JPH04264250A - Limiting-current-type oxygen sensor - Google Patents

Limiting-current-type oxygen sensor

Info

Publication number
JPH04264250A
JPH04264250A JP3024617A JP2461791A JPH04264250A JP H04264250 A JPH04264250 A JP H04264250A JP 3024617 A JP3024617 A JP 3024617A JP 2461791 A JP2461791 A JP 2461791A JP H04264250 A JPH04264250 A JP H04264250A
Authority
JP
Japan
Prior art keywords
sensor
current
oxygen
solid electrolyte
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3024617A
Other languages
Japanese (ja)
Other versions
JP3010753B2 (en
Inventor
Kunihiro Tsuruta
邦弘 鶴田
Takeshi Nagai
彪 長井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP3024617A priority Critical patent/JP3010753B2/en
Publication of JPH04264250A publication Critical patent/JPH04264250A/en
Application granted granted Critical
Publication of JP3010753B2 publication Critical patent/JP3010753B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To specifically self-diagnose existence of sensor deterioration and determine the deterioration in case deterioration occurs to prevent erroneous measurement as long as a limiting-current-type oxygen sensor for measuring oxygen concentration in an atmosphere is concerned. CONSTITUTION:A limiting-current-type oxygen sensor comprises a plurality of pairs of electrode films 2a, 2b, 3a, 3b placed on both surfaces of an oxygen ion conductive solid electrolytic body 1 and a plurality of diffusion rate determining elements surrounding one side of the electrode film (which comprise a plurality of spiral spacers 4', 4'' and a seal plate 5). Further the sensor comprises sensor elements where the areas of the electrode films 2a, 2b, 3a, 3b or lengths and cross-sectional areas of oxygen diffusion paths of the diffusion rate determining elements are made different respectively and a comparison circuit which compares ratios of respective current values obtained from the plural pairs of the electrode films 2a, 2b, 3a, 3b, so that when the current value ratio is largely different from an initial value when the sensor elements were used, the sensor can determine that the elements are defective.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、雰囲気中の酸素濃度を
測定するための限界電流式酸素センサに関し、特にセン
サの劣化有無を自己判断し万が一劣化の場合劣化と判断
して誤測定を防止するものである。
[Industrial Application Field] The present invention relates to a limiting current type oxygen sensor for measuring oxygen concentration in the atmosphere, and in particular, it self-determines whether the sensor has deteriorated or not, and if it does, it is judged as deterioration to prevent erroneous measurements. It is something to do.

【0002】0002

【従来の技術】従来の限界電流式酸素センサの一部破断
構造を図10に示す。1は酸素イオン伝導性を示す固体
電解質板であり、両面に電極膜2a,2b(図示せず)
が形成されている。この固体電解質板1の一方の面に電
極膜2aを囲み、始端と終端がお互いに間隔を有する螺
旋型スペーサ4が配置され、さらにシール板5がその上
部に配置されている。酸素拡散通路は、螺旋型スペーサ
4の相対向する隔壁と固体電解質板1とシール板5で囲
まれる螺旋型の空間で形成され、酸素は前記拡散通路を
経由して電極膜2aへ拡散する。シール板5には加熱部
6が形成されており、固体電解質板1を加熱して酸素イ
オンの伝導を良くしている。
2. Description of the Related Art FIG. 10 shows a partially broken structure of a conventional limiting current type oxygen sensor. 1 is a solid electrolyte plate exhibiting oxygen ion conductivity, and electrode films 2a and 2b (not shown) are provided on both sides.
is formed. A spiral spacer 4 surrounding the electrode film 2a and having a starting end and a terminal end spaced apart from each other is arranged on one surface of the solid electrolyte plate 1, and a sealing plate 5 is arranged above the spiral spacer 4. The oxygen diffusion path is formed in a spiral space surrounded by opposing partition walls of the spiral spacer 4, the solid electrolyte plate 1, and the seal plate 5, and oxygen diffuses into the electrode film 2a via the diffusion path. A heating section 6 is formed on the seal plate 5, and heats the solid electrolyte plate 1 to improve conduction of oxygen ions.

【0003】動作について説明する。上記構成において
、リード線(図示せず)を介して加熱部6に所定の電力
を印加し、加熱部6を介して固体電解質板1を所定温度
に加熱する。一方、同様にリード線(図示せず)を介し
て固体電解質板1(この場合は両面に形成した電極膜2
a,2b(図示せず))にも所定の電圧を印加する。 すると、空気中の酸素は、酸素拡散通路を経由して電極
膜2aまで流入し、さらにカソード側電極膜2aからア
ノード電極膜2b(図示せず)に向かって酸素イオンと
なって移動し、そしてアノード電極膜2b(図示せず)
で再び酸素となって放出される。この酸素ポンプ作用に
よって固体電解質板1を酸素が移動しそれにともない電
流が発生するが、酸素拡散通路によって酸素分子の流入
が制限されるため、酸素濃度に応じた飽和電流(限界電
流と称す)が生じる。この限界電流値を測定することに
より酸素濃度が判明する。
[0003] The operation will be explained. In the above configuration, a predetermined power is applied to the heating section 6 via a lead wire (not shown), and the solid electrolyte plate 1 is heated to a predetermined temperature via the heating section 6. On the other hand, similarly, a lead wire (not shown) is connected to the solid electrolyte plate 1 (in this case, the electrode films 2 formed on both sides).
A, 2b (not shown)) are also applied with a predetermined voltage. Then, oxygen in the air flows through the oxygen diffusion path to the electrode film 2a, further moves from the cathode side electrode film 2a toward the anode electrode film 2b (not shown) as oxygen ions, and Anode electrode film 2b (not shown)
It is released again as oxygen. Oxygen moves through the solid electrolyte plate 1 due to this oxygen pumping action, and a current is generated accordingly. However, since the inflow of oxygen molecules is restricted by the oxygen diffusion path, a saturation current (referred to as a limiting current) depending on the oxygen concentration is generated. arise. By measuring this limiting current value, the oxygen concentration can be determined.

