JPH04264271A - Method for testing power converter - Google Patents

Method for testing power converter

Info

Publication number
JPH04264271A
JPH04264271A JP3025790A JP2579091A JPH04264271A JP H04264271 A JPH04264271 A JP H04264271A JP 3025790 A JP3025790 A JP 3025790A JP 2579091 A JP2579091 A JP 2579091A JP H04264271 A JPH04264271 A JP H04264271A
Authority
JP
Japan
Prior art keywords
power
converter
load
input
pwm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3025790A
Other languages
Japanese (ja)
Inventor
Akio Hirata
平田 昭生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP3025790A priority Critical patent/JPH04264271A/en
Publication of JPH04264271A publication Critical patent/JPH04264271A/en
Pending legal-status Critical Current

Links

Landscapes

  • Power Conversion In General (AREA)
  • Inverter Devices (AREA)
  • Testing Electric Properties And Detecting Electric Faults (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

PURPOSE:To facilitate load operation test of a power conversion apparatus with which reliability of a non-failure power supply apparatus or the like is required without preparing a load apparatus. CONSTITUTION:In a power conversion apparatus comprising two power converters 13a to 13b connected in parallel including a PWM converter 130 which can operate with either a positive or negative input power factor and a PWM inverter 113 for converting direct current of the PWM converter 130 into alternate current, the PWM converter of one of the converters is operated at a positive power factor to output power while the PWM converter of the other power converter is operated at a negative power factor to recover the power to an ac input power source. Thus load operation characteristics of the respective power converters can be tested.

Description

【発明の詳細な説明】[Detailed description of the invention]

[発明の目的] [Purpose of the invention]

【0001】0001

【産業上の利用分野】本発明は信頼性を要求される電力
変換装置の負荷運転試験を負荷装置を準備することなく
、電力変換装置の負荷運転特性を把握することができる
電力変換装置の試験方法に関するものである。
[Industrial Application Field] The present invention is a power converter test that can grasp the load operation characteristics of a power converter without preparing a load device for a load operation test of a power converter that requires reliability. It is about the method.

【0002】0002

【従来の技術】本発明が適用される電力変換装置の一例
としては無停電電源装置がある。以下無停電電源装置を
引用して従来技術を説明する。無停電電源装置は例えば
オ―ム社発行,“雑誌OHM,90/11,特集「大容
量無停電電源システム導入に向けて」”などでも紹介さ
れているように、高度情報通信システムを支えるキ―コ
ンポネントとして、広い分野で採用され、その使命とし
て高信頼性が要求されている。
2. Description of the Related Art An example of a power converter to which the present invention is applied is an uninterruptible power supply. The prior art will be explained below with reference to an uninterruptible power supply. Uninterruptible power supplies are the key to supporting advanced information and communication systems, as introduced in, for example, "Magazine OHM, 90/11, Special feature 'Towards the introduction of large-capacity uninterruptible power supply systems'" published by Ohmsha. -They are used as components in a wide range of fields, and their mission is to provide high reliability.

【0003】図3は無停電電源装置を使用した無停電電
源システムの一例を示す。この図で10は入力交流電源
、11aと11bは無停電電源装置、12は負荷、11
1はコンバ―タ、112はコンデンサ、113はインバ
―タ、114は変圧器である。  図3で入力交流電源
10が健全な時は、2台並列運転している無停電電源装
置11aと11bを介して負荷12に電力を供給する。 この時入力交流電源10の交流電力をコンバ―タ111
で直流電力に変換し、これをコンデンサ112で平滑化
してインバ―タ113で再び交流電力に変換し、変圧器
114を介して負荷12に電力供給を行なう。入力交流
電源が瞬時電圧降下などの異常時にはコンデンサ112
の電力や図示していないが蓄電池の電力等の直流電力を
インバ―タ113で同様に交流電力に変換し変圧器11
4を介して負荷12に電力供給し続けるから、負荷には
無停電で安定した交流電力を供給し続けることができる
FIG. 3 shows an example of an uninterruptible power supply system using an uninterruptible power supply. In this figure, 10 is an input AC power supply, 11a and 11b are uninterruptible power supplies, 12 is a load, and 11
1 is a converter, 112 is a capacitor, 113 is an inverter, and 114 is a transformer. In FIG. 3, when the input AC power supply 10 is healthy, power is supplied to the load 12 via two uninterruptible power supplies 11a and 11b operating in parallel. At this time, the AC power of the input AC power supply 10 is converted to the converter 111.
The DC power is converted into DC power, smoothed by a capacitor 112, and converted back to AC power by an inverter 113, which is then supplied to the load 12 via a transformer 114. When the input AC power supply has an abnormality such as instantaneous voltage drop, the capacitor 112
The inverter 113 converts direct current power such as power from a storage battery (not shown) into alternating current power in the same way as the transformer 11.
Since the power is continuously supplied to the load 12 via the power supply 4, stable alternating current power can be continuously supplied to the load without interruption.

