JPH04340457A - Limit current type oxygen sensor - Google Patents

Limit current type oxygen sensor

Info

Publication number
JPH04340457A
JPH04340457A JP3113210A JP11321091A JPH04340457A JP H04340457 A JPH04340457 A JP H04340457A JP 3113210 A JP3113210 A JP 3113210A JP 11321091 A JP11321091 A JP 11321091A JP H04340457 A JPH04340457 A JP H04340457A
Authority
JP
Japan
Prior art keywords
oxygen
sensor
electrode film
solid electrolyte
main electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3113210A
Other languages
Japanese (ja)
Inventor
Kunihiro Tsuruta
邦弘 鶴田
Takeshi Nagai
彪 長井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP3113210A priority Critical patent/JPH04340457A/en
Publication of JPH04340457A publication Critical patent/JPH04340457A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)

Abstract

PURPOSE:To impart self-diagnostic function for preventing erroneous measurement to a limit current type oxygen sensor for measuring the concn. of oxygen in an atmosphere. CONSTITUTION:The current generated in a main electrode film 2a in such a case that oxygen flows in (or flows out of) an oxygen diffusion passage 5 through an oxygen ion conductive solid electrolyte plate 1 by the operation of an auxiliary electrode film 7b is compared with the current generated in the main electrode film 2a when the auxiliary electrode film 7b is not operated. When a sensor is deteriorated, the ratio of both currents becomes a value different from a use initial value and, therefore, the deterioration of the sensor can be detected.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、雰囲気中の酸素濃度を
測定するための限界電流式酸素センサに関し、特に誤測
定防止用の自己診断機能を付与したセンサである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a limiting current type oxygen sensor for measuring oxygen concentration in an atmosphere, and particularly to a sensor equipped with a self-diagnosis function to prevent erroneous measurements.

【0002】0002

【従来の技術】従来の限界電流式酸素センサの一部破断
傾斜図を図5に示す。1は酸素イオン伝導性を示す固体
電解質板であり、その両面に電極膜2aが形成されてい
る。この固体電解質板1の一方の面に電極膜2aを囲み
、始端と終端がお互いに間隔を有するように酸素拡散通
路5を形成する螺旋型スペーサ3が配置され、さらにシ
ール板4がその上部に配置されている。酸素拡散通路5
は、螺旋型スペーサ3の相対向する隔壁と固体電解質板
1とシール板4で囲まれる螺旋型の空間で形成され、酸
素は前記酸素拡散通路5を経由して電極膜2aへ拡散す
る。シール板4には加熱部6が形成されており、固体電
解質板1を加熱して酸素イオンの伝導を良くしている。
2. Description of the Related Art FIG. 5 shows a partially cutaway oblique view of a conventional limiting current type oxygen sensor. 1 is a solid electrolyte plate exhibiting oxygen ion conductivity, and electrode films 2a are formed on both surfaces thereof. A spiral spacer 3 is arranged on one side of the solid electrolyte plate 1 to surround the electrode film 2a and form an oxygen diffusion passage 5 such that the starting end and the ending end thereof are spaced apart from each other. It is located. Oxygen diffusion passage 5
is formed by a spiral space surrounded by the opposing partition walls of the spiral spacer 3, the solid electrolyte plate 1, and the seal plate 4, and oxygen diffuses into the electrode film 2a via the oxygen diffusion passage 5. A heating section 6 is formed on the seal plate 4 to heat the solid electrolyte plate 1 to improve conduction of oxygen ions.