【0004】0004

【発明が解決しようとする課題】しかしながら、従来の
限界電流式酸素センサの構造では、センサを長期使用し
て万が一異常(例えば、拡散孔の目詰まりや漏れ等)が
発生してもその異常は検出できない。そのため真の酸素
濃度の測定が出来ず誤測定となる。
[Problems to be Solved by the Invention] However, with the structure of the conventional limiting current type oxygen sensor, even if an abnormality (for example, clogging of the diffusion hole or leakage) occurs after long-term use of the sensor, the abnormality will not be resolved. Undetectable. Therefore, the true oxygen concentration cannot be measured, resulting in erroneous measurements.

【0005】本発明は、かかる従来の問題点を解消する
もので、センサの異常有無を自己診断し万が一異状の場
合異常と判断して誤測定を防止するものである。
The present invention solves such conventional problems by self-diagnosing whether or not there is an abnormality in the sensor, and if an abnormality is detected, it is determined to be abnormal and erroneous measurements are prevented.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
に、本発明の限界電流式酸素センサは、対となる電極膜
が両面に複数対形成された酸素イオン伝導性固体電解質
体と、前記固体電解質体の片側に位置し前記電極膜を個
々に囲むように配置されかつ流入する酸素分子の移動を
制限する酸素拡散通路を有する複数個の拡散律速体とか
らなり、前記電極膜面積もしくは前記酸素拡散通路の長
さと断面積をそれぞれ異ならせて限界電流が示し始める
臨界電圧値をそれぞれ異ならせたセンサ素子と、前記複
数対の電極膜に所定電圧を印加する印加電圧発生手段と
、前記印加電圧発生手段により前記複数対の電極膜から
得られる各々の電流を検出する複数個の検出手段と、前
記検出手段から得られる各電流値の比率を比較する比較
手段と、前記各電流値の比率値がセンサ素子使用の初期
値より大きく異なる場合異常と判断する判断手段という
構成を備えたものである。
[Means for Solving the Problems] In order to solve the above problems, the limiting current type oxygen sensor of the present invention comprises: a plurality of diffusion-limiting bodies located on one side of the solid electrolyte body, arranged so as to individually surround the electrode membranes, and each having an oxygen diffusion passage for restricting the movement of incoming oxygen molecules, a sensor element having different lengths and cross-sectional areas of oxygen diffusion paths and different critical voltage values at which the limiting current begins; applied voltage generating means for applying a predetermined voltage to the plurality of pairs of electrode films; a plurality of detection means for detecting each current obtained from the plurality of pairs of electrode films by the voltage generation means; a comparison means for comparing a ratio of each current value obtained from the detection means; and a ratio of each current value. The device is equipped with a determining means that determines that there is an abnormality when the value is significantly different from the initial value when the sensor element is used.

【0007】[0007]

【作用】本発明は、上記の構成により拡散孔の目詰まり
や漏れ等の異状が発生した場合複数対の電極膜から得ら
れる各電流値の比率は、センサ使い始めの初期値と大き
く異なる値となり、このセンサ使い始めの初期値とセン
サ使用中の値を比較することによりセンサ異常の有無が
自己診断でき、万が一異状の場合異常と判断して、誤測
定を防止できる。このことを詳細に説明すると次の様に
なる。 (1)拡散通路の目詰まりの場合、目詰まりが1個の酸
素拡散通路側で発生するとその電流値が低下するが、他
の酸素拡散通路側の電流値は変化しない。そのため各電
流値比率が初期値より大きく異なることとなりセンサ異
常が検出できる。 (2)クラック発生による拡散律速体のシール劣化であ
るが、クラック発生が1個の拡散律速体側で発生すると
その電流値が増加するが、他の拡散律速体側での電流値
は変化しない。そのため、各電流値の比率が初期値より
大きく異なることとなりセンサの異常が検出できる。 (3)電極膜や固体電解質板の劣化であるが、劣化によ
り絶縁抵抗が素子に生成すると固体電解質板の酸素イオ
ン伝導度が低下する。そのため高臨界電圧値で限界電流
を示し始める側は、固体電解質板の排出できる酸素量の
酸素拡散通路を通過する酸素量に対する割合が初期より
少なくなり、電流値は限界電流値を示さず使用初期値よ
り小さくなる。その点、低臨界電圧で限界電流を示し始
める側は、絶縁抵抗が素子に生成しても固体電解質板の
排出できる酸素量が酸素拡散通路を通過する酸素量より
圧倒的に大きく、電流値は一定値を示す限界電流値のま
まで変化しない。したがって、電極膜や固体電解質板が
劣化すると各電流値の比率が初期値より大きく異なるこ
ととなりセンサの異常が検出できる。つまり、複数個の
拡散律速体が同時にしかも同じ割合だけその特性が変化
することは希有であることを活用し、1個の素子に複数
個の酸素感受体を形成しその比率を比較することで自己
診断が実現できる訳である。
[Operation] According to the present invention, when an abnormality such as clogging or leakage of the diffusion hole occurs due to the above structure, the ratio of each current value obtained from multiple pairs of electrode films will be a value that is significantly different from the initial value at the beginning of sensor use. By comparing the initial value when the sensor is first used and the value during use of the sensor, it is possible to self-diagnose whether there is an abnormality in the sensor, and if an abnormality occurs, it can be determined as abnormal and erroneous measurements can be prevented. This will be explained in detail as follows. (1) In the case of clogging of the diffusion passages, if clogging occurs on one oxygen diffusion passage side, the current value thereof decreases, but the current values on the other oxygen diffusion passage sides do not change. Therefore, each current value ratio differs greatly from the initial value, and a sensor abnormality can be detected. (2) Regarding the deterioration of the seal of the diffusion barrier due to the occurrence of cracks, when a crack occurs on the side of one diffusion barrier, the current value increases, but the current value on the side of the other diffusion barrier does not change. Therefore, the ratio of each current value differs greatly from the initial value, and an abnormality in the sensor can be detected. (3) Regarding deterioration of the electrode film and solid electrolyte plate, when insulation resistance is generated in the element due to deterioration, the oxygen ion conductivity of the solid electrolyte plate decreases. Therefore, on the side that begins to show a limiting current at a high critical voltage value, the ratio of the amount of oxygen that can be discharged from the solid electrolyte plate to the amount of oxygen that passes through the oxygen diffusion passage is smaller than the initial value, and the current value does not show the limiting current value and is initially used. becomes smaller than the value. On the other hand, on the side where the limiting current begins to show at low critical voltage, even if insulation resistance is generated in the element, the amount of oxygen that can be discharged from the solid electrolyte plate is overwhelmingly larger than the amount of oxygen that passes through the oxygen diffusion path, and the current value is The limit current value remains constant and does not change. Therefore, when the electrode film or the solid electrolyte plate deteriorates, the ratio of each current value differs greatly from the initial value, and an abnormality in the sensor can be detected. In other words, taking advantage of the fact that it is rare for the characteristics of multiple diffusion-limiting bodies to change at the same time and at the same rate, we can form multiple oxygen receptors in one element and compare their ratios. This means that self-diagnosis can be realized.