【0004】このような無停電電源装置11a,11b
への要求特性は、安定した負荷運転ができることである
。他方無停電電源装置11aや11bの工場試験や現地
据付試験では、負荷12は準備されておらず、負荷運転
試験によって安定した負荷運転や装置の温度上昇を確認
するためには等価的な負荷を準備する必要があった。 又、現地据付後の定期点検などでも同様に負荷運転特性
を把握しょうとすると負荷12はコンピ―タなど、1日
24時間、1年365日連続運転する特質の負荷である
ため、負荷12は入力交流電源10よりの直送に切換え
て連続運転し、試験にはこの代りの等価的な負荷を準備
する必要があった。以上のような点から、従来の無停電
電源装置の試験方法では、次の問題があった。
[0004] Such uninterruptible power supplies 11a and 11b
The required characteristics are that stable load operation is possible. On the other hand, in factory tests and on-site installation tests of the uninterruptible power supplies 11a and 11b, the load 12 is not prepared, and in order to confirm stable load operation and temperature rise of the device through load operation tests, an equivalent load must be prepared. I needed to prepare. In addition, when trying to understand the load operating characteristics in the same way during regular inspections after on-site installation, load 12 is a load such as a computer that operates continuously 24 hours a day, 365 days a year, so load 12 is It was necessary to switch to direct feed from the input AC power supply 10 and operate continuously, and prepare an equivalent load in place of this for testing. From the above points, the conventional uninterruptible power supply testing method has the following problems.

【0005】(1) 無停電電源装置11a,11bの
負荷運転特性を把握するためには、等価的な負荷を準備
する必要があった。又、各機器間の接続電線なども実際
の負荷電流に耐える太さのものを用意する必要があり、
特に現地据付試験などのように等価的な負荷の設置場所
が都心のインテリジエントビルなどの条件より制限され
るような場所には試験準備のための期間や労力及び費用
が非常にかかっていた。 (2) 又、負荷運転特性を把握する試験などでは、等
価的な負荷で電力消費させているため、消費電力料も非
常に高くついていた。 (3) 無停電電源装置11a,11bの定期点検など
で負荷運転しょうとする場合には、前述のように入力交
流電源10より負荷12に直送で電力供給するために、
等価的な負荷を準備しても入力交流電源10の電力容量
が不足して、実質的な負荷試験ができない場合が多かっ
た。
(1) In order to understand the load operation characteristics of the uninterruptible power supplies 11a and 11b, it was necessary to prepare an equivalent load. Also, the connecting wires between each device must be thick enough to withstand the actual load current.
Particularly in cases such as on-site installation tests, where the installation location of an equivalent load is restricted due to conditions such as an intelligent building in a city center, the time, effort, and cost required for test preparation are extremely high. (2) In addition, in tests to understand load operating characteristics, power consumption is consumed with an equivalent load, resulting in extremely high power consumption charges. (3) When performing load operation for periodic inspection of the uninterruptible power supplies 11a and 11b, etc., as described above, in order to directly supply power to the load 12 from the input AC power supply 10,
Even if an equivalent load was prepared, the power capacity of the input AC power supply 10 was insufficient, and it was often impossible to carry out a substantial load test.