【0003】動作について説明する。上記構成において
、リード線(記載せず)を介して加熱部6に所定の電力
を印加し、加熱部6を介して固体電解質板1を所定温度
に加熱する。一方、同様にリード線(記載せず)を介し
て両面に形成した電極膜2aにも所定の電圧を印加する
。すると、空気中の酸素は、酸素拡散通路5を経由して
電極膜2aまで流入し、さらにカソード側の電極膜2a
からアノード側の電極膜に向かって酸素イオンとなって
移動し、そしてアノード側の電極膜で再び酸素となって
放出される。この酸素ポンプ作用によって固体電解質板
1を酸素が移動しそれにともない電流が発生するが、酸
素拡散通路によって酸素分子の流入が制限されるため、
酸素濃度に応じた飽和電流(限界電流と称す)が生じる
。この限界電流値が酸素濃度と概略比例関係にあること
より、限界電流値を測定することにより酸素濃度が判明
する。
[0003] The operation will be explained. In the above configuration, a predetermined power is applied to the heating section 6 via a lead wire (not shown), and the solid electrolyte plate 1 is heated to a predetermined temperature via the heating section 6. On the other hand, a predetermined voltage is similarly applied to the electrode films 2a formed on both surfaces via lead wires (not shown). Then, oxygen in the air flows through the oxygen diffusion passage 5 to the electrode film 2a, and further flows into the electrode film 2a on the cathode side.
From there, it moves as oxygen ions toward the electrode film on the anode side, and is released again as oxygen at the electrode film on the anode side. Oxygen moves through the solid electrolyte plate 1 due to this oxygen pumping action, and a current is generated accordingly, but since the oxygen diffusion path restricts the inflow of oxygen molecules,
A saturation current (referred to as a limiting current) occurs depending on the oxygen concentration. Since this limiting current value is approximately proportional to the oxygen concentration, the oxygen concentration can be determined by measuring the limiting current value.

【0004】0004

【発明が解決しようとする課題】センサを実際に使用す
る場合、例えば、加熱部のヒータが劣化して固体電解質
板の温度が低下することが万が一発生すると、正常状態
における特性よりズレが生じ誤測定が起こる。しかし従
来の構造はこの誤測定を検定できないため、センサの酸
素濃度表示値が正しいのか、または誤測定が起ったのか
が不明であり、ただ酸素濃度表示値を信じるしかない。 特に、その酸素濃度表示の検定を実施しにくい一般家庭
においては、室内酸素濃度の欠乏は死に至る危険性があ
るためセンサの信頼性は最優先事項である。そのため、
センサ劣化の自己診断ができない従来の構造は、万が一
センサ劣化が発生し誤測定が起こったとしてもこの誤測
定値を正しい値として表示するため、不都合が生じる。
[Problem to be Solved by the Invention] When actually using a sensor, for example, if the heater in the heating section deteriorates and the temperature of the solid electrolyte plate drops, the characteristics may deviate from the normal state, causing an error. Measurement occurs. However, since the conventional structure cannot verify this erroneous measurement, it is unclear whether the oxygen concentration display value of the sensor is correct or whether an erroneous measurement has occurred, and the only option is to trust the oxygen concentration display value. Particularly in ordinary homes where it is difficult to verify the oxygen concentration display, sensor reliability is a top priority because a lack of indoor oxygen concentration can lead to death. Therefore,
A conventional structure in which self-diagnosis of sensor deterioration cannot be performed is inconvenient because even if sensor deterioration occurs and an erroneous measurement occurs, this erroneous measurement value is displayed as a correct value.

【0005】本発明はかかる従来の問題点を解消するも
ので、センサの異常有無を自己診断し、万が一の場合、
異常と判断して誤測定を防止するものである。
The present invention solves such conventional problems by self-diagnosing the presence or absence of sensor abnormality, and in case of an abnormality,
This is to prevent erroneous measurements by determining it as abnormal.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
に本発明の限界電流式酸素センサは、主電極膜を両面に
形成した酸素イオン伝導性固体電解質板の片側に、前記
主電極膜を囲み始端と終端がお互いに間隔を有する螺旋
型スペーサを配置し、さらに前記螺旋型スペーサの上部
にシール板を配置して、前記螺旋型スペーサの相対向す
る隔壁と前記固体電解質板と前記シール板で囲まれる螺
旋型の空間で酸素拡散孔を形成するとともに、前記酸素
拡散孔に補助電極膜を前記固体電解質板の両面に形成し
て配置したものである。
[Means for Solving the Problems] In order to solve the above problems, the limiting current type oxygen sensor of the present invention has a main electrode film formed on one side of an oxygen ion conductive solid electrolyte plate having main electrode films formed on both sides. A spiral spacer whose encircling start end and end end are spaced apart from each other is disposed, and a seal plate is disposed above the helical spacer, so that the opposite partition walls of the helical spacer, the solid electrolyte plate, and the seal plate are arranged. Oxygen diffusion holes are formed in a spiral space surrounded by , and auxiliary electrode films are formed and arranged on both sides of the solid electrolyte plate in the oxygen diffusion holes.

