected water is configured to be discharged to the outside until it decreases from the upper limit level to the lower limit level.

【0013】上述のように構成された燃料電池の反応ガ
ス配管構造において、出口マニホールド3内のオフ空気
中に高温の水蒸気として放出された生成水は、配管との
間の僅かな温度差により間壁に結露するが、凝縮した水
は管壁を自然流下して低所に連結されたドレーンポット
8内に収集水8Aとなって収集され、凝縮水が配管の低
所に滞留してオフ空気の流通を阻害する事態を回避する
ことができる。また、放出手段9による収集水の放出が
下限レベルで停止してオフ空気を放出することが無いの
で、反応空気系のガス圧に影響を及ぼすことなく凝縮水
の収集および収集水の放出を行うことができ、単位電池
の電極間差圧が変動することによる電極間の吹き抜け事
故などの二次災害を回避した状態で凝縮水にまつわるト
ラブルを防止することができる。
In the reactant gas piping structure of the fuel cell configured as described above, the generated water released as high-temperature steam into the off-air in the outlet manifold 3 is heated for a short time due to the slight temperature difference between it and the piping. Dew condenses on the wall, but the condensed water naturally flows down the pipe wall and is collected as collected water 8A in the drain pot 8 connected to a low place, and the condensed water stays in the low place of the pipe and drains off air It is possible to avoid situations that obstruct the distribution of products. Furthermore, since the discharge of collected water by the discharge means 9 does not stop at the lower limit level and release off air, the collection of condensed water and the discharge of collected water can be performed without affecting the gas pressure of the reaction air system. This makes it possible to prevent troubles related to condensed water while avoiding secondary disasters such as blow-through accidents between electrodes due to fluctuations in the differential pressure between electrodes of a unit battery.

【0014】図3はこの発明の異なる実施例を簡略化し
て示す側面図であり、スタック1は反応ガス圧力が大気
圧に近い低圧式の燃料電池であり、反応ガスが立ち上が
る入口集合配管4から入口マニホールド2に流入し、出
口マニホールド3から同じく立ち上がる出口集合配管5
を介して、高い位置に配された排出系7に導かれるよう
構成され、ドレーンポット8は出口集合配管5の下端に
下側から連結される。
FIG. 3 is a simplified side view showing a different embodiment of the present invention, in which the stack 1 is a low-pressure fuel cell in which the reactant gas pressure is close to atmospheric pressure, and the reactant gas rises from an inlet collecting pipe 4. Outlet collective piping 5 that flows into the inlet manifold 2 and also rises from the outlet manifold 3
The drain pot 8 is connected to the lower end of the outlet collecting pipe 5 from below.

【0015】上述のように構成された配管構造を有する
燃料電池においては、出口集合配管を伝い落ちる凝縮水
の量が多くなる。したがって、ドレーンポットが無い場
合には凝縮水が出口集合配管5の底部に滞留し、溢れた
凝縮水が出口マニホールド3に流入してその底部に位置
する単位電池が浸水する最悪の事態を生じやすくなるが
、この実施例によればドレーンポットが凝縮水を収集し
、放出手段9が液面を監視して収集水を放出するので、
上記最悪の事態を確実に回避できる。
[0015] In a fuel cell having a piping structure constructed as described above, a large amount of condensed water flows down the outlet collecting pipe. Therefore, if there is no drain pot, the condensed water will remain at the bottom of the outlet collection pipe 5, and the worst case scenario will likely occur where the overflowing condensed water flows into the outlet manifold 3 and the unit batteries located at the bottom are submerged. However, according to this embodiment, the drain pot collects the condensed water, and the discharge means 9 monitors the liquid level and discharges the collected water.
The worst situation mentioned above can definitely be avoided.

【0016】図4はこの発明の他の実施例を示す構成図
であり、ドレーンポット18がオフ空気の排出系7の流
通障害による反応空気系(燃料ガス系であってもよい)
の異常圧力上昇を防止する水封器を兼ねるよう構成され
た例を示している。すなわち、ドレーンポット18はそ
の上部空間を大気圧に保つ放出管18Aを備え、出口集
合配管5を含む排出系7の入口配管部7Aには放圧管1
8Bが連結され、放圧管の下端は収集水中の所定の深さ
の位置に開口する。また、収集水の放出手段9は液面を
一定位置に保持するよう流入する収集水を細かいステッ
プで放出するようその調整幅が狭く設定される。
FIG. 4 is a configuration diagram showing another embodiment of the present invention, in which the drain pot 18 is removed from the reaction air system (which may be a fuel gas system) due to a flow obstruction in the off-air exhaust system 7.
An example is shown in which the water seal is configured to also function as a water seal to prevent abnormal pressure rises. That is, the drain pot 18 is equipped with a discharge pipe 18A that maintains its upper space at atmospheric pressure, and a pressure relief pipe 1 is provided in the inlet piping section 7A of the discharge system 7 including the outlet collective piping 5.
8B is connected, and the lower end of the pressure relief pipe opens at a predetermined depth in the collected water. Further, the adjustment width of the collected water discharging means 9 is set to be narrow so as to discharge the inflowing collected water in fine steps so as to maintain the liquid level at a constant position.

