JPH04263231A - Second higher harmonic generating element - Google Patents

Second higher harmonic generating element

Info

Publication number
JPH04263231A
JPH04263231A JP4589391A JP4589391A JPH04263231A JP H04263231 A JPH04263231 A JP H04263231A JP 4589391 A JP4589391 A JP 4589391A JP 4589391 A JP4589391 A JP 4589391A JP H04263231 A JPH04263231 A JP H04263231A
Authority
JP
Japan
Prior art keywords
phase
nonlinear optical
optical medium
higher harmonic
medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4589391A
Other languages
Japanese (ja)
Inventor
Hideo Maeda
英男 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP4589391A priority Critical patent/JPH04263231A/en
Publication of JPH04263231A publication Critical patent/JPH04263231A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain high efficiency with small-sized, simple constitution which obtains the same effect without manufacturing a domain. CONSTITUTION:When a fundamental wave entering a ring resonator 5 is made incident on a nonlinear optical medium 6, a 2nd higher harmonic is generated gradually. The strength of the 2nd higher harmonic is varied periodically unless the phase is matched completely, but the length of the nonlinear optical medium 6 is set nearly to coherent length, thereby outputing the wave in a state deviated by pi in a phase. This is deviated further in phase by pi through a phase shifter 7 to match the phases of the both with each other and the wave is made incident again on the nonlinear optical medium 6 through the ring resonator 5, thus realizing high-efficiency amplifying operation for 2nd higher harmonic generation. Namely, a medium which is nearly as long as the coherent length and can not be developed greatly is usable as the nonlinear optical medium 6 and a medium which is not matched in phase is also usable.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、光ディスク装置や光磁
気ディスク装置等の光ピックアップ等に適用される第2
高調波発生素子に関する。
[Industrial Field of Application] The present invention relates to a second
Related to harmonic generation elements.

【0002】0002

【従来の技術】一般に、異なった波長間での非線形相互
作用においては、エネルギー保存のもとでの位相整合が
重要である。この条件が満足されない状態では、相互作
用により発生する非線形分極波と光波との間で干渉を生
じ、大きな変換効率が得られない。
2. Description of the Related Art Generally, in nonlinear interactions between different wavelengths, phase matching under energy conservation is important. If this condition is not satisfied, interference will occur between the nonlinear polarization waves generated by the interaction and the light waves, and high conversion efficiency will not be obtained.

【0003】第2高調波発生素子(Second Ha
rmonic Generation :SHG)の場
合について、この様子を図示すると、図2に示すように
なる。これは、文献「光学」(第19巻第6号1990
年6月)中の「周期ドメイン反転光導波路による第二高
調波発生」(p.373)において示されているもので
、高調波(SH)出力は同図中の(c)に示すように伝
播に伴って、  Lc=λF/4(|nF−nSH|)
      …………………(1) で与えられる干渉距離(コヒーレント長)Lc毎に極大
・極小を繰返すことになる。ここに、添字F,SHは各
々基本波及びSH波成分を示し、λ,nは波長及び屈折
率を示す。
[0003] Second harmonic generation element (Second Ha
rmonic Generation (SHG), this situation is illustrated in FIG. 2. This is based on the document "Optics" (Vol. 19 No. 6 1990)
This is shown in "Second harmonic generation by periodic domain inverted optical waveguide" (p. 373) in June 2013), and the harmonic (SH) output is as shown in (c) in the same figure. Along with propagation, Lc=λF/4(|nF-nSH|)
………………………(1) The maximum and minimum values are repeated for each interference distance (coherent length) Lc given by: Here, subscripts F and SH indicate the fundamental wave and SH wave components, respectively, and λ and n indicate the wavelength and refractive index.

【0004】従って、Lc毎に何んらかの方法で発生す
る分極波の符号を交互に反転できれば、SH出力に打消
しがなくなり、逆に、同図中の(a)(b)に示すよう
な重畳が起る。このようにできれば、光学的に等方であ
ったり、分散特性のためにバルク材料としては位相整合
のとれないテンソル成分の大きな物質を用いて、ドメイ
ン周期を調整することにより、見掛け上の位相整合をと
ることができる。この方法は、準位相整合(quasi
−phase matching:QPM)と呼ばれ、
1962年に提案されている。
[0004] Therefore, if the sign of the polarization waves generated for each Lc can be alternately inverted by some method, there will be no cancellation in the SH output, and conversely, as shown in (a) and (b) in the same figure, there will be no cancellation in the SH output. Such a superposition occurs. If this can be done, apparent phase matching can be achieved by adjusting the domain period using a material that is optically isotropic or has a large tensor component that cannot be phase matched as a bulk material due to its dispersion characteristics. can be taken. This method uses quasi phase matching (quasi phase matching).
-phase matching (QPM)
It was proposed in 1962.