【0008】[0008]

【実施例】以下、本発明の実施例を添付図面に基づいて
説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Examples of the present invention will be described below with reference to the accompanying drawings.

【0009】図1は、本発明の1実施例である限界電流
式酸素センサの素子の組み立て図である。1は酸素イオ
ン伝導性固体電解質板であり、対となる電極膜2aと2
b、3aと3bが両面に2個対で形成されている。この
固体電解質板1の片側上部に2個のカソード側電極膜2
aおよび3aを囲み、始端と終端がお互いに間隔を有す
るように配置された2個の螺旋型スペーサ4’および4
”が配置されている。そして螺旋型スペーサ4’および
4”の上部にシール板5が配置され、さらにシール板5
の上部に加熱部6が配置されセンサ素子を構成している
。なお、拡散律速体は、螺旋型スペーサ4’および4”
とシール板5とからなり、酸素拡散通路が螺旋型スペー
サ4’もしくは4”の相対向する隔壁と固体電解質板1
とシール板5で囲まれる螺旋型の空間で形成され酸素は
前記螺旋型空間を経由してカソード側電極膜2aもしく
は3aへ拡散する。一方、電極膜2aと3aの面積(ま
たは電極膜2bと3bの面積)をお互いに異ならす方法
、または螺旋型スペーサ4’と4”の長さと断面積の比
率を各々変化させる方法、の何れかの方法を用いて限界
電流を示し始める臨界電圧値を各々ごとに変化させてい
る。
FIG. 1 is an assembly diagram of an element of a limiting current type oxygen sensor which is an embodiment of the present invention. 1 is an oxygen ion conductive solid electrolyte plate, and a pair of electrode films 2a and 2
b, 3a and 3b are formed in pairs on both sides. Two cathode side electrode films 2 are placed on one side upper part of this solid electrolyte plate 1.
Two spiral spacers 4' and 4 surround a and 3a and are arranged such that their starting and ending ends are spaced apart from each other.
A seal plate 5 is disposed on top of the spiral spacers 4' and 4'', and a seal plate 5 is disposed on top of the spiral spacers 4' and 4''.
A heating section 6 is arranged on the upper part of the sensor element to constitute a sensor element. In addition, the diffusion-limiting body is the spiral spacer 4' and 4''
and a sealing plate 5, and the oxygen diffusion passage is formed by a spiral spacer 4' or 4'' facing partition walls and a solid electrolyte plate 1.
Oxygen diffuses into the cathode electrode film 2a or 3a via the spiral space. On the other hand, either a method in which the areas of the electrode films 2a and 3a (or areas of the electrode films 2b and 3b) are made different from each other, or a method in which the ratio of the length and cross-sectional area of the spiral spacers 4' and 4'' are respectively changed. Using this method, the critical voltage value at which the limiting current begins to be shown is varied for each.

【0010】図2は、本発明の1実施例である限界電流
式酸素センサの概略回路構成図である。素子に形成した
対となる電極膜2a,2bおよび対となる電極膜3a,
3bに所定電圧を印加する印加電圧発生手段7と、印加
電圧発生手段7により電極膜2a,2bおよび3a,3
bから得られる各々の電流を検出する電流検出手段8’
および電流検出手段8”、2個の電流検出手段から得ら
れる各電流値の比率を比較する電流比比較手段9と、前
記比率がセンサ素子使用の初期値より大きく異なる場合
異常と判断する電流比判断手段10とからなる。
FIG. 2 is a schematic circuit diagram of a limiting current type oxygen sensor which is an embodiment of the present invention. A pair of electrode films 2a and 2b formed on the element and a pair of electrode films 3a,
Applied voltage generating means 7 applies a predetermined voltage to electrode films 2a, 2b and 3a, 3.
Current detection means 8' for detecting each current obtained from b.
and a current detection means 8'', a current ratio comparison means 9 for comparing the ratio of each current value obtained from the two current detection means, and a current ratio for determining an abnormality if the ratio is significantly different from the initial value when the sensor element is used. It consists of a determining means 10.

【0011】一方、加熱部6は電力発生手段11により
所定電力が印加され、この電力発生手段11には発生電
圧を検出する電圧検出手段12もしくは発生電流を検出
する電流検出手段13、さらに前記発生電圧もしくは発
生電流がセンサ素子使用の初期値より大きく異なる場合
異常と判断する判断手段14が併設されている。
On the other hand, a predetermined power is applied to the heating section 6 by a power generating means 11, and the power generating means 11 is further provided with a voltage detecting means 12 for detecting the generated voltage or a current detecting means 13 for detecting the generated current. A determining means 14 is provided which determines that there is an abnormality if the voltage or generated current is significantly different from the initial value when the sensor element is used.