【0007】[0007]

【作用】一般に限界電流式酸素センサの酸素濃度と限界
電流値の関係は、酸素拡散孔の開口面積と長さ・センサ
温度によって決定される。従って、これらの値がセンサ
劣化により変化すると酸素拡散挙動も変化し、それに伴
い酸素濃度と限界電流値の関係も変化する。
[Operation] Generally, the relationship between the oxygen concentration and the limiting current value of a limiting current type oxygen sensor is determined by the opening area and length of the oxygen diffusion hole and the sensor temperature. Therefore, when these values change due to sensor deterioration, the oxygen diffusion behavior also changes, and the relationship between the oxygen concentration and the limiting current value changes accordingly.

【0008】そこで本発明は、補助電極膜の作動により
固体電解質板を介して酸素拡散孔に酸素をさらに流入し
た場合の主電極膜の発生電流(II)と、補助電極を作
動しない場合における主電極膜の発生電流(I)を比較
し、その比率が使用初期値と異なることでセンサの劣化
を検知する様にしている。この構成において、酸素拡散
孔の開口面積と長さ・センサ温度が一定状態なら、補助
電極の作動有無における主電極膜の電流比率は同じ値を
示す。そのため、センサが正常であると電流の比率は使
用初期値と同一値となる。
[0008] Therefore, the present invention aims to calculate the current (II) generated in the main electrode membrane when oxygen is further flowed into the oxygen diffusion hole through the solid electrolyte plate due to the operation of the auxiliary electrode membrane, and the current generated in the main electrode membrane (II) when the auxiliary electrode is not activated. The current (I) generated by the electrode film is compared, and if the ratio differs from the initial value of use, deterioration of the sensor is detected. In this configuration, if the opening area and length of the oxygen diffusion hole and the sensor temperature are constant, the current ratio of the main electrode film shows the same value whether the auxiliary electrode is activated or not. Therefore, if the sensor is normal, the current ratio will be the same value as the initial value.

【0009】しかし、センサ劣化により酸素拡散孔の開
口面積と長さ・センサ温度が変化すると、酸素拡散孔に
おける酸素拡散挙動が変化する。この酸素拡散挙動の変
化により、補助電極を作動しない場合における主電極膜
(I)の電流が変化する。一方、補助電極の作動により
固体電解質板を介して酸素拡散孔に酸素をさらに流入す
ると、この流入酸素の拡散挙動が変化し、本来の酸素拡
散孔からの酸素にさらにこの流入酸素を加算した全酸素
の拡散挙動が変化するため主電極膜の電流(II)が変
化する。酸素の拡散挙動の変化割合が、補助電極を作動
しない場合における酸素の拡散挙動の変化割合と同じで
ないため、補助電極の作動の有無における主電極膜の電
流比率は、使用初期値と異なる。そのためセンサ劣化が
検出できる。
However, when the opening area and length of the oxygen diffusion hole and the sensor temperature change due to sensor deterioration, the oxygen diffusion behavior in the oxygen diffusion hole changes. This change in oxygen diffusion behavior changes the current in the main electrode membrane (I) when the auxiliary electrode is not activated. On the other hand, when oxygen further flows into the oxygen diffusion hole through the solid electrolyte plate due to the operation of the auxiliary electrode, the diffusion behavior of this inflow oxygen changes, and the total amount of oxygen added to the oxygen from the original oxygen diffusion hole is Since the diffusion behavior of oxygen changes, the current (II) of the main electrode film changes. Since the rate of change in the oxygen diffusion behavior is not the same as the rate of change in the oxygen diffusion behavior when the auxiliary electrode is not activated, the current ratio of the main electrode membrane when the auxiliary electrode is activated or not is different from the initial value of use. Therefore, sensor deterioration can be detected.