【0017】このように構成されたドレーンポット18
は、放圧管18Bの開口部にはその水深により決まるヘ
ッド差が加わっており、オフ空気の圧力が定常圧力であ
れば水封された状態になり、オフ空気は排出系7の熱交
換器7Bで廃熱利用され、凝縮器7Cで気水分離されて
生成水は原水タンク7Dに回収され、酸素を含むオフ空
気は例えば改質器バーナの支燃空気として利用される。 また、配管内の凝縮水はドレーンポットに収集され,小
刻みに放出される。一方、排出系7に何らかのオフ空気
の流通障害が発生し、配管内のガス圧が前述のヘッド差
を越える程に異常に上昇すると、放圧管内の水はガス圧
により押し出され、放圧管18Bから気泡となって浮上
したオフ空気は放出管18Aから外部に放出され、ドレ
ーンポット18が異常圧力上昇を抑制する水封器として
の機能を発揮する。また、ドレーンポット内の収集水の
レベルは放出手段により一定水位に保たれるので、水封
器のとしての動作圧力が安定する。したがって、凝縮水
にまつわるトラブルと、ガス圧の上昇にまつわる反応ガ
スの吹き抜け等のトラブルを一つの装置で同時に解決で
き、燃料電池の運転を一層安定化できる利点が得られる
Drain pot 18 configured in this way
In this case, a head difference determined depending on the water depth is added to the opening of the pressure relief pipe 18B, and if the pressure of the off-air is a steady pressure, it will be in a water-sealed state, and the off-air will flow through the heat exchanger 7B of the exhaust system 7. The waste heat is utilized in the condenser 7C, and the generated water is recovered in the raw water tank 7D after being separated into steam and water in the condenser 7C.Oxygen-containing off-air is used, for example, as combustion support air for the reformer burner. Also, condensed water in the pipes is collected in a drain pot and released little by little. On the other hand, if some sort of off-air flow failure occurs in the discharge system 7 and the gas pressure in the piping abnormally rises to the extent that it exceeds the above-mentioned head difference, the water in the pressure relief pipe is pushed out by the gas pressure, and the water in the pressure relief pipe 18B is pushed out by the gas pressure. The off-air that floats up as bubbles is discharged to the outside from the discharge pipe 18A, and the drain pot 18 functions as a water seal to suppress abnormal pressure rise. Furthermore, since the level of collected water in the drain pot is maintained at a constant level by the discharge means, the operating pressure of the water seal is stabilized. Therefore, troubles related to condensed water and troubles such as blow-through of reactant gas caused by increase in gas pressure can be solved simultaneously with one device, and there is an advantage that the operation of the fuel cell can be further stabilized.

【0018】[0018]

【発明の効果】この発明は前述のように、  生成水が
反応済反応ガス(オフガス)中に水蒸気として放出され
る側の出口マニホールドに連結された出口集合配管を含
む排出系の低所にドレーンポットを連結し、かつドレー
ンポットの水位を調節する収集水の放出手段を設けるよ
う構成した。その結果、出口側配管内で結露した凝縮水
を自然流下によってドレーンポットに収集し、かつ放出
手段により、ドレーンポット内の水位を所定の調整範囲
に保持することが可能となり、凝縮水の収集,放出手段
を持たない従来の配管構造で問題となった、凝縮水で単
位電池が浸水する事態や,配管の流通障害による反応ガ
スの吹き抜け事態を防止でき、したがって運転状態が安
定した長期信頼性の高い燃料電池を提供することができ
る。
Effects of the Invention As described above, the present invention provides a drain system at a low point in the exhaust system including the outlet collection pipe connected to the outlet manifold on the side where the produced water is released as steam into the reacted reaction gas (off-gas). The pots are connected and a means for discharging collected water is provided to adjust the water level in the drain pot. As a result, it becomes possible to collect the condensed water that has condensed in the outlet pipe into the drain pot by gravity, and to maintain the water level in the drain pot within a predetermined adjustment range using the discharge means. This prevents problems with conventional piping structures that do not have a discharge means, such as flooding of unit batteries with condensed water or blow-through of reactant gas due to piping flow problems, resulting in stable operating conditions and long-term reliability. It is possible to provide high fuel cells.