【0012】次に具体例にもとづいて説明する。図1の
限界電流式酸素センサにおいて固体電解質板1としてZ
rO2 ・Y2 O3 (Y2 O3 8mol%添加
)、電極膜2a,2bおよび3a,3bとして白金、螺
旋型スペーサ4’および4”として硝子(熱膨脹係数は
ZrO2 ・Y2 O3 と概略同一であり、所定粒径
の耐熱性粒子を微量含有)、シール板5としてフォルス
テライト、加熱部6として白金ヒータを用いた。製法に
ついて説明する。 まず、電極膜2a,2bおよび3a,3bを固体電解質
板1のうえに、さらに螺旋型スペーサ4’および4”を
固体電解質板1のうえに厚膜印刷技術および焼成技術を
用いて形成した。一方、シール板5のうえに加熱部6を
、厚膜印刷技術および焼成技術を用いて形成した。つぎ
に、固体電解質板1上の螺旋型スペーサ4’,4”とシ
ール板5とを積層し加熱溶融することで酸素拡散通路を
形成した。そしてリード線(記載せず)を取りつけて完
成である。完成品素子の寸法は10×10×0.9mm
である。なお、この完成品素子は、評価用装置を構成す
るプラスチックス製底体のリード端子にリード線を電気
的に接合しその後、断熱性充填材で外包しさらにこの断
熱性充填材をステンレス製金網で外包して評価用装置と
した。以下、この酸素センサ評価用装置(φ24×17
mm)を用いてその特性を検定した。
Next, a description will be given based on a specific example. In the limiting current type oxygen sensor shown in Fig. 1, Z is used as the solid electrolyte plate 1.
rO2 ・Y2 O3 (Y2 O3 8 mol % added), platinum for the electrode films 2a, 2b and 3a, 3b, glass for the spiral spacers 4' and 4'' (the coefficient of thermal expansion is approximately the same as ZrO2 ・Y2 O3, and the predetermined grain size is Forsterite was used as the seal plate 5, and a platinum heater was used as the heating part 6.The manufacturing method will be explained.First, the electrode films 2a, 2b and 3a, 3b are placed on the solid electrolyte plate 1. Further, spiral spacers 4' and 4'' were formed on the solid electrolyte plate 1 using thick film printing technology and baking technology. On the other hand, a heating section 6 was formed on the sealing plate 5 using a thick film printing technique and a baking technique. Next, the spiral spacers 4', 4'' on the solid electrolyte plate 1 and the seal plate 5 were laminated and heated and melted to form an oxygen diffusion passage.Then, lead wires (not shown) were attached to complete the process. Yes.The dimensions of the finished device are 10 x 10 x 0.9 mm.
It is. In addition, in this finished device, the lead wires are electrically connected to the lead terminals of the plastic bottom body that constitutes the evaluation device, and then the outside is wrapped with a heat insulating filler, and the heat insulating filler is then wrapped in a stainless steel wire mesh. The device was packaged with a plastic bag and used as an evaluation device. Below, this oxygen sensor evaluation device (φ24×17
mm) was used to test its characteristics.

【0013】(実験1−1)螺旋型スペーサ4’で形成
される酸素拡散通路を断面積が0.4×0.03mm2
 で長さ10mmとしたセンサI(電極面積11mm2
 )と、螺旋型スペーサ4”で形成される酸素拡散通路
を断面積が0.6×0.03mm2 で長さ8mmとし
たセンサII(電極面積11mm2 )を固体電解質板
1とシール板5の間に形成した素子を試作した。この酸
素拡散通路の寸法を変化させた素子を酸素センサ評価用
装置に内包し、印加電圧と発生電流の相関を測定した。 この結果を図3に示す。限界電流を示し始める臨界電圧
値は、センサIは0.8Vであるのに対し、センサII
は1.4Vであり、それぞれ異なっている。
(Experiment 1-1) The oxygen diffusion passage formed by the spiral spacer 4' has a cross-sectional area of 0.4 x 0.03 mm2.
Sensor I with a length of 10 mm (electrode area 11 mm2)
) and a spiral spacer 4'' with a cross-sectional area of 0.6 x 0.03 mm2 and a length of 8 mm. Sensor II (electrode area 11 mm2) is placed between the solid electrolyte plate 1 and the seal plate 5. We prototyped an element with a different dimension of the oxygen diffusion path.We included this element in an oxygen sensor evaluation device and measured the correlation between the applied voltage and the generated current.The results are shown in Figure 3.The limiting current The critical voltage value at which sensor II begins to exhibit is 0.8 V for sensor I, while
are 1.4V and are different from each other.

【0014】この酸素拡散通路の寸法を変化させること
で限界電流を示し始める臨界電圧値が変化する理由は、
断面積/長さの比が大きいと酸素拡散通路を通過する酸
素量が大きくなり、酸素拡散通路を通過する酸素量の固
体電解質板の排出できる酸素量に対する割合が大きくな
り、限界電流値が大きくなって高臨界電圧値で限界電流
を示し始める。一方、断面積/長さの比が小さいと酸素
拡散通路を通過する酸素量が小さくなり、酸素拡散通路
を通過する酸素量の固体電解質板の排出できる酸素量に
対する割合が小さくなり、限界電流値が小さくなって低
臨界電圧値で限界電流を示し始める。
[0014] The reason why the critical voltage value at which the limiting current starts to show changes by changing the dimensions of this oxygen diffusion path is as follows.
When the cross-sectional area/length ratio is large, the amount of oxygen passing through the oxygen diffusion passage becomes large, and the ratio of the amount of oxygen passing through the oxygen diffusion passage to the amount of oxygen that can be discharged from the solid electrolyte plate becomes large, resulting in a large limiting current value. and begins to show a limiting current at a high critical voltage value. On the other hand, if the cross-sectional area/length ratio is small, the amount of oxygen passing through the oxygen diffusion passage will be small, and the ratio of the amount of oxygen passing through the oxygen diffusion passage to the amount of oxygen that can be discharged from the solid electrolyte plate will be small, and the limiting current value becomes small and begins to show a limiting current at a low critical voltage value.

【0015】(実験1−2)前述のセンサIおよびセン
サIIについて酸素濃度と発生電流の相関を測定したこ
の結果を図4に示す。発生電流は酸素濃度に対して直線
関係にあることがわかる。
(Experiment 1-2) FIG. 4 shows the results of measuring the correlation between oxygen concentration and generated current for Sensor I and Sensor II described above. It can be seen that the generated current has a linear relationship with the oxygen concentration.