【0010】0010

【実施例】以下、本発明の実施例を添付図面に基づいて
説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Examples of the present invention will be described below with reference to the accompanying drawings.

【0011】図1は、本発明の一実施例である限界電流
式酸素センサの一部破断斜視図である。1は酸素イオン
伝導性固体電解質板であり、対となる主電極膜2aと2
b(記載せず)が両面に形成されている。この固体電解
質板1の一方の面に主電極膜2aを囲み、始端と終端が
お互いに間隔を有する螺旋型スペーサ3が配置され、さ
らにシール板4がその上部に配置されている。酸素拡散
通路5は、螺旋型スペーサ3の相対向する隔壁と固体電
解質板1とシール板4で囲まれる螺旋型の空間で形成さ
れ、酸素は酸素拡散通路5を経由して主電極膜2aへ拡
散する。シール板4には加熱部6が形成されており、固
体電解質板1を加熱して酸素イオンの伝導を良くしてい
る。一方、酸素拡散通路5には補助電極膜7a(記載せ
ず)と7bが固体電解質板1の両面に形成されて配置さ
れ、固体電解質板1を介して酸素拡散通路5に酸素を流
入している。
FIG. 1 is a partially cutaway perspective view of a limiting current type oxygen sensor which is an embodiment of the present invention. 1 is an oxygen ion conductive solid electrolyte plate, and a pair of main electrode membranes 2a and 2
b (not shown) is formed on both sides. A spiral spacer 3 surrounding the main electrode film 2a and having a starting end and a terminal end spaced apart from each other is arranged on one surface of the solid electrolyte plate 1, and a sealing plate 4 is arranged above the spiral spacer 3. The oxygen diffusion passage 5 is formed in a spiral space surrounded by the opposing partition walls of the spiral spacer 3, the solid electrolyte plate 1, and the seal plate 4, and oxygen passes through the oxygen diffusion passage 5 to the main electrode film 2a. Spread. A heating section 6 is formed on the seal plate 4 to heat the solid electrolyte plate 1 to improve conduction of oxygen ions. On the other hand, in the oxygen diffusion passage 5, auxiliary electrode films 7a (not shown) and 7b are formed and arranged on both sides of the solid electrolyte plate 1, and oxygen flows into the oxygen diffusion passage 5 through the solid electrolyte plate 1. There is.

【0012】次に具体的実験例にもとづいて説明する。 図1の構造の限界電流式酸素センサにおいて固体電解質
板1としてZrO2 ・Y2 O3 (Y2 O3 8
mol%添加)、主電極膜2a・2b(記載せず),補
助電極膜7a(記載せず)・7bとして白金、螺旋型ス
ペーサ3として硝子(熱膨脹係数はZrO2 ・Y2 
O3 と概略同一であり、所定粒径の耐熱性粒子を微量
含有)を用いた。 製法について説明する。まず、主電極膜2a・2b(記
載せず)および補助電極膜7a(記載せず)・7bを固
体電解質板1のうえに、その後さらに螺旋型スペーサ3
を固体電解質板1のうえに厚膜印刷技術および焼成技術
を用いて形成した。一方、シール板8には加熱部9を厚
膜印刷技術および焼成技術を用いて形成した。そして、
固体電解質板1上の螺旋型スペーサ3にシール板4を積
層し加熱溶融することで酸素拡散通路5を形成した。最
後にリード線(記載せず)を取りつけて完成である。完
成品の寸法は10×10×0.9mmである。そしてこ
の完成品は、断熱材で外包し、さらにこの断熱材をステ
ンレス製金網の筐体で外包して実装体とした。以下、こ
の実装体を用いてその効果を検定した。
Next, a description will be given based on a specific experimental example. In the limiting current type oxygen sensor having the structure shown in Fig. 1, ZrO2 ・Y2 O3 (Y2 O3 8
mol% addition), main electrode films 2a and 2b (not shown), auxiliary electrode films 7a (not shown) and 7b are platinum, and spiral spacer 3 is glass (thermal expansion coefficient is ZrO2 ・Y2
(approximately the same as O3 and containing a trace amount of heat-resistant particles of a predetermined particle size) was used. The manufacturing method will be explained. First, the main electrode films 2a and 2b (not shown) and the auxiliary electrode films 7a and 7b (not shown) are placed on the solid electrolyte plate 1, and then the spiral spacer 3
was formed on the solid electrolyte plate 1 using thick film printing technology and baking technology. On the other hand, a heating portion 9 was formed on the seal plate 8 using thick film printing technology and baking technology. and,
A sealing plate 4 was laminated on the spiral spacer 3 on the solid electrolyte plate 1 and heated and melted to form an oxygen diffusion passage 5. Finally, attach the lead wires (not shown) and it is complete. The dimensions of the finished product are 10 x 10 x 0.9 mm. This completed product was then wrapped with a heat insulating material, and the heat insulating material was further wrapped with a stainless steel wire mesh casing to form a packaged product. Hereinafter, the effect was tested using this implementation.