【0019】また、ドレーンポットを、ポット内の水位
の変化を所定の幅で検知して動作するレベルスイッチと
、このレベルスイッチにより開閉制御される排水弁とで
構成すれば、オフガスを放出することなくドレーンポッ
トの収集水を外部に放出できるので、ガス圧の変動を伴
わずに収集水を放出できる簡素な配管構造を有する燃料
電池を提供することができる。
[0019] Furthermore, if the drain pot is configured with a level switch that operates by detecting changes in the water level within the pot within a predetermined width, and a drain valve that is controlled to open and close by this level switch, off-gas can be released. Since the water collected in the drain pot can be discharged to the outside without any change in gas pressure, it is possible to provide a fuel cell having a simple piping structure that can discharge the collected water without fluctuations in gas pressure.

【0020】さらに、ドレーンポットが水封器を兼ねる
よう構成すれば、凝縮水にまつわるトラブルと、ガス圧
の上昇にまつわるトラブルを一つの装置によって同時に
解決できるとともに、レベル調整手段を持たない従来の
水封器で問題となった凝縮水の流入による動作圧力の変
化も回避できるので、多彩なトラブル防止機能を有する
配管構造を備えた燃料電池を経済的にも有利に提供でき
る利点が得られる。
Furthermore, if the drain pot is configured to double as a water seal, troubles related to condensed water and problems related to increase in gas pressure can be solved simultaneously with one device, and it is possible to solve problems related to condensed water and increases in gas pressure at the same time. It is also possible to avoid changes in operating pressure due to the inflow of condensed water, which has caused problems in the fuel cell, thereby providing an economically advantageous fuel cell with a piping structure that has a variety of trouble-preventing functions.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】この発明の実施例になる燃料電池の反応ガス配
管構造を簡略化して示す一部破砕断面図
[Fig. 1] A partially fragmented cross-sectional view showing a simplified reaction gas piping structure of a fuel cell according to an embodiment of the present invention.

【図2】実施例
装置の要部を示す構成図
[Fig. 2] A configuration diagram showing the main parts of the example device

【図3】この発明の異なる実施
例を簡略化して示す側面図
FIG. 3 is a simplified side view of different embodiments of the present invention.

【図4】この発明の他の実施例を示す構成図[Fig. 4] A configuration diagram showing another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1    燃料電池(スタック) 2    入口マニホールド 3    出口マニホールド 4    入口集合配管 5    出口集合配管 6    反応ガス供給系(空気側) 7    オフガスの排出系 8    ドレーンポット 8A  収集水 9    収集水の放出手段 9A  レベルスイッチ 9C  排水弁 18    ドレーンポット(水封器)18A  放出
管 18B  放圧管
1 Fuel cell (stack) 2 Inlet manifold 3 Outlet manifold 4 Inlet collection pipe 5 Outlet collection pipe 6 Reaction gas supply system (air side) 7 Off-gas discharge system 8 Drain pot 8A Collected water 9 Collected water discharge means 9A Level switch 9C Drain valve 18 Drain pot (water seal) 18A Discharge pipe 18B Pressure discharge pipe

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】単位電池の積層体からなるスタックが、前
記単位電池の燃料電極および酸化剤電極にそれぞれ反応
ガスを供給する入口マニホールドおよびこれを反応ガス
供給系に連結する入口集合配管と、反応済ガスを排出す
る出口マニホールドおよびこれを反応ガスの排出系に連
結する出口集合配管とを有する燃料電池において、前記
出口集合配管を含む排出系の低所に連結されて配管内で
凝縮した発電生成水を収集するドレーンポットと、この
ドレーンポット内の収集水を外部に排出する放出手段と
を、前記出口集合配管を含む排出系の入口配管より低い
位置に設けたことを特徴とする燃料電池の反応ガス配管
構造。
1. A stack consisting of a laminate of unit cells includes an inlet manifold for supplying a reaction gas to a fuel electrode and an oxidizer electrode of the unit cells, an inlet manifold connecting the same to a reaction gas supply system, and a reaction gas supply system. In a fuel cell having an outlet manifold for discharging reactant gas and an outlet collecting pipe connecting the outlet manifold to an exhaust system for reactant gas, the fuel cell is connected to a lower part of the exhaust system including the outlet collecting pipe and condensed in the pipe. A fuel cell characterized in that a drain pot for collecting water and a discharge means for discharging the collected water in the drain pot to the outside are provided at a position lower than the inlet pipe of the discharge system including the outlet collecting pipe. Reactant gas piping structure.
【請求項2】放出手段が、ポット内の水位の変化を所定
の調節幅で検知して動作するレベルスイッチと、このレ
ベルスイッチにより開閉制御される排水弁とからなるこ
とを特徴とする請求項1記載の燃料電池の反応ガス配管
構造。
2. A claim characterized in that the discharge means comprises a level switch that operates by detecting changes in the water level in the pot within a predetermined adjustment range, and a drain valve that is controlled to open and close by the level switch. 1. Reactant gas piping structure of the fuel cell according to 1.
【請求項3】収集水の放出手段がドレーンポット内の水
位を一定レベルに保持するよう設定されるとともに、ド
レーンポットがその液面上の空間を大気圧に保持する放
出管と、下端部が前記ドレーンポットの収集水内に開口
し上端部が出口集合配管を含む排出系に連通した放圧管
とを備え、ドレーンポットが反応ガスの過度の圧力上昇
を阻止する水封器を兼ねたことを特徴とする請求項1ま
たは請求項2のいずれかに記載の燃料電池の反応ガス配
管構造。
3. The means for discharging the collected water is set to maintain the water level in the drain pot at a constant level, and the drain pot has a discharge pipe that maintains the space above the liquid level at atmospheric pressure and a lower end thereof. The drain pot is equipped with a pressure relief pipe that opens into the collected water of the drain pot and communicates with the discharge system including the outlet collecting pipe at its upper end, so that the drain pot also serves as a water seal for preventing excessive pressure rise of the reaction gas. A reactant gas piping structure for a fuel cell according to any one of claims 1 and 2, characterized in:
JP3023624A 1991-02-19 1991-02-19 Reaction gas piping structure for fuel cell Pending JPH04264365A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3023624A JPH04264365A (en) 1991-02-19 1991-02-19 Reaction gas piping structure for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3023624A JPH04264365A (en) 1991-02-19 1991-02-19 Reaction gas piping structure for fuel cell