【0006】[0006]

【発明が解決しようとする課題】図3を引用して従来技
術を説明したように、無停電電源装置などのような重要
な電力変換装置は、その電力変換装置の信頼性を確認す
るため負荷運転特性を試験する場合が多い。このような
負荷運転特性を確認するためには、同然ながら電力変換
装置に負荷電流を流すための負荷装置が必要であり、従
来技術ではこの負荷装置として電力変換装置の実際の負
荷が使用できない場合が多く、このため等価的な負荷装
置として水抵抗器などを準備して、負荷運転特性を確認
していた。このような負荷運転特性を確認する機会は比
較的多く、一般的には次のような場合に行われている。 (a) 電力変換装置の製作完了時の工場試験。 (b) 電力変換装置の客先立会試験。 (c) 電力変換装置の現地据付試験。 (d) 電力変換装置の稼動後に数年毎に行われる定期
点検時。 などが電力変換装置の負荷運転特性を確認する試験であ
るが、従来においては電力変換装置を試験する場合、前
述したように次の問題点があった。
[Problems to be Solved by the Invention] As described in the prior art with reference to FIG. 3, important power conversion devices such as uninterruptible power supplies require Often used to test driving characteristics. In order to check such load operation characteristics, a load device is required to flow the load current to the power converter, and with conventional technology, it is difficult to use the actual load of the power converter as the load device. For this reason, equivalent load devices such as water resistors were prepared to check the load operating characteristics. There are relatively many opportunities to check such load operation characteristics, and this is generally done in the following cases. (a) Factory testing upon completion of manufacturing of power conversion equipment. (b) Customer-attended testing of power conversion equipment. (c) On-site installation test of power conversion equipment. (d) During periodic inspections that are performed every few years after the power conversion equipment has been put into operation. This is a test to check the load operation characteristics of a power converter, but conventionally, when testing a power converter, there have been the following problems as mentioned above.

【0007】(1) 電力変換装置の負荷電流を流せる
等価的な負荷装置を試験する毎に準備しなければならな
かった。 (2) 入力交流電源と各電力変換装置間、各電力変換
装置と等価的な負荷装置間などの接続電線も実際の負荷
電流に耐える太さにする必要があり、工事費などの試験
準備費が非常に高くついていた。 (3) 実際の負荷運転特性試験するための電力消費料
も高くなり、試験費用も高くついていた。 (4) 工場試験や定期点検で実際の負荷電流を流すた
めにはそれなりの入力交流電源の容量が必要であるが、
入力交流電源容量の不足から、試験期間は入力交流電源
容量を確保できるまで試験期間が長びいたり、試験が充
分に出来ない場合などがあった。
(1) An equivalent load device that can carry the load current of the power conversion device had to be prepared every time a test is conducted. (2) The connecting wires between the input AC power supply and each power converter, and between each power converter and equivalent load devices must also be thick enough to withstand the actual load current, and test preparation costs such as construction costs are required. was very expensive. (3) Electric power consumption for testing actual load operating characteristics also increased, and test costs were also high. (4) In order to pass the actual load current during factory tests and periodic inspections, a certain amount of input AC power supply capacity is required.
Due to the lack of input AC power supply capacity, there were cases in which the test period was extended until the input AC power capacity was secured, and in some cases, the test could not be completed sufficiently.

【0008】従って、本発明の目的は前述の点に鑑みな
されたものであって、電力変換装置の負荷運転特性を等
価的な負荷装置などを準備することなく、無負荷のまま
で電力変換装置に負荷電流相当の電流を流して電力変換
装置の負荷運転特性を把握することができる電力変換装
置の試験方法を提供することを目的とする。 [発明の構成]
Therefore, an object of the present invention has been made in view of the above-mentioned points. It is an object of the present invention to provide a test method for a power converter that allows a current equivalent to the load current to flow through the power converter to ascertain the load operation characteristics of the power converter. [Structure of the invention]

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
に本発明を適用する電力変換装置は、図1に示すように
、正の入力力率及び負の入力力率で運転可能なPWMコ
ンバ―タ130と、このPWMコンバ―タ130の直流
出力を交流に変換するPWMインバ―タ113から成る
電力変換器を2台(13a,13b)並列接続して、入
力交流電源10の交流電力を電力変換して負荷12に給
電するように構成したことを特徴とするものである。
[Means for Solving the Problems] A power converter to which the present invention is applied in order to achieve the above object, as shown in FIG. - two power converters (13a, 13b) consisting of a converter 130 and a PWM inverter 113 that converts the DC output of the PWM converter 130 to AC are connected in parallel to convert the AC power of the input AC power supply 10. It is characterized in that it is configured to convert the power and feed it to the load 12.