【0005】ドメインの半周期Λは、図2からも明らか
なように、Lcの奇数倍であればよいことから、  Λ
=(2m+1)Lc     =(2m+1)・λF/4(|nF−nSH|
)    ………(2) で与えられる。ここに、mは周期ドメインの次数であり
、図2中の(a)(b)にm=0及びm=1の様子を示
す。Δn=|nF−nSH|=0.025 とすると、
m=0の場合のQPMのピッチは基本波波長の10倍、
Δn=0.1では2.5倍となる。
As is clear from FIG. 2, the half period Λ of the domain can be an odd multiple of Lc, so Λ
=(2m+1)Lc =(2m+1)・λF/4(|nF−nSH|
) ......(2) is given by. Here, m is the order of the periodic domain, and (a) and (b) in FIG. 2 show the situations when m=0 and m=1. If Δn=|nF−nSH|=0.025,
When m=0, the QPM pitch is 10 times the fundamental wavelength,
When Δn=0.1, it becomes 2.5 times.

【0006】なお、図2中の(d)は同一の非線形光学
係数のもとで完全な位相整合条件が満足されたとした場
合(Lc=∞:実現はできない)の光出力を比較するた
めに示している。
Note that (d) in FIG. 2 is used to compare the optical output when the perfect phase matching condition is satisfied under the same nonlinear optical coefficient (Lc=∞: cannot be realized). It shows.

【0007】[0007]

【発明が解決しようとする課題】ところが、高い効率を
得るためにはドメインを〜103 周期以上に渡って均
質に作製する必要があるが、ドメインの長さが基本波長
の10倍程度と非常に小さい現状においては、このよう
なものを作製するのは非常に難しい。仮に、作製できた
としても、大きいため、その温度調整が必要となる。
[Problems to be Solved by the Invention] However, in order to obtain high efficiency, it is necessary to create domains homogeneously over ~103 periods, but the length of the domains is approximately 10 times the fundamental wavelength, which is extremely long. It is extremely difficult to manufacture something like this in the current small size. Even if it could be manufactured, it would be necessary to adjust its temperature because it is large.

【0008】[0008]

【課題を解決するための手段】リング共振器内の光路上
に、非線形光学媒体と、基本波と第2高調波との位相差
を略πだけずらす移相器とを設けた。
Means for Solving the Problems A nonlinear optical medium and a phase shifter for shifting the phase difference between the fundamental wave and the second harmonic by approximately π are provided on the optical path within the ring resonator.

【0009】[0009]

【作用】リング共振器内に入った基本波が非線形光学媒
体に入射することにより、徐々に第2高調波が生ずる。 この時、位相整合が完全にとれていない場合には第2高
調波の強度が周期的に変化するが、非線形光学媒体の長
さをコヒーレント長程度とすることにより、πだけ位相
のずれた状態で出力される。これを、移相器によりさら
にπだけ位相をずらすことにより、両者の位相が一致し
、リング共振器を経て再び非線形光学媒体に入射するこ
とにより第2高調波発生のための高効率の増幅作用を受
ける。即ち、非線形光学媒体としてはコヒーレント長程
度のものでよいため、非常に小型であり、その温度調整
も不要であり、かつ、大きく育成できないような媒体の
使用も可能となる。さらには、位相整合していないもの
であっても使用可能であり、種々の安価な材質によるも
のを用いることができる。
[Operation] When the fundamental wave entering the ring resonator enters the nonlinear optical medium, a second harmonic is gradually generated. At this time, if the phase matching is not completely achieved, the intensity of the second harmonic changes periodically, but by setting the length of the nonlinear optical medium to about the coherent length, the phase is shifted by π. is output. By further shifting the phase by π using a phase shifter, the phases of the two match, and by passing through the ring resonator and entering the nonlinear optical medium again, a highly efficient amplification effect is achieved for second harmonic generation. receive. That is, since the nonlinear optical medium only needs to have a coherent length, it is very small, does not require temperature adjustment, and also allows the use of a medium that cannot be grown to a large size. Furthermore, it is possible to use materials that are not phase matched, and materials made of various inexpensive materials can be used.