【0013】図2は、本発明の一実施例である限界電流
式酸素センサの特性を表わす特性図である。1.4Vの
電圧を印加した場合の主電極膜2a・2b(記載せず)
の発生電流(I)と、主電極膜2a・2b(記載せず)
と補助電極膜7a・7bに電圧を印加した状態の主電極
膜2a・2b(記載せず)からの発生電流(II)を、
ヒータ電力を変化させて測定している。なお、発生電流
(II)は、主電極膜2a・2b(記載せず)に1.4
Vの電圧を印加し、さらに補助電極膜7a(記載せず)
・7bに電圧を印加して25μAの定電流を流し酸素拡
散通路に酸素を固体電解質板1を介してさらに流入した
状態の主電極膜2a・2b(記載せず)の電流である。
FIG. 2 is a characteristic diagram showing the characteristics of a limiting current type oxygen sensor which is an embodiment of the present invention. Main electrode films 2a and 2b when applying a voltage of 1.4V (not shown)
The generated current (I) and the main electrode films 2a and 2b (not shown)
and the current (II) generated from the main electrode films 2a and 2b (not shown) with voltage applied to the auxiliary electrode films 7a and 7b,
Measurements are made by changing the heater power. Note that the generated current (II) is 1.4 in the main electrode films 2a and 2b (not shown).
A voltage of V is applied, and an auxiliary electrode film 7a (not shown) is applied.
- This is the current of the main electrode membranes 2a and 2b (not shown) in a state in which a voltage is applied to 7b to flow a constant current of 25 μA, and oxygen further flows into the oxygen diffusion path via the solid electrolyte plate 1.

【0014】発生電流(I)は酸素濃度にほぼ比例して
変化し、その値はセンサ温度が低くなると小さくなる特
性である。一方、発生電流(II)も、酸素濃度にほぼ
比例して変化するが発生電流(I)をほぼ平行移動した
特性である。
The generated current (I) changes approximately in proportion to the oxygen concentration, and its value has a characteristic that it decreases as the sensor temperature decreases. On the other hand, the generated current (II) also changes almost in proportion to the oxygen concentration, but has a characteristic that is obtained by moving the generated current (I) almost in parallel.

【0015】なお、この特性は、補助電極膜が主電極膜
に近く配置されるほど、また補助電極膜からの定電流値
が大きいほど大きく平行移動した特性であった。
[0015] This characteristic was such that the closer the auxiliary electrode film was placed to the main electrode film, or the larger the constant current value from the auxiliary electrode film, the more the parallel movement occurred.

【0016】図3は、本発明の一実施例である限界電流
式酸素センサの効果を表わす効果図である。図2の特性
を、発生電流(I)と、発生電流(II) と発生電流
(I)の電流比率(II/I)の関係で整理している。
FIG. 3 is an effect diagram showing the effect of a limiting current type oxygen sensor which is an embodiment of the present invention. The characteristics in FIG. 2 are organized in terms of the relationship between the generated current (I), the generated current (II), and the current ratio (II/I) of the generated current (I).