【0010】0010

【作用】前述のように構成することにより、例えば電力
変換器13bのPWMコンバ―タ130を負の入力力率
で運転すれば、電力変換器13aから電力変換器13b
に電力が供給され、この電力は電力変換器13bによっ
て交流入力電源10に回生される。又、電力変換器13
aのPWMコンバ―タ130を負の入力力率で運転すれ
ば、電力変換器13bから電力変換器13aに電力が供
給され、この電力は電力変換器13aによって交流入力
電源10に回生される。従って、電力変換器13aと1
3bのそれぞれの負荷運転特性を把握するために特別の
負荷装置を準備する必要がなく、入力交流電源10が消
費する電力も、電力変換器13aと13bの電力損失の
みで良いので試験のための入力交流電源10の電源容量
は小さくて良い。従って、本発明の電力変換装置の試験
方法によれば、特別の負荷装置を準備する必要がなく、
電力消費も非常に小さく経済的で短期間に電力変換装置
の負荷特性を手軽に把握できる。
[Operation] By configuring as described above, for example, if the PWM converter 130 of the power converter 13b is operated with a negative input power factor, the power converter 13b will be connected from the power converter 13a to the
Electric power is supplied to the AC input power source 10, and this electric power is regenerated to the AC input power source 10 by the power converter 13b. Moreover, the power converter 13
When the PWM converter 130 of a is operated with a negative input power factor, power is supplied from the power converter 13b to the power converter 13a, and this power is regenerated to the AC input power source 10 by the power converter 13a. Therefore, power converters 13a and 1
There is no need to prepare a special load device in order to understand the load operation characteristics of each of the input AC power supplies 10 and 3b. The power supply capacity of the input AC power supply 10 may be small. Therefore, according to the power conversion device testing method of the present invention, there is no need to prepare a special load device;
The power consumption is very low and economical, and the load characteristics of the power converter can be easily grasped in a short period of time.

【0011】[0011]

【実施例】以下本発明の一実施例を図1のブロック図を
参照して説明する。この図において、13aと13bは
例えば無停電電源装置として使用される電力変換器、1
30は正の入力力率及び負の入力力率で運転可能なPW
Mコンバ―タ、112はコンデンサ、113はPWMコ
ンバ―タ130の直流を交流に変換するPWMインバ―
タで、このPWMインバ―タ113はPWMコンバ―タ
130と同一構成のものを用いることができる。従って
、PWMコンバ―タ130とPWMインバ―タ113は
、その直流回路からみて対称配置されている。又114
は電力変換器13の出力変圧器である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the block diagram of FIG. In this figure, 13a and 13b are power converters 1 used as uninterruptible power supplies, for example.
30 is a PW that can be operated with positive input power factor and negative input power factor
M converter, 112 is a capacitor, 113 is a PWM inverter that converts the direct current of the PWM converter 130 into alternating current.
This PWM inverter 113 can have the same configuration as the PWM converter 130. Therefore, PWM converter 130 and PWM inverter 113 are arranged symmetrically when viewed from their DC circuit. Also 114
is the output transformer of the power converter 13.

【0012】図1の構成で、電力変換装置として機能を
する時には、入力交流電源10の交流電力を電力変換器
13aと13bのそれぞれのPWMコンバ―タ130で
直流電力に変換し、コンデンサ112でこの電力を平滑
化して、PWMインバ―タ113で再び交流電力に変換
し、変圧器114を介して負荷12に給電している。図
1の本発明の実施例に適用されるPWMコンバ―タ13
0の具体的回路例を図2に示す。この図で130はPW
Mコンバ―タ、132は交流入力端子、133はACリ
アクトル、134は直流出力端子、135は電流検出器
、136は電圧検出器、137は電圧基準、138は電
圧制御器、139は掛算器、140は電流制御器、14
1はPWM制御回路である。
When the configuration shown in FIG. 1 functions as a power converter, AC power from the input AC power supply 10 is converted to DC power by the PWM converters 130 of the power converters 13a and 13b, and then converted to DC power by the capacitor 112. This power is smoothed and converted back into AC power by a PWM inverter 113, which is then supplied to the load 12 via a transformer 114. PWM converter 13 applied to the embodiment of the present invention in FIG.
A specific circuit example of 0 is shown in FIG. In this diagram, 130 is PW
M converter, 132 is an AC input terminal, 133 is an AC reactor, 134 is a DC output terminal, 135 is a current detector, 136 is a voltage detector, 137 is a voltage reference, 138 is a voltage controller, 139 is a multiplier, 140 is a current controller, 14
1 is a PWM control circuit.