【0010】0010

【実施例】本発明の一実施例を図1に基づいて説明する
。まず、4つのミラー1,2,3,4をリング状に配設
させたリング共振器5が設けられている。また、ミラー
1が基本波による入力光の入射位置に位置し、ミラー2
がSH光の出射位置に位置するものとすると、ミラー1
,2間の光路上には非線形光学媒体なる結晶6と、π型
移相器7とが設けられている。この移相器7としては種
々のものを使用でき、例えば透明材質で分散特性を持つ
もの、例えばガラスの他、複屈折結晶であってもよい。
[Embodiment] An embodiment of the present invention will be explained based on FIG. First, a ring resonator 5 in which four mirrors 1, 2, 3, and 4 are arranged in a ring shape is provided. Further, mirror 1 is located at the incident position of the input light due to the fundamental wave, and mirror 2
is located at the SH light emission position, mirror 1
, 2 are provided with a crystal 6, which is a nonlinear optical medium, and a π-type phase shifter 7. Various materials can be used as the phase shifter 7. For example, it may be made of a transparent material with dispersion characteristics, such as glass, or a birefringent crystal.

【0011】このような構成において、基本波による入
力光はミラー1を通ってリング共振器5内に入射し、光
路長L0 を経て結晶6に入射する。ここで、SH光が
徐々に生ずる。この時、位相整合が完全にとれていない
場合には、前述したように、コヒーレント長Lc毎にS
H光の強度は周期的に変化する。いま、結晶6の長さを
Lとすると、コヒーレント長Lcに対してL=(2m+
1)Lc      ……………(3)となるように設
定される。ここに、mは0以上の整数である。即ち、結
晶6としてはコヒーレント長Lc程度のものでよい。
[0011] In such a configuration, the input light of the fundamental wave passes through the mirror 1, enters the ring resonator 5, and enters the crystal 6 through an optical path length L0. Here, SH light is gradually generated. At this time, if phase matching is not completely achieved, S
The intensity of the H light changes periodically. Now, if the length of the crystal 6 is L, then L=(2m+
1) Lc (3) is set. Here, m is an integer of 0 or more. That is, the crystal 6 may have a coherence length of approximately Lc.

【0012】すると、結晶6を出た基本波とSH波とは
位相が丁度πだけずれた状態にある。このような2つの
光は移相器7に入射し、基本波とSH波との間の位相が
さらにπだけずらされ、結局、両者が同位相とされる。
[0012] Then, the fundamental wave and the SH wave exiting the crystal 6 have a phase shift of exactly π. These two lights enter the phase shifter 7, and the phases of the fundamental wave and the SH wave are further shifted by π, and eventually they are brought into the same phase.

【0013】つぎに、リング共振器5を1回りして再び
結晶6に戻ってきた時には、基本波とSH波とが同位相
となっているので、増幅が始まる。このようにして、S
H光増幅がなされる。
Next, when the wave goes around the ring resonator 5 once and returns to the crystal 6, the fundamental wave and the SH wave are in the same phase, so amplification begins. In this way, S
H light amplification is performed.

【0014】なお、非線形光学媒体としては種々の光学
結晶6の他、有機・無機を問わず、種々の材質によるも
のを用いることができ、特に、位相整合が合わないもの
であってもよい。
[0014] In addition to the various optical crystals 6, the nonlinear optical medium may be made of various materials, whether organic or inorganic, and in particular may be one that is not phase matched.

【0015】[0015]