【0017】電流比率(II/I)と発生電流(I)は
相関があり、その相関特性はセンサ温度(この場合はヒ
ータ電力)が変わると変化することがわかる。従って、
酸素濃度が一定の雰囲気下において、発生電流(I)に
おける電流比率(II/I)を算出し、その値を使用初
期(ヒータ電力3.30W)と対比させ異なる値であっ
たらセンサ異常(この場合はヒータ劣化)が検出できる
ことがわかる。
It can be seen that there is a correlation between the current ratio (II/I) and the generated current (I), and that the correlation characteristic changes as the sensor temperature (heater power in this case) changes. Therefore,
Calculate the current ratio (II/I) of the generated current (I) in an atmosphere with a constant oxygen concentration, compare the value with the initial value (heater power 3.30W), and if the value is different, the sensor is abnormal (this It can be seen that heater deterioration) can be detected.

【0018】一方、センサの酸素拡散通路の目詰まりま
たはシール劣化の場合も、目詰まりまたはシール劣化が
発生すると発生電流(I)における電流比率が変化する
ため、その値を使用初期(ヒータ電力3.30W)と対
比させ異なる値であったらセンサ異常(この場合は目詰
まりまたはシール劣化)が検出できることがわかる。
On the other hand, in the case of clogging or seal deterioration in the oxygen diffusion passage of the sensor, the current ratio in the generated current (I) changes when clogging or seal deterioration occurs. .30W), it can be seen that if the value is different, a sensor abnormality (in this case, clogging or seal deterioration) can be detected.

【0019】本発明はセンサの劣化が検出でき、さらに
この効果は酸素拡散通路から酸素を流出した条件でも同
様の効果があった。また、補助電極膜に定電位をかける
方式でも同様の効果があった。
According to the present invention, deterioration of the sensor can be detected, and this effect is similar even under conditions where oxygen flows out from the oxygen diffusion passage. A similar effect was also obtained by applying a constant potential to the auxiliary electrode film.

【0020】[0020]

【発明の効果】以上のように本発明の限界電流式酸素セ
ンサは、酸素拡散通路に補助電極膜を配置した構成であ
り、補助電極膜により固体電解質板を介して酸素拡散通
路に酸素を流入(または流出)した場合の主電極膜の発
生電流(II)と、補助電極膜を作動しない場合におけ
る主電極膜の発生電流(I)を比較している。この構成
において、酸素拡散通路の開口面積と長さ・センサ温度
が一定の正常状態なら、補助電極膜の作動有無における
主電極膜の電流比率は使用初期と同じ値を示す。しかし
、センサ劣化により酸素拡散通路の開口面積と長さ・セ
ンサ温度が変化すると、電流比率が使用初期値と異なる
値となるためセンサの劣化を検知できる効果が得られる
As described above, the limiting current type oxygen sensor of the present invention has a configuration in which an auxiliary electrode film is arranged in the oxygen diffusion passage, and the auxiliary electrode film allows oxygen to flow into the oxygen diffusion passage through the solid electrolyte plate. The current generated in the main electrode film (II) when the auxiliary electrode film is not activated (or flows out) is compared with the current generated in the main electrode film (I) when the auxiliary electrode film is not activated. In this configuration, if the opening area and length of the oxygen diffusion passage and the sensor temperature are in a constant normal state, the current ratio of the main electrode membrane with or without operation of the auxiliary electrode membrane exhibits the same value as in the initial stage of use. However, if the opening area and length of the oxygen diffusion passage and the sensor temperature change due to sensor deterioration, the current ratio becomes a value different from the initial value of use, so that it is possible to detect the deterioration of the sensor.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の一実施例である限界電流式酸素センサ
の一部破断斜視図
[Fig. 1] A partially cutaway perspective view of a limiting current type oxygen sensor that is an embodiment of the present invention.

【図2】本発明の一実施例である限界電流式酸素センサ
の特性を表わす特性図
[Fig. 2] Characteristic diagram showing the characteristics of a limiting current type oxygen sensor that is an embodiment of the present invention

【図3】本発明の一実施例である限界電流式酸素センサ
の効果を表わす効果図
[Fig. 3] Effect diagram showing the effect of the limiting current type oxygen sensor which is an embodiment of the present invention.