【0013】この図2に示すPWMコンバ―タ130は
電圧基準137の設定値に応じて直流出力端子134の
電圧を電圧制御器138で制御し、この制御出力信号を
電圧検出器136で検出した交流入力端子132の電圧
を掛算器139で掛算して正弦波形の電流基準を作り、
ACリアクトル133を流れる電流がこの電流基準と一
致するように電流検出器135の検出信号と前記電流基
準を電流制御器140で制御し、この出力信号によって
、PWM制御回路141がPWMコンバ―タ130を制
御する。
The PWM converter 130 shown in FIG. 2 controls the voltage of the DC output terminal 134 with a voltage controller 138 in accordance with the set value of a voltage reference 137, and detects this control output signal with a voltage detector 136. Multiply the voltage of the AC input terminal 132 by a multiplier 139 to create a sine waveform current reference,
A current controller 140 controls the detection signal of the current detector 135 and the current reference so that the current flowing through the AC reactor 133 matches this current reference, and the PWM control circuit 141 controls the PWM converter 130 by this output signal. control.

【0014】この図2のPWMコンバ―タ130は電圧
基準137と出力直流電圧とを比較して直流出力端子1
34の電圧が低い場合(一般に負荷が印加されている時
)には交流入力端子132―ACリアクトル133―P
WMコンバ―タ130―直流出力端子134の経路で電
力供給が行なわれ、PWMコンバ―タ130の入力力率
は正の1.0近傍で運転される。他方電圧基準137に
比較して直流出力端子134の電圧が高い場合(一般に
負荷より電力回生などがある場合)には、掛算器139
の出力する電流基準が負となるため、直流出力端子13
4―PWMコンバ―タ130―ACリアクトル133―
交流入力端子132の経路で直流電力が電源側へ回生さ
れることになり、この時PWMコンバ―タ130の入力
力率は負の1.0近傍となる。
The PWM converter 130 in FIG. 2 compares the output DC voltage with the voltage reference 137 and converts the DC output terminal 1.
When the voltage of 34 is low (generally when a load is applied), the AC input terminal 132-AC reactor 133-P
Power is supplied through a path from the WM converter 130 to the DC output terminal 134, and the input power factor of the PWM converter 130 is operated near positive 1.0. On the other hand, if the voltage at the DC output terminal 134 is higher than the voltage reference 137 (generally when there is power regeneration than the load), the multiplier 139
Since the current reference output from the DC output terminal 13 is negative,
4-PWM converter 130-AC reactor 133-
DC power is regenerated to the power supply side through the path of the AC input terminal 132, and at this time, the input power factor of the PWM converter 130 becomes around negative 1.0.

【0015】このように図2に示すコンバ―タ130は
電圧基準137の設定によって、電力供給方向を調整す
ることができ、掛算器139の出力する電流基準はAC
リアクトル133を流れる電流の位相基準でもあるため
コンバ―タPWM130の入力力率も制御することがで
きる。
In this way, the converter 130 shown in FIG. 2 can adjust the power supply direction by setting the voltage reference 137, and the current reference output from the multiplier 139 is AC.
Since it is also the phase reference for the current flowing through the reactor 133, the input power factor of the converter PWM 130 can also be controlled.