【0016】一方、センサIおよびセンサIIについて
その発生電流の比率(センサII電流/センサI電流)
を算出し、酸素濃度との相関を表わした結果を図5に示
す。 発生電流の比率は酸素濃度にかかわらずほぼ一定である
ことがわかる。
On the other hand, the ratio of the generated currents for sensor I and sensor II (sensor II current/sensor I current)
Figure 5 shows the results of calculating the correlation with oxygen concentration. It can be seen that the ratio of generated current is almost constant regardless of the oxygen concentration.

【0017】(実験1−3)前述のセンサIおよびセン
サIIにおいて、センサIの酸素拡散通路の入口部分を
半分ほど閉塞してセンサIの酸素拡散通路を目詰まりさ
せた。このセンサについて発生電流を測定した結果を(
表1)に示す。
(Experiment 1-3) In the aforementioned Sensor I and Sensor II, the oxygen diffusion passage of Sensor I was clogged by blocking about half of the inlet portion of the oxygen diffusion passage of Sensor I. The results of measuring the current generated by this sensor (
Table 1) shows the results.

【0018】センサIの酸素拡散通路目詰まりにより発
生電流の比率が使用初期値より変化しセンサ異常が検出
できる。
Due to clogging of the oxygen diffusion passage of sensor I, the ratio of generated current changes from the initial value of use, and a sensor abnormality can be detected.

【0019】[0019]

【表1】[Table 1]

【0020】(実験1−4)前述のセンサIおよびセン
サIIに対してヒートショックを与え、センサIおよび
センサIIの酸素拡散通路のシール度合を劣化させた。 このセンサについて発生電流を測定した結果を(表2)
に示す。
(Experiment 1-4) A heat shock was applied to the aforementioned sensor I and sensor II to deteriorate the degree of sealing of the oxygen diffusion passages of sensor I and sensor II. The results of measuring the generated current for this sensor (Table 2)
Shown below.

【0021】[0021]

【表2】[Table 2]

【0022】センサの酸素拡散通路のシール度合劣化に
より発生電流の比率が劣化前より変化しセンサ異常が検
出できる。
Due to the deterioration of the sealing degree of the oxygen diffusion passage of the sensor, the ratio of the generated current changes from before the deterioration, and an abnormality in the sensor can be detected.

【0023】(実験1−5)前述のセンサIおよびセン
サIIについて2000時間の耐久試験を実施した。こ
のセンサについて発生電流を測定した結果を(表3)に
示す。
(Experiment 1-5) A 2000 hour durability test was conducted on the aforementioned Sensor I and Sensor II. The results of measuring the generated current for this sensor are shown in (Table 3).

【0024】[0024]

【表3】[Table 3]

【0025】耐久試験を実施したセンサの発生電流は、
センサIは試験前後は同一であるのに対し、センサII
は耐久試験後は耐久試験前より減少している。
The current generated by the sensor subjected to the durability test is:
Sensor I is the same before and after the test, whereas sensor II
is smaller after the durability test than before the durability test.

【0026】この理由は、センサIは耐久試験前におい
ては限界電流を示し始める臨界電圧値が0.8Vである
ので、耐久試験を実施しても試験印加電圧1.40Vで
は充分に限界電流を示したままでありその発生電流は変
化しない。しかし、センサIIは耐久試験前においては
限界電流を示し始める臨界電圧値が1.4Vであり、耐
久試験を実施したら試験印加電圧1.40Vではその発
生電流をイオン電流へ変化していた。そのため、センサ
IIの発生電流は一定値をしめす限界電流領域より外れ
、値の小さいイオン電流となる訳である。
The reason for this is that before the durability test, the critical voltage value at which Sensor I starts to show a limiting current is 0.8V, so even if the durability test is carried out, the test applied voltage of 1.40V is not enough to show the limiting current. It remains as shown and the generated current does not change. However, before the durability test, Sensor II had a critical voltage value of 1.4V at which it began to show a limiting current, and when the durability test was conducted, the generated current changed to an ionic current at the test applied voltage of 1.40V. Therefore, the current generated by sensor II deviates from the limit current region of a constant value, resulting in an ionic current having a small value.

【0027】このことより発生電流の比率は、耐久試験
後は耐久試験前より減少してセンサ異常が検出できる。
From this, the ratio of generated current decreases after the durability test compared to before the durability test, and sensor abnormality can be detected.

【0028】(実験2)螺旋型スペーサ4’で形成され
る酸素拡散通路を断面積0.6×0.03mm2 ・長
さ12mmとしたセンサIII (電極面積9mm2 
)と、螺旋型スペーサ4”で形成される酸素拡散通路を
断面積0.6×0.03mm2 ・長さ12mmとした
センサIV(電極面積13mm2 )を固体電解質板1
とシール板5の間に形成した素子を試作した。この電極
面積を変化させた素子を酸素センサ評価用装置に内包し
、印加電圧と発生電流の相関を測定した。この結果を図
3に示す。
(Experiment 2) Sensor III in which the oxygen diffusion passage formed by the spiral spacer 4' had a cross-sectional area of 0.6 x 0.03 mm2 and a length of 12 mm (electrode area 9 mm2)
) and a spiral spacer 4" with a cross-sectional area of 0.6 x 0.03 mm2 and a length of 12 mm. Sensor IV (electrode area: 13 mm2) is attached to the solid electrolyte plate 1.
A prototype element was fabricated between the seal plate 5 and the seal plate 5. The device with the electrode area varied was included in an oxygen sensor evaluation device, and the correlation between the applied voltage and the generated current was measured. The results are shown in FIG.

【0029】限界電流を示し始める臨界電圧値は、セン
サIII は1.4Vであるのに対し、センサIVは1
.2Vであり、それぞれ異なっている。
The critical voltage value at which the limiting current begins to show is 1.4 V for sensor III, whereas it is 1.4 V for sensor IV.
.. 2V, and each is different.