Publications (1)

Publication Number Publication Date
JPH04264365A true JPH04264365A (en) 1992-09-21

Family

ID=12115754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3023624A Pending JPH04264365A (en) 1991-02-19 1991-02-19 Reaction gas piping structure for fuel cell

Country Status (1)

Country Link
JP (1) JPH04264365A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997008767A1 (en) * 1995-08-30 1997-03-06 Forschungszentrum Jülich GmbH Fuel cell with water-removal system
WO1998052242A1 (en) * 1997-05-14 1998-11-19 Sanyo Electric Co., Ltd. Solid polymer fuel cell capable of stably providing excellent power generation characteristics
JP2006114261A (en) * 2004-10-13 2006-04-27 Yamaha Motor Co Ltd Fuel cell system and transport equipment using the same
JP2006216241A (en) * 2005-02-01 2006-08-17 Matsushita Electric Ind Co Ltd Fuel cell system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997008767A1 (en) * 1995-08-30 1997-03-06 Forschungszentrum Jülich GmbH Fuel cell with water-removal system
WO1998052242A1 (en) * 1997-05-14 1998-11-19 Sanyo Electric Co., Ltd. Solid polymer fuel cell capable of stably providing excellent power generation characteristics
US6329094B1 (en) 1997-05-14 2001-12-11 Sanyo Electric Co., Ltd. Polymer electrolyte fuel cell showing stable and outstanding electric-power generating characteristics
JP2006114261A (en) * 2004-10-13 2006-04-27 Yamaha Motor Co Ltd Fuel cell system and transport equipment using the same
JP2006216241A (en) * 2005-02-01 2006-08-17 Matsushita Electric Ind Co Ltd Fuel cell system

Similar Documents

Publication Publication Date Title
JP5312476B2 (en) Fuel cell system
EP2237354B1 (en) Fuel cell system
JP5438420B2 (en) Fuel cell system
EP2042469B1 (en) Hydrogen forming apparatus, fuel cell system and method of controlling hydrogen forming apparatus
CN101682066B (en) Fuel cell system
JP5248176B2 (en) Fuel cell system
JP2006310109A (en) Fuel cell power generating system
US6743540B2 (en) Method and apparatus for collecting condensate in an integrated fuel cell system
JPH04264365A (en) Reaction gas piping structure for fuel cell
WO2012161217A1 (en) Fuel cell system
EP3147981B1 (en) Fuell cell system
JP5256720B2 (en) Fuel cell power generator
JP2011216370A (en) Fuel cell system and method of controlling the same
JP4804699B2 (en) Fuel cell system
JP6751887B2 (en) Fuel cell system
JP7110079B2 (en) fuel cell system
US7851096B2 (en) Humidifying a reactant flow of a fuel cell system
JP2014191965A (en) Fuel cell system
JP2004139817A (en) Fuel cell
JP2008251447A (en) Drain treatment device of fuel cell power generation device
US20070031708A1 (en) Fuel cell cogeneration system
CN100563052C (en) Fuel cell system
JP3680980B2 (en) Fuel cell power generator
KR20220149084A (en) Water electrolysis system and control method thereof
KR20090036010A (en) Fuel cell