【0016】従って、図1において、電力変換器13a
と13bを運転し電力変換器13bの電圧基準137を
電力変換器13a側より低く設定すると、電力変換器1
3aが出力する交流電力は、電力変換器13bの出力端
子131―変圧器114―インバ―タ113―コンデン
サ112―PWMコンバ―タ130の経路で入力交流電
源10に電力回生できる。他方電力変換器13bに対し
て電力変換器13aの電圧基準137を低く設定すると
、電力変換器13bが出力する交流電力は電力変換器1
3aで入力交流電源10に電力回生できる。この時電力
変換器13aと13bの入力力率は電力を出力する方が
正の1.0近傍で、電力を回生する方が負の1.0近傍
であるため入力交流電源10に要求される無効電力成分
も非常に小さい。
Therefore, in FIG. 1, the power converter 13a
When the power converter 13b is operated and the voltage reference 137 of the power converter 13b is set lower than that of the power converter 13a, the power converter 1
The AC power output from AC power converter 3a can be regenerated to input AC power supply 10 through the path of output terminal 131 of power converter 13b - transformer 114 - inverter 113 - capacitor 112 - PWM converter 130. On the other hand, if the voltage reference 137 of the power converter 13a is set lower than that of the power converter 13b, the AC power output from the power converter 13b is lower than that of the power converter 13b.
3a can regenerate power to the input AC power source 10. At this time, the input power factor of the power converters 13a and 13b is near positive 1.0 for outputting power, and near negative 1.0 for regenerating power, which is required for input AC power source 10. The reactive power component is also very small.

【0017】以上説明から明らかなように、入力力率を
制御できるPWMコンバ―タを持った電力変換器13a
と13bを並列接続し、一方の電力変換器の出力電力を
他方の電力変換器で電力回生することにより、電力変換
器13aと13bのそれぞれの負荷運転特性を把握する
ことができ、この時特別な負荷装置を準備する必要もな
く、入力交流電源10の電源容量も電力変換器13aと
13bの装置内損失に対応する容量しか必要でない。従
って、従来より短期間で手軽に電力変換器13aと13
bの負荷運転特性を把握することができる。
As is clear from the above description, the power converter 13a has a PWM converter that can control the input power factor.
By connecting the power converters 13a and 13b in parallel and regenerating the output power of one power converter with the other power converter, it is possible to grasp the load operation characteristics of each of the power converters 13a and 13b. There is no need to prepare a load device, and the power supply capacity of the input AC power supply 10 is only required to correspond to the internal loss of the power converters 13a and 13b. Therefore, the power converters 13a and 13 can be easily connected in a shorter period of time than before.
It is possible to understand the load operation characteristics of b.

【0018】以上の説明では、電力変換器13a,13
bとして無停電電源装置を引用して説明したが、入力力
率を制御できるコンバ―タを有する電力変換器であれば
本発明を適用できることは明らかである。
In the above explanation, power converters 13a, 13
Although the explanation has been given with reference to an uninterruptible power supply as b, it is clear that the present invention can be applied to any power converter having a converter that can control the input power factor.

【0019】更に、図1の電力変換器13aと13bの
PWMインバ―タ113は電圧制御能力を有するかどう
かを限定していないが、PWMインバ―タ113が電圧
制御能力を有する場合には電源回生するPWMコンバ―
タ130側のPWMインバ―タ113の出力電圧も電圧
基準147の低下に対応して低下するようにしても良い
。その他本発明の要旨を変更しない範囲で種々設計変更
して構成することができることは明らかである。
Furthermore, although there is no limitation as to whether or not the PWM inverters 113 of the power converters 13a and 13b in FIG. PWM converter that regenerates
The output voltage of the PWM inverter 113 on the side of the converter 130 may also be decreased in response to the decrease in the voltage reference 147. It is clear that various other design changes and configurations can be made without changing the gist of the present invention.

【0020】[0020]

【発明の効果】以上説明から明らかなように、本発明に
よれば次の効果を得ることができる電力変換装置の試験
方法を提供出来る。 (1) 電力変換装置の負荷運転特性試験を行なうに当
り、特別な負荷装置を準備する必要がない。 (2) 電力変換装置相互間にのみ負荷電流相当の電流
が流れるのみであるから、試験のために特別な電線接続
工事など不要であり、試験準備費が大幅に低減できる。 (3) 特別な負荷装置を必要としないことから、試験
場所等の制約もなくなり、また本発明による試験方法で
は電力消費料も非常に少なくて良いため、試験費用も大
幅に低減できる。 (4) 本発明の試験方法では入力交流電源の容量も小
さくて良いから、試験時期や試験期間の制約が除去でき
、従来より手軽に経済的にかつ短期間で試験することが
できる。
As is clear from the above description, according to the present invention, it is possible to provide a testing method for a power conversion device that can obtain the following effects. (1) There is no need to prepare a special load device when performing a load operation characteristic test of a power conversion device. (2) Since a current equivalent to the load current flows only between the power converters, there is no need for special wire connection work for the test, and test preparation costs can be significantly reduced. (3) Since no special load device is required, there are no restrictions on test locations, etc., and the test method according to the present invention requires very little power consumption, so testing costs can be significantly reduced. (4) Since the test method of the present invention requires only a small input AC power supply capacity, restrictions on test timing and test period can be removed, and tests can be performed more easily, economically, and in a shorter period of time than in the past.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】  本発明の一実施例を単線結線で示すブロッ
ク図。
FIG. 1 is a block diagram showing an embodiment of the present invention using a single line connection.