【0030】この素子の発生電流の比率(センサIV電
流/センサIII電流)は、酸素濃度にかかわらずほぼ
一定の0.784であり、前回同様に目詰まり試験や酸
素拡散通路のシール劣化試験、さらに2000時間耐久
試験を実施したところ、発生電流の比率が試験前後で劣
化し、センサ異常が検出できた。特に、電極面積を変化
させることで限界電流を示し始める臨界電圧値が、セン
サIII とセンサIVがそれぞれ異なっていることは
、耐久試験を実施しても充分に限界電流を示したままで
ありその発生電流は変化しないセンサIVと、耐久試験
を実施したらその発生電流はイオン電流へ変化しそのた
め発生電流は値の小さいイオン電流となるセンサIII
 とに区別できる利点がある。
The ratio of current generated by this element (sensor IV current/sensor III current) is almost constant at 0.784 regardless of the oxygen concentration, and as in the previous case, the clogging test, oxygen diffusion passage seal deterioration test, When a further 2000 hour durability test was conducted, the ratio of generated current deteriorated before and after the test, and a sensor abnormality was detected. In particular, the fact that the critical voltage value at which a limiting current begins to be shown by changing the electrode area is different between Sensor III and Sensor IV means that even if an endurance test is conducted, the critical current will still be sufficiently shown. Sensor IV, whose current does not change, and Sensor III, whose generated current changes to ionic current after the durability test is performed, and therefore the generated current becomes ionic current with a small value.
There is an advantage in being able to distinguish between

【0031】この電極面積を変化させることで限界電流
を示し始める臨界電圧値が変化する理由は、電極面積が
小さいと固体電解質板の排出できる酸素量が少なくなり
、酸素拡散通路を通過する酸素量の固体電解質板の排出
できる酸素量に対する割合が大きくなり、限界電流値が
大きくなって高臨界電圧値で限界電流を示し始めるため
である。一方、電極面積が大きいと固体電解質板の排出
できる酸素量が大きくなり、酸素拡散通路を通過する酸
素量の固体電解質板の排出できる酸素量に対する割合が
小さくなり、限界電流値が小さくなって低臨界電圧値で
限界電流を示し始める。
[0031] The reason why the critical voltage value at which the limiting current starts to change by changing the electrode area is that when the electrode area is small, the amount of oxygen that can be discharged from the solid electrolyte plate decreases, and the amount of oxygen that passes through the oxygen diffusion path decreases. This is because the ratio of the amount of oxygen to the amount of oxygen that can be discharged by the solid electrolyte plate increases, and the critical current value increases and begins to show a critical current at a high critical voltage value. On the other hand, if the electrode area is large, the amount of oxygen that can be discharged from the solid electrolyte plate will be large, and the ratio of the amount of oxygen passing through the oxygen diffusion passage to the amount of oxygen that can be discharged from the solid electrolyte plate will be small, and the limiting current value will be small. It begins to show a limiting current at a critical voltage value.

【0032】(実験3)センサは、加熱体に印加する電
力が減少すると発生電流が減少し誤測定となる。その防
止のため、前記印加電圧もしくは発生電流がセンサ素子
使用の初期値より大きく異なる場合異常と判断する判断
手段を設けた。前述のセンサIおよびセンサIIについ
て加熱体印加電力を変化させた場合の発生電流を測定し
た結果を(表4)に示す。
(Experiment 3) In the sensor, when the electric power applied to the heating element decreases, the generated current decreases, resulting in erroneous measurements. In order to prevent this, a determining means is provided which determines that an abnormality occurs when the applied voltage or generated current differs greatly from the initial value when the sensor element is used. Table 4 shows the results of measuring the current generated when the electric power applied to the heating body was changed for the above-mentioned Sensor I and Sensor II.

【0033】[0033]

【表4】[Table 4]

【0034】センサ素子の発生電流は加熱体印加電力の
0.75乗に比例して変化するが、印加電圧もしくは発
生電流がセンサ素子使用値より大きく異なる場合異常と
判断する判断手段を設けることにより、発生電流の変化
による誤測定が防止できることがわかる。
The current generated by the sensor element changes in proportion to the power applied to the heating element to the 0.75th power, but by providing a judgment means that determines that there is an abnormality if the applied voltage or the generated current differs greatly from the value used by the sensor element. It can be seen that erroneous measurements due to changes in the generated current can be prevented.

【0035】図7は、本発明の他実施例である限界電流
式酸素センサの素子の組み立て図である。図7において
前記図1の素子実施例と相違する点は、酸素イオン伝導
性固体電解質体1の拡散律速体(螺旋型スペーサ4’お
よび4”,シール板5)に囲まれない部分に対となる参
照電極膜15a,15bを配置した構成である。
FIG. 7 is an assembly diagram of an element of a limiting current type oxygen sensor which is another embodiment of the present invention. The difference in FIG. 7 from the device embodiment of FIG. This is a configuration in which reference electrode films 15a and 15b are arranged.

【0036】図8は、本発明の他実施例である図7の限
界電流式酸素センサの概略回路構成図である。図8にお
いて図2の回路実施例と相違する点は、対となる参照電
極膜15a,15bに所定電圧を印加する電圧発生手段
16と、前記印加電圧発生手段16における発生電流を
検出する電流検出手段17と、前記発生電流の値がセン
サ素子使用の初期値より大きく異なる場合異常と判断す
る参照電極電流判断手段18を併設した配置した構成で
ある。
FIG. 8 is a schematic circuit diagram of the limiting current type oxygen sensor shown in FIG. 7, which is another embodiment of the present invention. 8 is different from the circuit embodiment of FIG. 2 in that a voltage generating means 16 applies a predetermined voltage to the pair of reference electrode films 15a and 15b, and a current detection means 16 detects the current generated in the applied voltage generating means 16. This configuration includes a means 17 and a reference electrode current determining means 18 that determines an abnormality when the value of the generated current is significantly different from the initial value when the sensor element is used.

【0037】(実験4)参照電極膜の電極面積9mm2
 について加熱体印加電力を変化させた場合の発生電流
を測定した結果を図9に示す。
(Experiment 4) Electrode area of reference electrode film: 9 mm2
FIG. 9 shows the results of measuring the generated current when the power applied to the heating body was varied.