【図4】従来の限界電流式酸素センサの一部破断斜視図
[Figure 4] Partially cutaway perspective view of a conventional limiting current type oxygen sensor

【符号の説明】[Explanation of symbols]

1  酸素イオン伝導性固体電解質板 2a  主電極膜 3  螺旋型スペーサ 4  シール板 5  酸素拡散通路 6  加熱部 7b  補助電極膜 1 Oxygen ion conductive solid electrolyte plate 2a Main electrode film 3 Spiral spacer 4 Seal plate 5 Oxygen diffusion passage 6 Heating part 7b Auxiliary electrode film

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】主電極膜を両面に形成した酸素イオン伝導
性固体電解質板の片側に、前記主電極膜を囲み始端と終
端が互いに間隔を有する螺旋型スペーサを配置し、さら
に前記螺旋型スペーサの上部にシール板を配置して、前
記螺旋型スペーサの相対向する隔壁と前記固体電解質板
と前記シール板で囲まれる螺旋型の空間で酸素拡散通路
を形成するとともに、前記酸素拡散通路に補助電極膜を
前記固体電解質板の両面に形成して配置した限界電流式
酸素センサ。
1. A spiral spacer surrounding the main electrode film and having a starting end and a terminal end spaced apart from each other is disposed on one side of an oxygen ion conductive solid electrolyte plate having main electrode films formed on both sides, and the spiral spacer A sealing plate is disposed on the top of the spiral spacer, and an oxygen diffusion passage is formed in a spiral space surrounded by the opposite partition walls of the spiral spacer, the solid electrolyte plate, and the sealing plate, and an oxygen diffusion passage is auxiliary to the oxygen diffusion passage. A limiting current type oxygen sensor in which electrode films are formed and arranged on both sides of the solid electrolyte plate.
JP3113210A 1991-05-17 1991-05-17 Limit current type oxygen sensor Pending JPH04340457A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3113210A JPH04340457A (en) 1991-05-17 1991-05-17 Limit current type oxygen sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3113210A JPH04340457A (en) 1991-05-17 1991-05-17 Limit current type oxygen sensor

Publications (1)

Publication Number Publication Date
JPH04340457A true JPH04340457A (en) 1992-11-26

Family

ID=14606355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3113210A Pending JPH04340457A (en) 1991-05-17 1991-05-17 Limit current type oxygen sensor

Country Status (1)

Country Link
JP (1) JPH04340457A (en)

Similar Documents

Publication Publication Date Title
JPS61170650A (en) Oxygen concentration sensor
EP0140295B1 (en) Method of operating an air-fuel ratio sensor
JPH04340457A (en) Limit current type oxygen sensor
US20180259478A1 (en) Gas sensor
JP3308624B2 (en) Hydrocarbon sensor
JP3067600B2 (en) Limit current type oxygen sensor
JP3010753B2 (en) Limit current type oxygen sensor
JP3054997B2 (en) Limit current type oxygen sensor device
JP3010752B2 (en) Limit current type oxygen sensor
JPH04340459A (en) Limit current type oxygen sensor
JPH04340458A (en) Limit current type oxygen sensor
JPH03264858A (en) Oxygen sensor and oxygen concentration detector
JP2002286668A (en) Gas detection output correction method and gas detector
JPH04109157A (en) Gas detecting element
JPS6326565A (en) Composite gas sensor
JP3031248B2 (en) Self-diagnosis device for limiting current type oxygen sensor
JPH04164246A (en) Limiting current type oxygen sensor
JP4364608B2 (en) Solid electrolyte gas sensor and gas concentration measuring device
JP2974090B2 (en) Carbon dioxide detection sensor
JP3421192B2 (en) Method for measuring water vapor concentration by limiting current type gas sensor and apparatus for measuring water vapor concentration using the method
JP3012966B2 (en) Combustion equipment
JPH05209859A (en) Actuator of limiting-current-type oxygen sensor
JP3079971B2 (en) Combustion equipment
JPH06324017A (en) Actuation device of limiting current type oxygen sensor
JP2892169B2 (en) Flammable gas concentration analyzer