【図2】  本発明に使用される入力力率を制御できる
PWMコンバ―タの一構成例を示すブロック図。
FIG. 2 is a block diagram showing an example of the configuration of a PWM converter that can control the input power factor used in the present invention.

【図3】  従来の装置の一例を単線結線で示すブロッ
ク図。
FIG. 3 is a block diagram showing an example of a conventional device using a single line connection.

【符号の説明】[Explanation of symbols]

10…入力交流電源、11a,11b…無停電電源装置
、12…負荷、13a,13b…電力変換器、111…
コンバ―タ、112…コンデンサ、113…インバ―タ
、114…変圧器、130…PWMコンバ―タ、131
…出力端子、132…交流入力端子、133…ACリア
クトル、134…直流出力端子、135…電流検出器、
136…電圧検出器、137…電圧基準、138…電圧
制御器、139…掛算器、140…電流制御器、141
…PWM制御回路。
10... Input AC power supply, 11a, 11b... Uninterruptible power supply, 12... Load, 13a, 13b... Power converter, 111...
Converter, 112... Capacitor, 113... Inverter, 114... Transformer, 130... PWM converter, 131
...output terminal, 132...AC input terminal, 133...AC reactor, 134...DC output terminal, 135...current detector,
136... Voltage detector, 137... Voltage reference, 138... Voltage controller, 139... Multiplier, 140... Current controller, 141
...PWM control circuit.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  正の入力力率及び負の入力力率で運転
可能なPWMコンバ―タと、このPWMコンバ―タの直
流を交流に変換するPWMインバ―タから成る電力変換
器を2台並列接続して、入力交流電源の交流電力を電力
変換して負荷に給電するようにした電力変換装置の試験
方法において、前記電力変換装置の一方の電力変換器の
PWMコンバ―タを正の入力力率で運転して電力を出力
させ、他方の電力変換器のPWMコンバ―タを負の入力
力率で運転して前記電力を前記交流入力電源へ回生させ
ることにより、前記各電力変換器の負荷運転特性試験を
行なうようにしたことを特徴とする電力変換装置の試験
方法。
[Claim 1] Two power converters each consisting of a PWM converter that can be operated with a positive input power factor and a negative input power factor, and a PWM inverter that converts the direct current of this PWM converter into alternating current. In a test method for power converters connected in parallel to convert AC power from an input AC power source and supply power to a load, a PWM converter of one power converter of the power converter is connected to a positive input terminal. Each of the power converters is operated at a power factor to output power, and the PWM converter of the other power converter is operated at a negative input power factor to regenerate the power to the AC input power source. A method for testing a power conversion device, characterized in that a load operation characteristic test is performed.
JP3025790A 1991-02-20 1991-02-20 Method for testing power converter Pending JPH04264271A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3025790A JPH04264271A (en) 1991-02-20 1991-02-20 Method for testing power converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3025790A JPH04264271A (en) 1991-02-20 1991-02-20 Method for testing power converter

Publications (1)

Publication Number Publication Date
JPH04264271A true JPH04264271A (en) 1992-09-21

Family

ID=12175631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3025790A Pending JPH04264271A (en) 1991-02-20 1991-02-20 Method for testing power converter

Country Status (1)