【0038】発生電流は、加熱体の温度の関数であるた
め加熱体印加電力を一定にした場合酸素濃度にかかわら
ず概ね一定であり、発生電流の値がセンサ素子使用の初
期値より大きく異なる場合加熱体への印加電力が異常と
判断できることがわかる。
Since the generated current is a function of the temperature of the heating element, it is approximately constant regardless of the oxygen concentration when the power applied to the heating element is constant; however, if the value of the generated current differs greatly from the initial value when using the sensor element. It can be seen that the power applied to the heating element can be determined to be abnormal.

【0039】本発明では拡散律速体として、螺旋型スペ
ーサとシール板の構成をその実施例で掲げているが、他
の構成(例えば、ピンホール型拡散律速体、多孔質型拡
散律速体)でも同様に効果が有った。
[0039] In the present invention, the configuration of a spiral spacer and a seal plate is used as the diffusion barrier in the examples, but other configurations (for example, pinhole type diffusion barrier, porous diffusion barrier) may also be used. It was equally effective.

【0040】[0040]

【発明の効果】以上のように本発明の限界電流式酸素セ
ンサによれば、次の効果が得られる。 (1)酸素イオン伝導性固体電解質体に複数対の電極膜
とこの電極膜の片側を囲む複数個の拡散律速体を配置し
、複数対の電極膜から得られる各々の電流値の比率を比
較する構成としたので、この電流値の比率がセンサ素子
使用の初期値より大きく異なる場合、素子の異常(目詰
まりもしくは拡散律速体シール劣化)と判断できるとい
う効果が得られる。 (2)電極膜面積もしくは前記拡散律速体の酸素拡散通
路の長さと断面積をそれぞれ異ならせて限界電流が示し
始める臨界電圧値をそれぞれ異ならせたセンサ素子構成
としているので、素子の異常(耐久性に絡む発生電流の
低下)が、電流値の比率がセンサ素子使用の初期値より
大きく異なることで検出できる。 (3)上記構成によりセンサの自己判断ができ、万が一
異状の場合異常と判断して誤測定を防止できる。
[Effects of the Invention] As described above, according to the limiting current type oxygen sensor of the present invention, the following effects can be obtained. (1) Arrange multiple pairs of electrode membranes and multiple diffusion control bodies surrounding one side of the electrode membranes in an oxygen ion conductive solid electrolyte body, and compare the ratio of each current value obtained from the multiple pairs of electrode membranes. Since the current value ratio is significantly different from the initial value when the sensor element is used, it can be determined that the element is abnormal (clogging or diffusion barrier seal deterioration). (2) Since the sensor element is configured so that the electrode film area or the length and cross-sectional area of the oxygen diffusion path of the diffusion barrier are different, the critical voltage value at which the limiting current starts to be shown is different. (decrease in the generated current related to the temperature) can be detected when the ratio of the current values is significantly different from the initial value when the sensor element is used. (3) With the above configuration, the sensor can make a self-judgment, and in the unlikely event that something is wrong, it can be determined as an abnormality and erroneous measurements can be prevented.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の1実施例である限界電流式酸素センサ
の素子組み立て斜視図
[Fig. 1] A perspective view of an element assembly of a limiting current type oxygen sensor which is an embodiment of the present invention.

【図2】同限界電流式酸素センサの概略回路構成図[Figure 2] Schematic circuit diagram of the limiting current type oxygen sensor

【図
3】同限界電流式酸素センサの印加電圧と発生電流の相
関を示す図
[Figure 3] Diagram showing the correlation between applied voltage and generated current of the same limiting current type oxygen sensor

【図4】同限界電流式酸素センサの酸素濃度と発生電流
の相関を示す図
[Figure 4] Diagram showing the correlation between oxygen concentration and generated current of the same limiting current type oxygen sensor

【図5】同限界電流式酸素センサの酸素濃度と発生電流
比の相関を示す図
[Figure 5] Diagram showing the correlation between oxygen concentration and generated current ratio of the same limiting current type oxygen sensor

【図6】本発明の他実施例である限界電流式酸素センサ
の印加電圧と発生電流の相関を示す図
FIG. 6 is a diagram showing the correlation between applied voltage and generated current of a limiting current type oxygen sensor which is another embodiment of the present invention.

【図7】同限界電流式酸素センサの素子組み立て斜視図
[Figure 7] A perspective view of the element assembly of the same limiting current type oxygen sensor

【図8】同限界電流式酸素センサの概略回路構成図[Figure 8] Schematic circuit diagram of the limiting current type oxygen sensor

【図
9】同限界電流式酸素センサの参照電極の酸素濃度電圧
と発生電流の相関を示す図
[Figure 9] Diagram showing the correlation between the oxygen concentration voltage of the reference electrode and the generated current of the same limiting current type oxygen sensor

【図10】従来の限界電流式酸素センサの素子構成図[Figure 10] Element configuration diagram of a conventional limiting current type oxygen sensor

【符号の説明】[Explanation of symbols]

1  酸素イオン伝導性固体電解質体 2a,2b,3a,3b  電極膜 4’,4”  螺旋型スペーサ 5  シール板 6  加熱体 7a,7b  参照電極膜 1 Oxygen ion conductive solid electrolyte body 2a, 2b, 3a, 3b electrode film 4’, 4” spiral spacer 5 Seal plate 6 Heating body 7a, 7b Reference electrode film