【発明の効果】本発明は、上述したように、リング共振
器内の光路上に、非線形光学媒体と、基本波と第2高調
波との位相差を略πだけずらす移相器とを設けたので、
位相整合が完全にとれず第2高調波の強度が周期的に変
化するような場合であっても、非線形光学媒体の長さを
コヒーレント長程度とし、πだけ位相のずれた状態で出
力させ、移相器によりさらにπだけ位相をずらし、両者
の位相を一致させてリング共振器を経て再び非線形光学
媒体に入射させることにより第2高調波発生のための高
効率の増幅作用を行なわせることができ、よって、非線
形光学媒体がコヒーレント長程度のものでよいため、非
常に小型であり、その温度調整も不要であり、かつ、大
きく育成できないような媒体の使用も可能となり、さら
には、位相整合していないものであっても使用可能であ
り、種々の安価な材質によるものの使用も可能となるも
のである。
[Effects of the Invention] As described above, the present invention includes a nonlinear optical medium and a phase shifter that shifts the phase difference between the fundamental wave and the second harmonic by approximately π on the optical path within the ring resonator. So,
Even in cases where phase matching is not completely achieved and the intensity of the second harmonic changes periodically, the length of the nonlinear optical medium is set to about the coherent length, and the output is output with a phase shift of π. It is possible to further shift the phase by π using a phase shifter, match the phases of the two, pass the ring resonator, and re-enter the nonlinear optical medium to perform a highly efficient amplification action for second harmonic generation. Therefore, since the nonlinear optical medium only needs to have a coherent length, it is extremely compact, does not require temperature adjustment, and allows the use of a medium that cannot be grown to a large size. It is possible to use even those made of a variety of inexpensive materials.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の一実施例を示す光学系の構成図である
FIG. 1 is a configuration diagram of an optical system showing an embodiment of the present invention.

【図2】QPMによるAHG出力変化の様子を示す特性
図である。
FIG. 2 is a characteristic diagram showing how the AHG output changes due to QPM.

【符号の説明】[Explanation of symbols]

5      リング共振器 6      非線形光学媒体 7      移相器 5 Ring resonator 6 Nonlinear optical medium 7 Phase shifter

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  リング共振器内の光路上に、非線形光
学媒体と、基本波と第2高調波との位相差を略πだけず
らす移相器とを設けたことを特徴とする第2高調波発生
素子。
Claim 1: A second harmonic, characterized in that a nonlinear optical medium and a phase shifter for shifting the phase difference between the fundamental wave and the second harmonic by approximately π are provided on the optical path within the ring resonator. Wave generating element.
JP4589391A 1991-02-18 1991-02-18 Second higher harmonic generating element Pending JPH04263231A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4589391A JPH04263231A (en) 1991-02-18 1991-02-18 Second higher harmonic generating element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4589391A JPH04263231A (en) 1991-02-18 1991-02-18 Second higher harmonic generating element

Publications (1)

Publication Number Publication Date
JPH04263231A true JPH04263231A (en) 1992-09-18

Family

ID=12731924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4589391A Pending JPH04263231A (en) 1991-02-18 1991-02-18 Second higher harmonic generating element

Country Status (1)

Country Link
JP (1) JPH04263231A (en)

Similar Documents

Publication Publication Date Title
US5400173A (en) Tunable mid-infrared wavelength converter using cascaded parametric oscillators
Booth et al. Counterpropagating entangled photons from a waveguide with periodic nonlinearity
US4784450A (en) Apparatus for generating and amplifying new wavelengths of optical radiation
US6867903B2 (en) Optical parametric circuit
US6806986B2 (en) Wavelength converter and wavelength converting apparatus
US5640480A (en) Zig-zag quasi-phase-matched wavelength converter apparatus
US5504616A (en) Wavelength conversion device
JP2685969B2 (en) Second harmonic generator
CN111487832A (en) Waveguide-based non-degenerate polarization entanglement source preparation device
CN113540933B (en) Intermediate infrared parametric laser based on synchronous double-optical parametric process
JPH06102552A (en) Diffraction grating and its manufacture, and 2nd harmonic generating device
US5574818A (en) Compound waveguide lasers and optical parametric oscillators
JP3187290B2 (en) Wavelength conversion device and wavelength conversion method
JPH06110095A (en) Method and device for generating millimeter wave and submillimeter wave
JPH04263231A (en) Second higher harmonic generating element
JPH08304864A (en) Self-stabilized compact light source by depletion of pump based on frequency doubling of laser
JP2004020870A (en) Wavelength conversion element and wavelength conversion apparatus
CN114665370A (en) Dual-wavelength visible light laser based on synchronous nonlinear frequency conversion
JP2008089762A (en) Wavelength converting element and wavelength converting device
KR100823901B1 (en) Wavelength conversion element and method for using same
JPH04263232A (en) Second higher harmonic generating element
JP4080819B2 (en) Wavelength conversion circuit and wavelength conversion method
US5305403A (en) Optical waveguide and method of making an optical waveguide
JP6718779B2 (en) Wavelength conversion element and wavelength conversion optical pulse waveform shaping device
JP3971708B2 (en) Wavelength conversion element and wavelength conversion device