Country Link
JP (1) JPH04264271A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008167655A (en) * 2001-08-27 2008-07-17 Shinko Electric Co Ltd Inverter testing device
JP2011169702A (en) * 2010-02-17 2011-09-01 Fuji Electric Co Ltd Generator load testing device
JP2012118070A (en) * 2010-11-30 2012-06-21 General Electric Co <Ge> Methods and apparatus for testing electric power devices
CN103116103A (en) * 2013-02-04 2013-05-22 江苏大全凯帆电器股份有限公司 Method for actively detecting frequency drift islands
JP2014007923A (en) * 2012-06-27 2014-01-16 Honda Motor Co Ltd Inspection device
EP2216879A3 (en) * 2004-06-29 2016-11-30 Eaton Power Quality Corporation Method and apparatus for testing uniterruptible power supply
CN104101801B (en) * 2014-06-20 2017-06-20 国家电网公司 The one-stop grid-connected detecting system of photovoltaic solar
WO2018037499A1 (en) * 2016-08-24 2018-03-01 東芝三菱電機産業システム株式会社 Energization evaluation test device for input filter for pwm converter

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0495882A (en) * 1990-08-14 1992-03-27 Meidensha Corp Test load facility

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0495882A (en) * 1990-08-14 1992-03-27 Meidensha Corp Test load facility

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008167655A (en) * 2001-08-27 2008-07-17 Shinko Electric Co Ltd Inverter testing device
EP2216879A3 (en) * 2004-06-29 2016-11-30 Eaton Power Quality Corporation Method and apparatus for testing uniterruptible power supply
JP2011169702A (en) * 2010-02-17 2011-09-01 Fuji Electric Co Ltd Generator load testing device
JP2012118070A (en) * 2010-11-30 2012-06-21 General Electric Co <Ge> Methods and apparatus for testing electric power devices
JP2014007923A (en) * 2012-06-27 2014-01-16 Honda Motor Co Ltd Inspection device
CN103116103A (en) * 2013-02-04 2013-05-22 江苏大全凯帆电器股份有限公司 Method for actively detecting frequency drift islands
CN104101801B (en) * 2014-06-20 2017-06-20 国家电网公司 The one-stop grid-connected detecting system of photovoltaic solar
WO2018037499A1 (en) * 2016-08-24 2018-03-01 東芝三菱電機産業システム株式会社 Energization evaluation test device for input filter for pwm converter
JPWO2018037499A1 (en) * 2016-08-24 2019-01-17 東芝三菱電機産業システム株式会社 Energization evaluation test equipment for input filter for PWM converter
US11163012B2 (en) 2016-08-24 2021-11-02 Toshiba Mitsubishi—Electric Industrial Systems Corporation Energization evaluation test equipment of a PWM converter input filter

Similar Documents

Publication Publication Date Title
CN100349356C (en) Independent electric power supply
TWI440872B (en) A load test system for an inverter
US6838611B2 (en) Solar battery module and power generation apparatus
US9912247B2 (en) DC link module for reducing DC link capacitance
US6809942B2 (en) System interconnection electric power generator and control method therefor
US4672520A (en) Current-source power converting apparatus with self-extinction devices
CN102484393A (en) Power conversion system and uninterruptible power source system
US20230378761A1 (en) Wind turbine with integrated battery storage
KR101539397B1 (en) Simulator with Direct Current and Alternating Current Output for Multi-Function Test
US11267356B2 (en) Charging station for charging electric vehicles with distributed energy measurement and method
JP2004236496A (en) Sine-wave inverter permitting parallel operation and its parallel operation control method
JP3884386B2 (en) Grid-connected inverter device
JPH04264271A (en) Method for testing power converter
JPH0753036B2 (en) Parallel operation controller for AC output converter and commercial power supply
JP3570283B2 (en) Battery charging / discharging device
US9219406B1 (en) Systems and methods for assessing current in a resonant circuit
JP2007097311A (en) System linking interactive device
JPH10112942A (en) Dc power supply device
JPH04264270A (en) Method for testing power converter
JP2003018740A (en) Dc ground fault detector and interconnected system power generating apparatus
JPH0440926B2 (en)
JP2000083378A (en) Power converter
CN211018368U (en) Storage battery charging and discharging system
KR102553810B1 (en) Regenerative load Tester of Distributed Power Architecture for Power Supply Load Test
Šuňal et al. Implementation of charger current sharing method in railway application using CAN bus