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】対となる電極膜が両面に複数対形成された
酸素イオン伝導性固体電解質体と、前記固体電解質体の
片側に位置し前記電極膜を個々に囲むように配置されか
つ流入する酸素分子の移動を制限する酸素拡散通路を有
する複数個の拡散律速体とからなり、前記電極膜面積も
しくは前記酸素拡散通路の長さと断面積をそれぞれ異な
らせて限界電流が示し始める臨界電圧値をそれぞれ異な
らせたセンサ素子と、前記複数対の電極膜に所定電圧を
印加する印加電圧発生手段と、前記印加電圧発生手段に
より前記複数対の電極膜から得られる各々の電流を検出
する複数個の検出手段と、前記検出手段から得られる各
電流値の比率を比較する比較手段と、前記各電流値の比
率値がセンサ素子使用の初期値より大きく異なる場合異
常と判断する判断手段とを有する限界電流式酸素センサ
1. An oxygen ion conductive solid electrolyte body in which a plurality of paired electrode films are formed on both surfaces, and the solid electrolyte body is located on one side of the solid electrolyte body and is arranged so as to surround each of the electrode films, and flows into the solid electrolyte body. It consists of a plurality of diffusion rate limiting bodies each having an oxygen diffusion path that restricts the movement of oxygen molecules, and the electrode film area or the length and cross-sectional area of the oxygen diffusion path are made different so that the critical voltage value at which the limiting current begins to be determined is determined. A plurality of sensor elements each having different sensor elements, an applied voltage generating means for applying a predetermined voltage to the plurality of pairs of electrode films, and a plurality of applied voltage generating means for detecting each current obtained from the plurality of pairs of electrode films by the applied voltage generating means. A limit comprising a detection means, a comparison means for comparing the ratio of each current value obtained from the detection means, and a judgment means for determining that there is an abnormality when the ratio value of each of the current values is significantly different from the initial value when using the sensor element. Current type oxygen sensor.
【請求項2】拡散律速体が、始端と終端がお互いに間隔
を有するように配置された螺旋型スペーサと、前記螺旋
型スペーサの上部に配置されたシール板とから構成され
る請求項1記載の限界電流式酸素センサ。
2. The diffusion barrier comprises a spiral spacer whose starting end and terminal end are spaced apart from each other, and a seal plate located above the spiral spacer. Limiting current type oxygen sensor.
【請求項3】センサ素子に近接して配置し酸素イオン伝
導性固体電解質体を加熱する加熱体と、前記加熱体に所
定電力を印加する電力発生手段と、前記電力発生手段に
おける印加電圧もしくは発生電流を検出する検出手段と
、前記印加電圧もしくは発生電圧の値がセンサ素子使用
の初期値より大きく異なる場合異常と判断する判断手段
とを具備した請求項1記載の限界電流式酸素センサ。
3. A heating element disposed close to the sensor element to heat the oxygen ion conductive solid electrolyte body, power generation means for applying a predetermined power to the heating element, and a voltage applied or generated by the power generation means. 2. The limiting current type oxygen sensor according to claim 1, further comprising a detection means for detecting a current, and a judgment means for determining an abnormality when the value of the applied voltage or the generated voltage is significantly different from an initial value when the sensor element is used.
【請求項4】拡散律速体に囲まれない部分に配置され酸
素イオン伝導性固体電解質体の両面に位置した対となる
参照電極膜と、前記対となる参照電極膜に所定電圧を印
加する電圧発生手段と、前記印加電圧発生手段における
発生電流を検出する検出手段と、前記発生電流の値がセ
ンサ素子使用の初期値より大きく異なる場合異常と判断
する判断手段とを具備した請求項1記載の限界電流式酸
素センサ。
4. A pair of reference electrode membranes located on both sides of the oxygen ion conductive solid electrolyte body and arranged in a portion not surrounded by the diffusion barrier, and a voltage for applying a predetermined voltage to the pair of reference electrode membranes. 2. The sensor according to claim 1, further comprising a generating means, a detecting means for detecting the generated current in the applied voltage generating means, and a determining means for determining that there is an abnormality when the value of the generated current is significantly different from an initial value when the sensor element is used. Limiting current type oxygen sensor.
JP3024617A 1991-02-19 1991-02-19 Limit current type oxygen sensor Expired - Fee Related JP3010753B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3024617A JP3010753B2 (en) 1991-02-19 1991-02-19 Limit current type oxygen sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3024617A JP3010753B2 (en) 1991-02-19 1991-02-19 Limit current type oxygen sensor

Publications (2)

Publication Number Publication Date
JPH04264250A true JPH04264250A (en) 1992-09-21
JP3010753B2 JP3010753B2 (en) 2000-02-21

Family

ID=12143111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3024617A Expired - Fee Related JP3010753B2 (en) 1991-02-19 1991-02-19 Limit current type oxygen sensor

Country Status (1)

Country Link
JP (1) JP3010753B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6007697A (en) * 1996-03-21 1999-12-28 Ngk Spark Plug Co., Ltd. Method for cleaning a limiting current type gas sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6007697A (en) * 1996-03-21 1999-12-28 Ngk Spark Plug Co., Ltd. Method for cleaning a limiting current type gas sensor

Also Published As

Publication number Publication date
JP3010753B2 (en) 2000-02-21

Similar Documents

Publication Publication Date Title
EP0188900A2 (en) Electrochemical device
JP6321968B2 (en) Gas sensor element
JP6596535B2 (en) Gas sensor
US6770180B1 (en) Electrochemical measuring sensor
JP2017207396A (en) Gas concentration detecting device
JPH04264250A (en) Limiting-current-type oxygen sensor
JP3831320B2 (en) Limit current type oxygen sensor
JP2000180402A (en) Electrochemical measurement sensor
JP3308624B2 (en) Hydrocarbon sensor
JP2004514904A (en) Heating equipment
JPH09196891A (en) Air-fuel ratio sensing element
JP3846386B2 (en) Gas sensor element
JP3067600B2 (en) Limit current type oxygen sensor
JPH04340459A (en) Limit current type oxygen sensor
JPH04164246A (en) Limiting current type oxygen sensor
JP4358734B2 (en) Sensor element
JP3010752B2 (en) Limit current type oxygen sensor
JPH07244012A (en) Limit current type oxygen sensor
JPH04340458A (en) Limit current type oxygen sensor
JP3054997B2 (en) Limit current type oxygen sensor device
JPH04340457A (en) Limit current type oxygen sensor
JP6772096B2 (en) Gas concentration detector
JP3031248B2 (en) Self-diagnosis device for limiting current type oxygen sensor
JP4881334B2 (en) Insulation inspection method for sensor element
JPH0921782A (en) Oxygen concentration sensor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071210

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081210

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091210

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees