JP4080819B2 - Wavelength conversion circuit and wavelength conversion method - Google Patents

Wavelength conversion circuit and wavelength conversion method Download PDF

Info

Publication number
JP4080819B2
JP4080819B2 JP2002242001A JP2002242001A JP4080819B2 JP 4080819 B2 JP4080819 B2 JP 4080819B2 JP 2002242001 A JP2002242001 A JP 2002242001A JP 2002242001 A JP2002242001 A JP 2002242001A JP 4080819 B2 JP4080819 B2 JP 4080819B2
Authority
JP
Japan
Prior art keywords
light
optical
frequency
output
nonlinear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002242001A
Other languages
Japanese (ja)
Other versions
JP2004093583A (en
Inventor
悦史 山崎
篤 高田
山涌  純
敏夫 盛岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2002242001A priority Critical patent/JP4080819B2/en
Publication of JP2004093583A publication Critical patent/JP2004093583A/en
Application granted granted Critical
Publication of JP4080819B2 publication Critical patent/JP4080819B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、波長多重(WDM)技術を基盤とする光ネットワークにおける光ノード等に用いられる波長変換回路及び波長変換方法に関する。
【0002】
【従来の技術】
任意の波長の変調光を所望の波長の変調光に変換する従来の光波長変換方法には、大きく分けて次の4つがある。
【0003】
O/E/O型は、一旦、任意の波長の変調光を電気信号に変換し、電気信号により所望の波長を有する光に光変調する方法である。O/E/O型では、デジタル電子回路により識別再生効果を付加できる反面、デュオバイナリー変調符号、キャリア抑圧RZ符号、光周波数シフト符号、光位相シフト符号など光の位相を制御する変調方式などでは変復調回路構成が複雑になるという問題がある。
【0004】
XGM及びXPM型は、半導体の利得(損失)や屈折率が光強度に依存する材料に、所望の波長を有する連続光と強度変調された任意の波長の光を入射させ、相互利得変調(XGM)効果や相互位相変調(XPM)効果により波長変換する方法である。しかし、XGM及びXPM型もO/E/O型と同様に、光周波数シフト符号、光位相シフト符号など光の位相を信号変調する変復調方式によっては適用が不可能である。
【0005】
波長シフト型は、任意の波長の変調光を所望の波長との波長差に相当する周波数で駆動された音響光学材料や電気光学材料に入射させ、それぞれ音響光学効果や電気光学効果により波長変換を行う方法である。波長シフト型は、入力する変調光の変調方式に依存せず、光位相も含め同一の変調符号を有する変換光が得られるが、現状の光周波数シフトデバイスの波長シフト量が高々1nmと小さいという欠点があり、数十nm以上の波長シフト量という要請には応えられていない。
【0006】
光パラメトリック型は、励起光と任意の波長の変調光を光非線形材料に入射させ、2次または3次の光非線形効果を用いて入射された変調光の波長を変換する方法である。パラメトリック型は、入力される変調光の変調方式に依存せず、光位相も含め同一の変調符号を有する変調光が簡易に得られるという利点がある。ところが、パラメトリック波長変換では変換後の波長が光非線形材料の特性パラメータによって制限をうけるという問題がある。
【0007】
以下、従来のパラメトリック型波長変換について詳しく説明する。
【0008】
従来の構成では、光非線形材料パラメータで決定され零分散光周波数に相当する波長に励起光を一致させる必要があった。このことを波長分散性を有する3次の光非線形材料(例えば光ファイバ)の場合を例にとって図2を用いて説明する。
【0009】
励起光の光周波数をfp、変調光の光周波数をfsとする。この励起光と変調光を光非線形材料に入力すると、縮退四光波混合効果により、光周波数
【0010】
【数1】

Figure 0004080819
【0011】
の新たな光(四光波混合光)が発生する。このとき、四光波混合光のパワーPFは、励起光のパワーPPの2乗と、入力された変調光のパワーPS、位相整合係数ηとの積に比例し、
【0012】
【数2】
Figure 0004080819
【0013】
と表される。したがって、最大の四光波混合光のパワーPFを得るには、最大の位相整合係数ηを必要とする。
【0014】
位相整合係数ηは、媒質による光損失を無視できるとき、
【0015】
【数3】
Figure 0004080819
【0016】
と表される。Lは媒質の長さ、Δβは位相不整合量で、光周波数fでの伝搬定数をβ(f)とすると、
【0017】
【数4】
Figure 0004080819
【0018】
である。したがって、位相整合係数ηを最大にするには位相不整合量Δβを0に近づければよい。分散性光非線形媒質の伝搬定数の波長依存性をその3次微分(分散スロープ)まで近似すると位相不整合量は次式となる。
【0019】
【数5】
Figure 0004080819
【0020】
ここで、f0は零分散波長に相当する光周波数である。上式により従来、位相不整合量を0にするために、励起光(光周波数fp)波長を媒質の零分散波長(光周波数f0)に設定することにより、任意の波長の入力された変調光をほぼ同一の変換効率で波長変換することが検討されてきた。
【0021】
以上の従来の考え方は、2次の光非線形材料、例えば、ニオブ酸リチウム等の強誘電性結晶やそれらの結晶の光学軸を周期的に反転させることで長いデバイス長にわたって2次光非線形効果の位相整合条件を擬似的に満足させた疑似位相整合光導波路材料などについても適用されてきた。この場合、上記の分散性光非線形材料における零分散光周波数f0を、第2次高調波発生の際の最高発生効率が得られる最適光周波数と読み替える。すなわち、励起光を最適光周波数に設定し、最適光周波数を対称軸にして、入力された任意の波長の変調光と反対側の光周波数の変換光を得ることが検討されてきた。
【0022】
【発明が解決しようとする課題】
しかしながら、波長変換が適用される光伝送装置では、ネットワーク制御網から与えられる制御信号により変換して得られる波長をダイナミックに変更することが必要であるにもかかわらず、上記の構成では、変換後の波長は式(1)により規定され、また、励起光の周波数は3次の光非線形媒質の場合にはその零分散光周波数に、2次の光非線形媒質の場合には最高発生効率が得られる光周波数に設定する必要があるため、入力される変調光の光周波数と使用する光非線形媒質とが決定されると、入力される変調光の光周波数に対して変換後の光周波数が一意に決定されてしまい、1つの光非線形媒質を用いるだけでは、制御光により、入力された変調光の変換後の波長を切り替えることができなかった。よって、変換後の波長を任意とする波長変換を行うには、特性の異なる光非線形媒質を多数準備し、変換後の波長に応じて光スイッチなどを用いて、利用する光非線形媒質を切り替える構成の他はなかった。この場合、光損失、応答速度など技術的制約の他、装置規模が大きくなったり、コストがかかるなどの問題がある。
【0023】
また、従来の光パラメトリック波長変換では、発生した変換先波長の信号光を光波長可変フィルタにより入力信号光と励起光から分離する必要がある。したがって、入力光、励起光、変換光の波長が接近している場合、有効に分離できないという問題があった。さらに、変換前の波長から変換後の波長への切り換え速度は、光波長可変フィルタの切り換え速度によって制限されるという問題もある。
【0024】
本発明の目的は、上記問題に鑑み、単一の光非線形媒質を用いて簡易な構成で、任意の波長の変調光を変換し、任意の波長の変調光を出力するとともに、入力変調変調光、励起光、変換光の波長が接近している場合でも有効に分離でき、光波長可変フィルタの切り換え速度によって制限されない変換前の波長から変換後の波長への切り換えを行うことが可能な波長変換回路及び波長変換方法を提供することにある。
【0025】
【課題を解決するための手段】
本発明では前記目的を達成するため、請求項1では、入力された中心光周波数fsの変調光を、同一の変調情報を保持させたまま所望の中心周波数fdの変調光に変換して出力する波長変換回路において、2次の光非線形効果を有し、最も効率よく第2次高調波を出力する波長に相当する光周波数がf0である2次光非線形媒質と、fp=2f0−fsの関係を満足する光周波数fpの第1の励起光を発生する第1の励起光発生部と、fc=2fo−fdの関係を満足する任意の光周波数fcの第2の励起光を発生する第2の励起光発生部とを有し、入力された変調光と第1の励起光と第2の励起光とを合波させて光非線形媒質に入力し、該光非線形媒質よりその光非線形効果によって出力される光から所望の中心光周波数fdの変調光のみを取り出すことを特徴とする波長変換回路。
【0028】
請求項では、入力された変調光を、同一の変調情報を保持させたまま所望の周波数の変調光に変換して出力する波長変換回路において、第1の励起光を発生させるとともにその周波数を変えることができる第1の励起光発生部と、第2の励起光を発生させるとともにその周波数を変えることができる第2の励起光発生部と、入力された変調光を直交する2つの直線偏波に分離し、それぞれ第1ポート、第2ポートに出力する偏光ビームスプリッタと、前記偏光ビームスプリッタの第2ポートからの出力光の偏波を90度回転させる偏光回転子とを含み、前記偏光ビームスプリッタの第1ポートからの出力光と前記第1の励起光発生部からの第1の励起光とを、2次の光非線形効果を有する第1の2次光非線形媒質の一端に入射し、前記偏光回転子からの出力光と前記第1の励起光発生部からの第1の励起光とを、2次の光非線形効果を有する第2の2次光非線形媒質の一端に入射する第1の光合分波手段と、前記第1の2次光非線形媒質の他端からの出力光のうち和周波光を前記第2の2次光非線形媒質の他端に入射させ、前記第2の2次光非線形媒質の他端からの出力光のうち和周波光を前記第1の2次光非線形媒質の他端に入射させ、前記第1の2次光非線形媒質の前記他端からの出力光及び前記第2の2次光非線形媒質の前記他端からの出力光のうち和周波光以外の光を分離し、前記第2の励起光発生部からの第2の励起光を前記第1の2次光非線形媒質の前記他端及び前記第2の2次光非線形媒質の前記他端に入射する第2の光合分波手段とを有し、前記第1の2次光非線形媒質の前記一端からの出力光が前記偏光ビームスプリッタの第1ポートに入射され、前記第2の2次光非線形媒質の前記一端からの出力光が前記偏光回転子を介して前記偏光ビームスプリッタの第2ポートに入射され、前記偏光ビームスプリッタから所望の周波数の変調光を出力することを特徴とする波長変換回路をもって解決手段とする。
【0029】
請求項では、前記2次光非線形媒質が最も効率よく第2次高調波を出力する波長に相当する周波数f0、入力変調光の周波数fs、出力変調光の所望の周波数fdを、前記第1の励起光発生部から発せられる第1の励起光の周波数fpが、fp=2f0−fsを満たし、前記第2の励起光発生部から発せられる第2の励起光の周波数fcが、fc=2f0−fdを満たす値としたことを特徴とする請求項記載の波長変換回路をもって解決手段とする。
【0030】
請求項では、前記2次光非線形媒質は、入力される変調光の周波数及び変換先の周波数が含まれる連続した変調光周波数帯域の片端付近に、最も効率よく第2次高調波を出力する光周波数f0を有し、前記第1及び第2の励起光発生部は、前記変調光周波数帯域と周波数スペクトル上のf0と反対側の励起光周波数帯域にその出力光周波数を有し、f0付近に透過周波数帯域のエッジを有する固定帯域フィルタを有することを特徴とする請求項1乃至何れか1項記載の波長変換回路をもって解決手段とする。
【0031】
請求項では、前記2次光非線形媒質は、周期的に光軸を反転させた疑似位相整合ニオブ酸リチウム結晶導波路及びタンタル酸リチウム結晶導波路であることを特徴とする請求項1乃至何れか1項記載の波長変換回路をもって解決手段とする。
【0032】
請求項では、入力された中心光周波数fsの変調光を光非線形媒質に入力させ、同一の変調情報を保持させたまま所望の中心周波数fdの変調光に変換して出力する波長変換方法において、入力された中心光周波数fsの変調光と、該変調光の中心光周波数fsと光非線形媒質の零分散波長に相当する光周波数f0とがfp=2f0−fsの関係を満足する光周波数fpの第1の励起光と、出力する変調光の中心光周波数fdの所望値に応じてfc=2f0−fdの関係を満足するように制御した光周波数fcの第2の励起光とを合波し、該合波光を、2次の光非線形効果を有し最も効率よく第2次高調波光を出力する波長に相当する光周波数がf0である2次光非線形媒質に入力し、該2次光非線形媒質よりその光非線形効果によって出力される光から所望の中心光周波数fdの変調光のみを取り出すことを特徴とする波長変換方法をもって解決手段とする。
【0035】
請求項では、入力された変調光を直交する2つの偏波に分離し、それぞれの信号光に対して請求項6記載の波長変換方法により変換光を発生させそれらを再び合波することを特徴とする波長変換方法をもって解決手段とする。
【0036】
請求項では、入力された変調光を、同一の変調情報を保持させたまま所望の周波数の変調光に変換して出力する波長変換方法において、第1の光合分波手段に変調光を入力し、入力された変調光を、偏光ビームスプリッタにおいて、直交する2つの直線偏波に分離してそれぞれ第1ポート、第2ポートに出力し、前記偏光ビームスプリッタの第2ポートからの出力光の偏波を、偏光回転子によって90度回転させ、前記偏光ビームスプリッタの第1ポートからの出力光と、第1の励起光を発生させるとともにその周波数を変えることができる第1の励起光発生部からの第1の励起光とを、2次の光非線形効果を有する第1の2次光非線形媒質の一端に入射し、前記偏光回転子からの出力光と前記第1の励起光発生部からの第1の励起光とを、2次の光非線形効果を有する第2の2次光非線形媒質の一端に入射し、第2の光合分波手段によって、前記第1の2次光非線形媒質の他端からの出力光のうち和周波光を前記第2の2次光非線形媒質の他端に入射させ、前記第2の2次光非線形媒質の前記他端からの出力光のうち和周波光を前記第1の2次光非線形媒質の前記他端に入射させ、前記第1の2次光非線形媒質の前記他端からの出力光及び前記第2の2次光非線形媒質の前記他端からの出力光のうち和周波光以外の光を分離し、第2の励起光を発生させるとともにその周波数を変えることができる第2の励起光発生部からの第2の励起光を前記第1の2次光非線形媒質の前記他端及び前記第2の2次光非線形媒質の前記他端に入射し、前記第1の2次光非線形媒質の前記一端からの出力光を前記偏光ビームスプリッタの第1ポートに入射し、前記第2の2次光非線形媒質の前記一端からの出力光を前記偏光回転子を介して前記偏光ビームスプリッタの第2ポートに入射し、前記偏光ビームスプリッタから所望の周波数の変調光を出力することを特徴とする波長変換方法をもって解決手段とする。
【0037】
請求項では、前記2次光非線形媒質が最も効率よく第2次高調波を出力する波長に相当する周波数f0、入力変調光の周波数fs、出力変調光の所望の周波数fdを、前記第1の励起光発生部から発せられる第1の励起光の周波数fpが、fp=2f0−fsを満たし、前記第2の励起光発生部から発せられる第2の励起光の周波数fcが、fc=2f0−fdを満たす値にしたことを特徴とする請求項記載の波長変換方法をもって解決手段とする。
【0038】
請求項10では、前記2次光非線形媒質において、最も効率よく第2次高調波を出力する光周波数f0を、入力される変調光の周波数及び変換先の周波数が含まれる連続した変調光周波数帯域の片端付近に設定し、前記第1及び第2の励起光発生部の出力光周波数を、前記変調光周波数帯域と周波数スペクトル上のf0と反対側の励起光周波数帯域に設定し、前記固定帯域フィルタが、f0付近に透過周波数帯域のエッジを有することを特徴とする請求項乃至何れか1項記載の波長変換方法をもって解決手段とする。
【0039】
請求項11では、前記2次光非線形媒質は、周期的に光軸を反転させた疑似位相整合ニオブ酸リチウム結晶導波路及びタンタル酸リチウム結晶導波路であることを特徴とする請求項乃至10何れか1項記載の波長変換方法をもって解決手段とする。
【0040】
【発明の実施の形態】
以下、図を用いて本発明の実施形態について説明する。
【0041】
図1は本発明の光周波数配置図である。本発明では、光非線形媒質として、2次の光非線形材料、例えば、ニオブ酸リチウム等の強誘電性結晶やそれらの結晶の光学軸を周期的に反転させることで長いデバイス長にわたって2次非線形効果の位相整合条件を擬似的に満足させた疑似位相整合光導波路材料を使用する。
【0042】
本発明では、波長変換回路に入力される変調光と、波長の異なる2つの励起光との3波長の光を合波させる。このとき、光非線形効果により新たに生じる光のうち、光周波数が、
【0043】
【数6】
Figure 0004080819
【0044】
の新しく発生した光に着目する。ここでは、第1の励起光の光周波数をfp、第2の励起光の光周波数をfcとしている。第2の励起光を以後、制御光と呼ぶこととする。第2の励起光を制御光と呼ぶ理由は、この制御光を制御することにより、入力された変調光を変換して任意の波長の変調光を出力することができるからである。
【0045】
2次の光非線形媒質、特に疑似位相整合(ニオブ酸リチウム等)媒質を用いた光周波数fdの光の発生の場合の位相不整合量は、
【0046】
【数7】
Figure 0004080819
【0047】
となる。Λは疑似位相整合の分極反転周期であり、β(2f0)−2β(f0)=2π/Λを満たす。第1の励起光の光周波数fpは、図1に示すとおり、第2次高調波発生の際の最高発生効率が得られる最適光周波数f0を対称軸に入力される変調光(光周波数fs)の反対側に選択する。すなわち、
【0048】
【数8】
Figure 0004080819
【0049】
である。従って、β(fs+fp)−2β(f0)=β(2f0)−2β(f0)=2π/Λとなり、式(7)の第2項目以降が0となる。また、
【0050】
【数9】
Figure 0004080819
【0051】
の関係を満足するため、式(7)の第1項目の中括弧の中が0となり、励起光の光周波数fpと光非線形媒質の第2次高調波発生の際の最高発生効率が得られる最適光周波数f0が一致しなくとも、fpとf0は、任意の光周波数の制御光に対して位相整合条件を満足する。したがって、制御光の光周波数fcは、式(6)を変形し式(8)を代入して、
【0052】
【数10】
Figure 0004080819
【0053】
となる。式(10)が示すように、第2次高調波発生の際の最高発生効率が得られる最適光周波数f0を対称軸に、変換後の所望の光周波数fdの反対側に制御光の光周波数fcを調整することにより、変換後の任意の光周波数に対して同一でかつ高い変換効率を実現することができる。(8)式と(10)式の和をとると、
【0054】
【数11】
Figure 0004080819
【0055】
を得、第1の励起光の光周波数fpと入力される変調光の光周波数fsを一定にして光非線形媒質に入射する場合、式(11)内のfp+fsは一定なので、出力される変調光の光周波数fdは制御光の光周波数fcに比例して変化することがわかる。したがって、制御光の光周波数fcを制御することで、出力される変調光の光周波数fdを決定できる。つまり、出力される変調光の波長を任意に決定することができる。
【0056】
すなわち、励起光を最適光周波数を対称軸にして入力される変調光と反対側の光周波数に設定し、制御光を最適光周波数を対称軸にして変換後の所望の光周波数と反対側の光周波数に設定することにより、入力される任意の光周波数の変調光に対して同一で高い波長変換効率が得られる。
【0057】
図3は、本発明における波長変換回路の第1の実形態を示すもので、変調光入力部1と、第1の励起光発生部2と、第2の励起光(制御光)発生部3と、合波手段4と、2次光非線形媒質5と、光帯域透過フィルタ6とを具備している。
変調光入力部1から入力した光ネットワーク上の変調光は、励起光及び制御光とともに合波手段4により合波されて2次光非線形媒質5に入射される。励起光及び制御光の光周波数fp、fcは、入力される変調光の光周波数fs、光非線形媒質の特性できまる光周波数f0及び、変換後の所望の光周波数fdから、それぞれ式(8)と式(10)により定める。2次光非線形媒質5から出力される変調光から、光周波数fdを有する所望の変調光のみを光帯域透過フィルタ6を用いて取り出す。合波手段4は、誘電体多層膜等を用いればよい。光帯域透過フィルタ6は、誘電体多層膜フィルタ、音響光学フィルタ、アレイ回折格子フィルタ等を用いることができる。
【0058】
2次光非線形媒質5として2次の光学非線形性を有する材料、例えば、分極反転を利用した疑似位相整合導波路を形成したニオブ酸リチウム結晶(PPLN)やタンタル酸リチウム結晶を利用すれば、高い変換効率が得られる。導波路5cmで2次の光非線形効果のカスケード効果により、光ファイバの場合と同様な励起光及び制御光パワーで変換効率−10dB以上が得られる。波長配置は式(8)及び式(10)におけるf0をPPLNにおける1.5ミクロン帯の基本光とする第2次高調波発生が最も効率よく生じる波長とする。このf0は、分極反転の周期を調整することにより変化させておくことが可能であり、1.5ミクロン帯にするためには、反転のピッチをおよそ19μmと調整すればよい。
【0059】
図4は、本発明における波長変換回路の第2の実施形態(但し、特許請求の範囲には含まれない。)を示すもので、変調光入力部41と、第1の励起光発生部42と、第1の合波手段43と、第1の2次光非線形媒質44と、光周波数分離手段45と、第2の励起光発生部46と、第2の合波手段47と、第2の2次光非線形媒質48とを具備している。
【0060】
変調光入力部41から入力した光ネットワーク上の変調光(光周波数fs)は、第1の励起光発生部42から発せられる第1の励起光(光周波数fp)とともに第1の合波手段43にて合波され、その合波は第1の2次光非線形媒質44(第2次高調波発生最適光周波数f0)に入力される。第1の2次光非線形媒質44は、2次の光非線形効果を有し、第1の合波手段からの出力光に含まれる第1の励起光と入力する変調光との和周波光を発生させる。第1の2次光非線形媒質44からの出力光を、光周波数分離手段45において透過信号光と和周波光に分離し、第2の合波手段に入力する。それと同時に、第2の励起光発生部46は第2の励起光(光周波数fc)を発し、第2の合波手段47にて光周波数分離手段45から出力された和周波光と合波する。その合波光は、第2の2次光非線形媒質(第2次高調波発生最適光周波数f0)に入力され、光周波数fdを有する所望の変調光を出力する。
【0061】
図5は、本発明における波長変換回路の第3の実施形態(但し、特許請求の範囲には含まれない。)を示すもので、変調光入力部51と、第1の励起光発生部52と、合波手段53と、光サーキュレータ54と、2次光非線形媒質55と、第2の励起光発生部56と、光合分波手段57を具備している。
【0062】
変調光入力部51から入力された光ネットワーク上の変調光(光周波数fs)は、第1の励起光発生部52から発せられる第1の励起光(光周波数fp)とともに合波手段53にて合波され、その合波光は光サーキュレータ54の第1ポートに入力され、第2ポートから出力される。その出力光は、続いて2次の光非線形効果を有する2次光非線形媒質55(第2次高調波発生最適光周波数f0)に入力され、2次光非線形媒質55からの出力光と、第2の励起光発生部56からの第2の励起光(光周波数fc)とを光合分波手段57に入力し、2次光非線形媒質55からの出力光のうち、入力された変調光と前記第1の励起光発生部52からの第1の励起光との和周波光を分離し、その和周波光と第2の励起光とを合波して2次光非線形媒質55に戻し、光サーキュレータ54の第3ポートから所望の周波数fdの変調光を出力する。
【0063】
図6は、本発明における波長変換回路の第4の実施形態を示すもので、変調光入力部61と、第1の励起光発生部62と、PBS64(偏光ビームスプリッタ)と偏光回転子65とを含む第1の光合分波手段63と、第1の2次光非線形媒質66と、第2の2次光非線形媒質67と、第2の光合分波手段68と、第2の励起光発生部69とを具備する。
【0064】
変調光入力部61から第1の光合分波手段63に入力された光ネットワーク上の変調光(光周波数fs)は、PBS64によって直交する2つの直線偏光に分離され、それぞれ第1ポート、第2ポートから出力される。第1ポートからの出力光は、第1の励起光発生部62からの第1の励起光(光周波数fp)とともに、第1の2次光非線形媒質66(第2次高調波発生最適光周波数f0)の一端に入射される。一方、第2ポートからの出力光は、第1の励起光発生部62からの第1の励起光とともに、第1の2次光非線形媒質66の一端に入射される。続いて、それぞれの他端から出力された出力光は、第2の光合分波手段68に入射される。第2の光合分波手段68は、第1の2次光非線形媒質66の他端からの出力光のうち和周波光を第2の2次光非線形媒質67(第2次高調波発生最適光周波数f0)の他端に入射させるとともに、第2の2次光非線形媒質67の他端からの出力光のうち和周波光を第1の2次光非線形媒質66の他端に入射させる。さらに、第2の光合分波手段68は、第1の2次光非線形媒質66の他端からの出力光及び第2の2次光非線形媒質67の他端からの出力光のうち和周波光以外の光を分離し、第2の励起光発生部69(光周波数fc)からの第2の励起光を第1の2次光非線形媒質66の他端及び第2の2次光非線形媒質67の他端に入射する。波長変換後の変調光(光周波数fd)はPBS64から出力される。
【0065】
最後に第3の実施形態の具体的な装置構成を示した図7、和周波発生過程を示すスペクトル図である図8、及び差周波発生過程を示すスペクトル図である図9を参照しながら、第3の実施形態について詳述する。
【0066】
ここでは、1530nmから1565nm(Cバンド)の帯域に波長を有する入力変調光を想定し、Cバンド内にある変換される前の光周波数fsの変調光を、同じくCバンド内の任意の光周波数fdの変調光に変換することを考える。図7の装置構成では、Cバンド内の変調光を和周波発生により785nm領域に変換し、さらに差周波発生によりCバンド内に変換することで、Cバンド内における任意の波長への変換が実現される。
【0067】
波長1570nmの光に対するSHG(第2次高調波)発生においては、位相不整合量Δk0=k(2f0)−2k(f0)が存在し、そのためにバルクの2次光非線形媒質では高効率にSHGが実現されない。したがって、2次光非線形媒質として1570nmの励起光に対して第2次高調波が効率的に発生するように、疑似位相整合のための周期極性反転が施され、第2次高調波発生のための最適光周波数がf0であるニオブ酸リチウム78(PPLN)を用いる。この疑似位相整合により、擬似的に位相整合条件を満たすために高効率なSHGが可能となる。疑似位相整合のための極性反転周期は十数μm、材料長は5cm程度であり、十分に実現可能なものである。さらに、そのPPLN78の出力端には785nmを中心に数nm程度の反射波長帯域幅を有する誘電体多層膜ミラー(DMR)が蒸着されている。
【0068】
第1の励起光発生部71、第2の励起光発生部81としては、1575nmから1610nmの帯域で発振波長を可変とする半導体波長可変レーザを利用する。第1の励起光発生部71から発せられた第1の励起光(光周波数fp)は、WDMカプラによって入力変調光(光周波数fs)と合波手段70にて合波された後に、増幅領域が長波長側にシフトされたEr添加ファイバ増幅器73(GS−EDFA)によって増幅され、PPLN78のDMR蒸着端の反対側より入射される。
【0069】
上述のPPLN78では、入力変調光の光周波数fsと周波数軸上でf0に関して対称な周波数fp=2f0−fsを満足する励起光と、変調光の高効率な和周波発生が期待できる。
【0070】
和周波発生における光パワー変換効率は、近似的に[sin{(Δk−Δk0)L}/(Δk−Δk0)]2に比例すると考えることができる。ここで、Δkは位相不整合量、LはPPLN78の長さである。周波数fsの光と周波数fp=2f0−fsを満たす光の和周波発生における位相不整合量は次式のように、一次近似の基ではΔk0に一致する。すなわち、
【0071】
【数12】
Figure 0004080819
【0072】
従って、[sin{(Δk−Δk0)L}/(Δk−Δk0)]2=1となり、周波数がfp=2f0−fsの第1の励起光と、変換する前の周波数fsの変調光の高効率な和周波発生が期待されることが分かる。和周波発生により周波数fsの変調光は、周波数fs+2f0−fs=2f0の信号光に高効率に変換される。この様子を図8示す。発生した周波数2f0の和周波光はPPLN78の他端のDMRによって反射され、PPLN78を逆に伝播する。このとき、入力変調光及び第1の励起光はDMRを透過するため、PPLN78には入射されない。PPLN78の他端から入射された周波数fp=2f0−fdの第2の励起光発生部81から発せられた第2の励起光(光周波数fc)による差周波発生により、2f0−(2f0−fd)=fdの信号光が発生する。ここでも、和周波発生と同様に、疑似位相整合条件が満たされるため、高効率な差周波発生が期待される。PPLN78の一端に接続された光サーキュレータ74によりPPLN復路光を往路光から分離することで波長変換光(光周波数fd)が得られる。そのスペクトルを図9に示す。
【0073】
さらに、その反射帯域がCバンドをカバーするように作成されたチャープファイバーグレーティング76、77(Ch−FBG)を光サーキュレータ73を通じて透過させることで、不必要な励起光を除去し波長変換光のみを抽出する。PPLN往路光には、Cバンド内の変換光とCバンド外の第2の励起光のみであるから、Cバンドを反射帯域とする固定チャープFBGでよい。Ch−FBG76、77によって付加されるチャープが望ましくない場合には、再度Ch−FBGを逆端から挿入することでチャープ特性を相殺できる。以上により、Cバンド内の任意の波長の変調光をCバンド内の任意の波長の光に変換できる。
【0074】
なお、この波長変換回路の構成は、波長多重変調光を入力変調光とした場合には、波長多重変調光から任意の波長の変調光を抽出し、任意波長に変換して出力する機能を有する。それは、和周波発生は、第1の励起光と位相整合条件を満たす波長のみに対して発生するため、それ以外の変調光群はPPLN78を透過するからである。
【0075】
【発明の効果】
以上説明したように、本発明によれば、第2の励起光を制御することで出力される変調光の波長を任意に決定することができるので、単一の光非線形媒質を用いて簡易な構成で任意の波長の変調光を出力することができ、小さな装置規模で、経済的な波長変換回路及び波長変換方法を構成することができる。また、入力変調光、励起光、変換光の波長が接近している場合でも、これらを有効に分離することができる。さらに、変換前の波長から変換後の波長への切り換え速度は、光波長可変フィルタの切り換え速度によって制限されない。
【図面の簡単な説明】
【図1】本発明の一実施形態に係る光周波数配置を示す図
【図2】従来の光変換装置における光周波数配置を示す図
【図3】本発明の第1の実施形態に係る回路の構成を示す図
【図4】本発明の第2の実施形態に係る回路の構成を示す図
【図5】本発明の第3の実施形態に係る回路の構成を示す図
【図6】本発明の第4の実施形態に係る回路の構成を示す図
【図7】本発明の第3に実施形態に係る回路構成の具体例を示す図
【図8】本発明の一実施形態における和周波発生過程を示すスペクトル図
【図9】本発明の一実施形態における差周波発生過程を示すスペクトル図
【符号の説明】
1、41、51、61、70…変調光入力部、2、42、52、62、71…第1の励起光発生部、3、48、56、69、81…第2の励起光発生部、4、53、72…合波手段、5、55…2次光非線形媒質、6…光帯域フィルタ、43…第1の合波手段、44、66…第1の2次光非線形媒質、45…光周波数分離手段、47…第2の合波手段、48、67…第2の2次光非線形媒質、54、74、75、79…光サーキュレータ、57…光合分波手段、63…第1の光合分波手段、64…偏光ビームスプリッタ(PBS)、65…偏光回転子、68…第2の光合分波手段、73、80…GS−EDFA、76、77…チャープFBG、78…PPLN。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a wavelength conversion circuit and a wavelength conversion method used for an optical node or the like in an optical network based on wavelength division multiplexing (WDM) technology.
[0002]
[Prior art]
Conventional optical wavelength conversion methods for converting modulated light of an arbitrary wavelength into modulated light of a desired wavelength are roughly divided into the following four.
[0003]
The O / E / O type is a method in which modulated light having an arbitrary wavelength is once converted into an electric signal and optically modulated into light having a desired wavelength by the electric signal. In the O / E / O type, an identification reproduction effect can be added by a digital electronic circuit. On the other hand, in a modulation method for controlling the phase of light such as a duobinary modulation code, a carrier suppression RZ code, an optical frequency shift code, and an optical phase shift code, etc. There is a problem that the modulation / demodulation circuit configuration becomes complicated.
[0004]
In the XGM and XPM types, continuous gain having a desired wavelength and light having an arbitrary intensity are incident on a material whose gain (loss) or refractive index of a semiconductor depends on light intensity, and mutual gain modulation (XGM) ) And wavelength conversion using the cross phase modulation (XPM) effect. However, similarly to the O / E / O type, the XGM and XPM types cannot be applied depending on a modulation / demodulation method that modulates the phase of light, such as an optical frequency shift code and an optical phase shift code.
[0005]
In the wavelength shift type, modulated light of an arbitrary wavelength is incident on an acousto-optic material or electro-optic material driven at a frequency corresponding to the wavelength difference from the desired wavelength, and wavelength conversion is performed by the acousto-optic effect or the electro-optic effect, respectively. How to do it. The wavelength shift type does not depend on the modulation method of the input modulated light and can obtain converted light having the same modulation code including the optical phase, but the wavelength shift amount of the current optical frequency shift device is as small as 1 nm at most. There is a drawback, and it does not meet the demand for a wavelength shift amount of several tens of nm or more.
[0006]
The optical parametric type is a method in which excitation light and modulated light having an arbitrary wavelength are incident on an optical nonlinear material, and the wavelength of the incident modulated light is converted using a second-order or third-order optical nonlinear effect. The parametric type has an advantage that modulated light having the same modulation code including the optical phase can be easily obtained without depending on the modulation method of the input modulated light. However, parametric wavelength conversion has a problem that the wavelength after conversion is limited by the characteristic parameters of the optical nonlinear material.
[0007]
Hereinafter, conventional parametric wavelength conversion will be described in detail.
[0008]
In the conventional configuration, it is necessary to match the excitation light with a wavelength determined by the optical nonlinear material parameter and corresponding to the zero dispersion optical frequency. This will be described with reference to FIG. 2, taking as an example the case of a third-order optical nonlinear material (for example, an optical fiber) having wavelength dispersion.
[0009]
The optical frequency of the excitation light is f p , The optical frequency of the modulated light is f s And When this excitation light and modulated light are input to an optical nonlinear material, the optical frequency is reduced by the degenerate four-wave mixing effect.
[0010]
[Expression 1]
Figure 0004080819
[0011]
New light (four-wave mixed light) is generated. At this time, the power P of the four-wave mixing light F Is the power P of the excitation light P And the input modulated light power P S Is proportional to the product of the phase matching coefficient η,
[0012]
[Expression 2]
Figure 0004080819
[0013]
It is expressed. Therefore, the maximum power P of the four-wave mixed light P F To obtain the maximum phase matching coefficient η.
[0014]
When the phase matching coefficient η can ignore the optical loss due to the medium,
[0015]
[Equation 3]
Figure 0004080819
[0016]
It is expressed. L is the length of the medium, Δβ is the amount of phase mismatch, and the propagation constant at the optical frequency f is β (f).
[0017]
[Expression 4]
Figure 0004080819
[0018]
It is. Therefore, in order to maximize the phase matching coefficient η, the phase mismatch amount Δβ may be made close to zero. When the wavelength dependence of the propagation constant of a dispersive optical nonlinear medium is approximated to its third derivative (dispersion slope), the phase mismatch amount is expressed by the following equation.
[0019]
[Equation 5]
Figure 0004080819
[0020]
Where f 0 Is the optical frequency corresponding to the zero dispersion wavelength. Conventionally, in order to reduce the phase mismatch amount to 0, the excitation light (optical frequency f p ) Wavelength is the zero dispersion wavelength of the medium (optical frequency f 0 ), It has been studied to convert the wavelength of input modulated light having an arbitrary wavelength with substantially the same conversion efficiency.
[0021]
The above-mentioned conventional concept is that the second-order nonlinear optical effect is obtained over a long device length by periodically inverting the optical axis of the second-order nonlinear optical material, for example, a ferroelectric crystal such as lithium niobate or the like. It has also been applied to a quasi-phase-matching optical waveguide material that satisfies the phase-matching condition in a pseudo manner. In this case, the zero-dispersion optical frequency f in the above-mentioned dispersive optical nonlinear material 0 Is read as the optimum optical frequency at which the highest generation efficiency at the time of second harmonic generation is obtained. That is, it has been studied to obtain converted light having an optical frequency opposite to the input modulated light having an arbitrary wavelength, with the excitation light set to the optimal optical frequency and the optimal optical frequency as the axis of symmetry.
[0022]
[Problems to be solved by the invention]
However, in the optical transmission apparatus to which the wavelength conversion is applied, the wavelength obtained by the conversion by the control signal given from the network control network needs to be dynamically changed. The wavelength of the excitation light is defined by the equation (1), and the frequency of the pumping light is zero dispersion optical frequency in the case of a third-order optical nonlinear medium, and the highest generation efficiency is obtained in the case of a second-order optical nonlinear medium. If the optical frequency of the input modulated light and the optical nonlinear medium to be used are determined, the optical frequency after conversion is unique with respect to the optical frequency of the input modulated light. Therefore, the wavelength after the conversion of the input modulated light cannot be switched by the control light only by using one optical nonlinear medium. Therefore, in order to perform wavelength conversion with an arbitrary wavelength after conversion, a configuration in which a large number of optical nonlinear media with different characteristics are prepared, and the optical nonlinear medium to be used is switched using an optical switch or the like according to the wavelength after conversion. There was no other. In this case, in addition to technical limitations such as optical loss and response speed, there are problems such as an increase in device scale and cost.
[0023]
Further, in the conventional optical parametric wavelength conversion, it is necessary to separate the generated signal light of the conversion destination wavelength from the input signal light and the excitation light by the optical wavelength variable filter. Therefore, when the wavelengths of the input light, the excitation light, and the converted light are close, there is a problem that they cannot be separated effectively. Furthermore, there is a problem that the switching speed from the wavelength before conversion to the wavelength after conversion is limited by the switching speed of the optical wavelength variable filter.
[0024]
In view of the above problems, an object of the present invention is to convert a modulated light having an arbitrary wavelength with a simple configuration using a single optical nonlinear medium, to output a modulated light having an arbitrary wavelength, and to input modulated modulated light. Wavelength conversion that can be effectively separated even when the wavelengths of excitation light and converted light are close, and can be switched from the wavelength before conversion to the wavelength after conversion that is not limited by the switching speed of the optical wavelength variable filter It is to provide a circuit and a wavelength conversion method.
[0025]
[Means for Solving the Problems]
In order to achieve the above object in the present invention, in claim 1, the inputted center optical frequency f s Of the modulated light of the desired center frequency f while maintaining the same modulation information. d In the wavelength conversion circuit that converts and outputs the modulated light, the optical frequency corresponding to the wavelength that has the second-order optical nonlinear effect and outputs the second harmonic most efficiently is f. 0 A second-order nonlinear optical medium, and f p = 2f 0 -F s The optical frequency f satisfying the relationship p A first pumping light generator for generating the first pumping light, and f c = 2f o -F d Any optical frequency f satisfying the relationship c A second pumping light generator that generates the second pumping light, and combines the input modulated light, the first pumping light, and the second pumping light and inputs them to the optical nonlinear medium. , The desired center optical frequency f from the light output by the optical nonlinear effect from the optical nonlinear medium d A wavelength conversion circuit that extracts only the modulated light.
[0028]
Claim 2 Then, in the wavelength conversion circuit that converts the input modulated light into modulated light having a desired frequency while retaining the same modulation information, the first excitation light is generated and the frequency is changed. A first pumping light generating unit capable of generating a second pumping light, a second pumping light generating unit capable of changing the frequency of the second pumping light, and the input modulated light separated into two orthogonally polarized waves A polarization beam splitter that outputs to the first port and the second port, respectively, and a polarization rotator that rotates the polarization of the output light from the second port of the polarization beam splitter by 90 degrees. Including The output light from the first port of the polarization beam splitter and the first pumping light from the first pumping light generator are connected to one end of a first secondary optical nonlinear medium having a secondary optical nonlinear effect. And the output light from the polarization rotator and the first excitation light from the first excitation light generator are applied to one end of a second secondary optical nonlinear medium having a secondary optical nonlinear effect. Incident first optical multiplexing / demultiplexing means, and sum frequency light out of output light from the other end of the first second-order nonlinear optical medium is incident on the other end of the second second-order nonlinear optical medium, Of the output light from the other end of the second secondary optical nonlinear medium, sum frequency light is incident on the other end of the first secondary optical nonlinear medium, and the first secondary optical nonlinear medium Said Output light from the other end and Said Of the second secondary optical nonlinear medium Said The light other than the sum frequency light is separated from the output light from the other end, and the second pumping light from the second pumping light generator is converted into the first secondary light nonlinear medium. Said The other end and Said Of the second secondary optical nonlinear medium Said Second optical multiplexing / demultiplexing means incident on the other end, The output light from the one end of the first secondary light nonlinear medium is incident on the first port of the polarization beam splitter, and the output light from the one end of the second secondary light nonlinear medium is the polarization rotator. Through the second port of the polarization beam splitter, A wavelength conversion circuit that outputs modulated light of a desired frequency from the polarization beam splitter is used as a solution means.
[0029]
Claim 3 Then, the frequency f corresponding to the wavelength at which the second-order optical nonlinear medium outputs the second-order harmonic most efficiently. 0 , Frequency f of input modulated light s , The desired frequency f of the output modulated light d Is the frequency f of the first excitation light emitted from the first excitation light generator. p But f p = 2f 0 -F s And the frequency f of the second pumping light emitted from the second pumping light generator c But f c = 2f 0 -F d A value satisfying 2 The wavelength conversion circuit described is used as a solution.
[0030]
Claim 4 Then, the second-order optical nonlinear medium is an optical frequency f that most efficiently outputs the second harmonic in the vicinity of one end of a continuous modulated optical frequency band including the frequency of the input modulated light and the conversion destination frequency. 0 And the first and second excitation light generators are f on the modulated light frequency band and frequency spectrum. 0 Having the output optical frequency in the excitation light frequency band opposite to 0 2. A fixed band filter having an edge of a transmission frequency band in the vicinity thereof. 3 Any one of the wavelength conversion circuits according to claim 1 is used as a solution.
[0031]
Claim 5 The second-order nonlinear optical medium is a quasi-phase-matched lithium niobate crystal waveguide or lithium tantalate crystal waveguide whose optical axis is periodically inverted. 4 Any one of the wavelength conversion circuits according to claim 1 is used as a solution.
[0032]
Claim 6 Then, the input center optical frequency f s Are input to the optical nonlinear medium, and the desired center frequency f is maintained while maintaining the same modulation information. d In the wavelength conversion method for converting the light into modulated light and outputting it, the input central optical frequency f s Modulated light and the center optical frequency f of the modulated light s And the optical frequency f corresponding to the zero dispersion wavelength of the optical nonlinear medium 0 And f p = 2f 0 -F s The optical frequency f satisfying the relationship p The first excitation light and the center optical frequency f of the modulated light to be output d Depending on the desired value of f c = 2f 0 -F d The optical frequency f controlled to satisfy the relationship c The second pumping light is combined, and the optical frequency corresponding to the wavelength at which the second-order harmonic light is output most efficiently with the second-order optical nonlinear effect is f. 0 Is input to the second-order nonlinear optical medium, and is output from the second-order nonlinear optical medium by the nonlinear optical effect to a desired central optical frequency f. d A wavelength conversion method characterized by taking out only the modulated light is used as a solution means.
[0035]
Claim 7 Then 7. The inputted modulated light is separated into two orthogonally polarized waves, converted light is generated for each signal light by the wavelength conversion method according to claim 6, and they are combined again. A wavelength conversion method characterized by this is used as a solution.
[0036]
Claim 8 Then In a wavelength conversion method for converting input modulated light into modulated light of a desired frequency while retaining the same modulation information, the modulated light is input to the first optical multiplexing / demultiplexing means and input The modulated light is separated into two linearly polarized waves orthogonal to each other in the polarization beam splitter and output to the first port and the second port, respectively, and the polarization of the output light from the second port of the polarization beam splitter is polarized. The first output from the first excitation light generator that can be rotated by a rotator to generate the output light from the first port of the polarization beam splitter and the first excitation light and change the frequency thereof. Excitation light is incident on one end of a first secondary optical nonlinear medium having a secondary optical nonlinear effect, and output light from the polarization rotator and first excitation from the first excitation light generation unit Light and secondary non-linear The incident light enters one end of the second secondary optical nonlinear medium having an effect, and the second optical multiplexing / demultiplexing means converts the sum frequency light out of the output light from the other end of the first secondary optical nonlinear medium to the first optical nonlinear medium. The second-order nonlinear optical medium is incident on the other end of the second-order nonlinear optical medium, and the sum-frequency light out of the output light from the other-end of the second-order second-order nonlinear optical medium is converted to the other end of the first-order second-order nonlinear optical medium. And separating light other than the sum frequency light out of the output light from the other end of the first secondary light nonlinear medium and the output light from the other end of the second secondary light nonlinear medium. The second pumping light from the second pumping light generator that can generate the second pumping light and change the frequency of the second pumping light is used as the other end of the first second-order nonlinear optical medium and the second pumping light. The light is incident on the other end of the second-order nonlinear optical medium, and the output light from the one end of the first second-order nonlinear optical medium is forwarded. Incident into the first port of the polarizing beam splitter, the output light from the one end of the second secondary light nonlinear medium is incident on the second port of the polarizing beam splitter via the polarization rotator, and the polarized beam Output modulated light of desired frequency from splitter A wavelength conversion method characterized by this is used as a solution.
[0037]
Claim 9 Then, the frequency f corresponding to the wavelength at which the second-order optical nonlinear medium outputs the second-order harmonic most efficiently. 0 , Frequency f of input modulated light s , The desired frequency f of the output modulated light d Is the frequency f of the first excitation light emitted from the first excitation light generator. p But f p = 2f 0 -F s And the frequency f of the second pumping light emitted from the second pumping light generator c But f c = 2f 0 -F d A value satisfying 8 The wavelength conversion method described is used as a solution.
[0038]
Claim 10 Then, in the second-order optical nonlinear medium, the optical frequency f at which the second-order harmonic is output most efficiently. 0 Is set near one end of a continuous modulated light frequency band including the frequency of the input modulated light and the conversion destination frequency, and the output light frequencies of the first and second excitation light generators are set to the modulated light. F on frequency band and frequency spectrum 0 The fixed band filter is set to the pumping light frequency band opposite to 0 The transmission frequency band has an edge in the vicinity thereof. 6 Thru 9 Any one of the wavelength conversion methods described in [1] is used as a solution means.
[0039]
Claim 11 The second-order optical nonlinear medium is a quasi-phase-matched lithium niobate crystal waveguide and a lithium tantalate crystal waveguide whose optical axes are periodically inverted. 6 Thru 10 Any one of the wavelength conversion methods described in [1] is used as a solution means.
[0040]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0041]
FIG. 1 is an optical frequency layout diagram of the present invention. In the present invention, as the optical nonlinear medium, a secondary optical nonlinear material, for example, a ferroelectric crystal such as lithium niobate and the second-order nonlinear effect over a long device length by periodically inverting the optical axis of the crystal. A quasi-phase matching optical waveguide material that satisfies the phase matching condition of ## EQU1 ## is used.
[0042]
In the present invention, light of three wavelengths, that is, modulated light input to the wavelength conversion circuit and two excitation lights having different wavelengths are multiplexed. At this time, among the light newly generated by the optical nonlinear effect, the optical frequency is
[0043]
[Formula 6]
Figure 0004080819
[0044]
Focus on the newly generated light. Here, the optical frequency of the first excitation light is f p , The optical frequency of the second excitation light is f c It is said. Hereinafter, the second excitation light will be referred to as control light. The reason why the second excitation light is referred to as control light is that by controlling this control light, the input modulated light can be converted and modulated light of an arbitrary wavelength can be output.
[0045]
Optical frequency f using a second-order optical nonlinear medium, particularly a quasi-phase matching (lithium niobate, etc.) medium d The amount of phase mismatch in the case of generation of
[0046]
[Expression 7]
Figure 0004080819
[0047]
It becomes. Λ is a polarization inversion period of quasi-phase matching, and β (2f 0 ) -2β (f 0 ) = 2π / Λ. Optical frequency f of the first excitation light p As shown in FIG. 1, the optimum optical frequency f at which the highest generation efficiency is obtained when the second harmonic is generated is shown. 0 Modulated light (optical frequency f s ) Select the opposite side. That is,
[0048]
[Equation 8]
Figure 0004080819
[0049]
It is. Therefore, β (f s + F p ) -2β (f 0 ) = Β (2f 0 ) -2β (f 0 ) = 2π / Λ, and the second and subsequent items in Equation (7) are zero. Also,
[0050]
[Equation 9]
Figure 0004080819
[0051]
To satisfy the relationship, the first item in the curly braces of Equation (7) is 0, and the optical frequency f of the excitation light p And the optimum optical frequency f for obtaining the highest generation efficiency in the generation of the second harmonic of the optical nonlinear medium 0 Even if does not match, f p And f 0 Satisfies the phase matching condition for the control light of an arbitrary optical frequency. Therefore, the optical frequency f of the control light c Transform equation (6) and substitute equation (8)
[0052]
[Expression 10]
Figure 0004080819
[0053]
It becomes. As shown in the equation (10), the optimum optical frequency f at which the highest generation efficiency is obtained when the second harmonic is generated. 0 With the axis of symmetry as the desired optical frequency f after conversion d On the other side of the optical frequency f of the control light c By adjusting the above, it is possible to realize the same and high conversion efficiency for an arbitrary optical frequency after conversion. Taking the sum of equation (8) and equation (10),
[0054]
## EQU11 ##
Figure 0004080819
[0055]
And the optical frequency f of the first excitation light p The optical frequency f of the modulated light input s When the light is incident on the optical nonlinear medium with f being constant, f in Expression (11) p + F s Is constant, the optical frequency f of the modulated light to be output d Is the optical frequency f of the control light c It turns out that it changes in proportion to. Therefore, the optical frequency f of the control light c By controlling the optical frequency f of the modulated light to be output. d Can be determined. That is, the wavelength of the modulated light to be output can be arbitrarily determined.
[0056]
That is, the excitation light is set to an optical frequency opposite to the input modulated light with the optimum optical frequency as the symmetry axis, and the control light is set to the opposite side to the desired optical frequency after the conversion with the optimum optical frequency as the symmetry axis. By setting the optical frequency, the same and high wavelength conversion efficiency can be obtained with respect to the modulated light having an arbitrary optical frequency.
[0057]
FIG. 3 shows a first implementation of the wavelength conversion circuit according to the present invention. Out The modulated light input unit 1, the first excitation light generation unit 2, the second excitation light (control light) generation unit 3, the multiplexing unit 4, the secondary optical nonlinear medium 5, The optical band transmission filter 6 is provided.
The modulated light on the optical network input from the modulated light input unit 1 is multiplexed by the multiplexing unit 4 together with the excitation light and the control light, and is incident on the secondary optical nonlinear medium 5. Optical frequency f of excitation light and control light p , F c Is the optical frequency f of the input modulated light s The optical frequency f determined by the characteristics of the optical nonlinear medium 0 And the desired optical frequency f after the conversion d From equations (8) and (10), respectively. From the modulated light output from the secondary optical nonlinear medium 5, the optical frequency f d Only the desired modulated light having the above is taken out using the optical band transmission filter 6. The multiplexing means 4 may be a dielectric multilayer film or the like. As the optical band pass filter 6, a dielectric multilayer filter, an acousto-optic filter, an array diffraction grating filter, or the like can be used.
[0058]
If a material having secondary optical nonlinearity, for example, a lithium niobate crystal (PPLN) or a lithium tantalate crystal in which a quasi phase matching waveguide using polarization inversion is formed, is used as the secondary optical nonlinear medium 5 Conversion efficiency is obtained. Due to the cascade effect of the second-order optical nonlinear effect in the waveguide 5 cm, a conversion efficiency of −10 dB or more can be obtained with the same pumping light and control light power as in the case of an optical fiber. The wavelength arrangement is f in Equation (8) and Equation (10). 0 Is the wavelength at which the second harmonic generation is most efficiently generated using the 1.5 μm band fundamental light in PPLN. This f 0 Can be changed by adjusting the period of polarization inversion, and in order to obtain a 1.5 micron band, the inversion pitch may be adjusted to about 19 μm.
[0059]
FIG. 4 shows a second embodiment of the wavelength conversion circuit according to the present invention. (However, it is not included in the scope of claims.) The modulated light input unit 41, the first excitation light generation unit 42, the first multiplexing unit 43, the first second-order nonlinear optical medium 44, the optical frequency separation unit 45, 2 excitation light generator 46, second multiplexing means 47, and second secondary light nonlinear medium 48.
[0060]
Modulated light on the optical network (optical frequency f) input from the modulated light input unit 41 s ) Is the first pumping light (optical frequency f) emitted from the first pumping light generator 42. p ) Together with the first second-order optical nonlinear medium 44 (second-order harmonic generation optimum optical frequency f). 0 ). The first second-order optical nonlinear medium 44 has a second-order optical nonlinear effect, and generates the sum frequency light of the first excitation light and the input modulated light contained in the output light from the first multiplexing means. generate. The output light from the first secondary optical nonlinear medium 44 is separated into transmitted signal light and sum frequency light by the optical frequency separation means 45 and input to the second multiplexing means. At the same time, the second excitation light generator 46 generates the second excitation light (optical frequency f c ) And is combined with the sum frequency light output from the optical frequency separation means 45 by the second multiplexing means 47. The combined light is a second second-order optical nonlinear medium (second-order harmonic generation optimum optical frequency f 0 ) And the optical frequency f d Desired modulated light is output.
[0061]
FIG. 5 shows a third embodiment of the wavelength conversion circuit according to the present invention. (However, it is not included in the scope of claims.) The modulated light input unit 51, the first excitation light generation unit 52, the multiplexing means 53, the optical circulator 54, the secondary optical nonlinear medium 55, the second excitation light generation unit 56, The optical multiplexing / demultiplexing means 57 is provided.
[0062]
Modulated light (optical frequency f) on the optical network input from the modulated light input unit 51 s ) Is the first pumping light (optical frequency f) emitted from the first pumping light generator 52. p ), And the combined light is input to the first port of the optical circulator 54 and output from the second port. The output light is then supplied to a second-order nonlinear optical medium 55 (second-order harmonic generation optimum optical frequency f) having a second-order nonlinear effect. 0 ) And the second pumping light (optical frequency f) from the second pumping light generator 56 and the second pumping light generator 56. c ) Is input to the optical multiplexing / demultiplexing means 57, and the sum of the input modulated light and the first pumping light from the first pumping light generator 52 out of the output light from the secondary optical nonlinear medium 55 The frequency light is separated, the sum frequency light and the second pump light are combined and returned to the secondary optical nonlinear medium 55, and the desired frequency f is output from the third port of the optical circulator 54. d The modulated light is output.
[0063]
FIG. 6 shows a fourth embodiment of the wavelength conversion circuit according to the present invention. The modulated light input unit 61, the first excitation light generation unit 62, the PBS 64 (polarization beam splitter), the polarization rotator 65, and the like. Including first optical multiplexing / demultiplexing means 63, first secondary nonlinear optical medium 66, second secondary nonlinear optical medium 67, second optical multiplexing / demultiplexing means 68, and generation of second excitation light. Part 69.
[0064]
Modulated light on the optical network (optical frequency f) input from the modulated light input unit 61 to the first optical multiplexing / demultiplexing means 63 s ) Are separated into two linearly polarized light beams orthogonal to each other by the PBS 64 and output from the first port and the second port, respectively. The output light from the first port is the first excitation light (optical frequency f) from the first excitation light generator 62. p ) Together with the first second-order nonlinear optical medium 66 (second-order harmonic generation optimum optical frequency f) 0 ). On the other hand, the output light from the second port is incident on one end of the first secondary light nonlinear medium 66 together with the first excitation light from the first excitation light generator 62. Subsequently, the output light output from each of the other ends is incident on the second optical multiplexing / demultiplexing means 68. The second optical multiplexing / demultiplexing means 68 converts the sum frequency light out of the output light from the other end of the first secondary optical nonlinear medium 66 to the second secondary optical nonlinear medium 67 (second harmonic generation optimal light). Frequency f 0 ) And the sum frequency light of the output light from the other end of the second secondary light nonlinear medium 67 is incident on the other end of the first secondary light nonlinear medium 66. Further, the second optical multiplexing / demultiplexing means 68 is a sum frequency light out of the output light from the other end of the first secondary optical nonlinear medium 66 and the output light from the other end of the second secondary optical nonlinear medium 67. Other than the light, the second excitation light generator 69 (optical frequency f c ) Is incident on the other end of the first secondary optical nonlinear medium 66 and the other end of the second secondary optical nonlinear medium 67. Modulated light after wavelength conversion (optical frequency f d ) Is output from the PBS 64.
[0065]
Finally, referring to FIG. 7 showing a specific device configuration of the third embodiment, FIG. 8 which is a spectrum diagram showing the sum frequency generation process, and FIG. 9 which is a spectrum diagram showing the difference frequency generation process, The third embodiment will be described in detail.
[0066]
Here, assuming input modulated light having a wavelength in the band of 1530 nm to 1565 nm (C band), the optical frequency f before conversion in the C band s Of the modulated light of any optical frequency f within the C band. d Consider conversion to modulated light. In the apparatus configuration of FIG. 7, the modulation light in the C band is converted into the 785 nm region by sum frequency generation, and further converted into the C band by difference frequency generation, thereby realizing conversion to an arbitrary wavelength in the C band. Is done.
[0067]
In the generation of SHG (second harmonic) with respect to light having a wavelength of 1570 nm, the phase mismatch amount Δk 0 = K (2f 0 ) -2k (f 0 Therefore, SHG cannot be realized with high efficiency in a bulk second-order optical nonlinear medium. Therefore, periodic polarity inversion for quasi-phase matching is performed so that the second harmonic is efficiently generated with respect to 1570 nm pumping light as the second-order nonlinear optical medium. The optimal optical frequency is f 0 Lithium niobate 78 (PPLN) is used. This pseudo phase matching enables highly efficient SHG in order to satisfy the phase matching condition in a pseudo manner. The polarity inversion period for quasi-phase matching is about 10 μm and the material length is about 5 cm, which is sufficiently realizable. Further, a dielectric multilayer mirror (DMR) having a reflection wavelength bandwidth of about several nm around 785 nm is deposited on the output end of the PPLN 78.
[0068]
As the first pumping light generator 71 and the second pumping light generator 81, a semiconductor wavelength tunable laser that makes the oscillation wavelength variable in a band of 1575 nm to 1610 nm is used. The first excitation light (optical frequency f) emitted from the first excitation light generator 71 p ) Is input modulated light (optical frequency f) by a WDM coupler. s ) And the combining means 70, the amplified region is amplified by an Er-doped fiber amplifier 73 (GS-EDFA) shifted to the long wavelength side, and is incident from the opposite side of the DPL vapor deposition end of the PPLN 78 .
[0069]
In the PPLN 78 described above, the optical frequency f of the input modulated light. s And f on the frequency axis 0 A symmetric frequency f with respect to p = 2f 0 -F s High-efficiency sum frequency generation of modulated light and excitation light that satisfies the above can be expected.
[0070]
The optical power conversion efficiency in sum frequency generation is approximately [sin {(Δk−Δk 0 ) L} / (Δk−Δk 0 ]] 2 Can be considered to be proportional to Here, Δk is the amount of phase mismatch, and L is the length of PPLN 78. Frequency f s Light and frequency f p = 2f 0 -F s The amount of phase mismatch in the generation of the sum frequency of light satisfying 0 Matches. That is,
[0071]
[Expression 12]
Figure 0004080819
[0072]
Therefore, [sin {(Δk−Δk 0 ) L} / (Δk−Δk 0 ]] 2 = 1 and the frequency is f p = 2f 0 -F s First excitation light and frequency f before conversion s It can be seen that highly efficient sum frequency generation of the modulated light is expected. Frequency f by sum frequency generation s The modulated light of the frequency f s + 2f 0 -F s = 2f 0 The signal light is converted with high efficiency. This is shown in FIG. Generated frequency 2f 0 Is reflected by the DMR at the other end of the PPLN 78 and propagates back through the PPLN 78. At this time, the input modulated light and the first excitation light are transmitted through the DMR and are not incident on the PPLN 78. Frequency f incident from the other end of PPLN 78 p = 2f 0 -F d Second pumping light (optical frequency f) emitted from the second pumping light generator 81 c ) To generate 2f 0 -(2f 0 -F d ) = F d The signal light is generated. Here, as with the sum frequency generation, since the pseudo phase matching condition is satisfied, high-efficiency difference frequency generation is expected. The PPLN return path light is separated from the forward path light by the optical circulator 74 connected to one end of the PPLN 78, thereby converting the wavelength converted light (optical frequency f). d ) Is obtained. The spectrum is shown in FIG.
[0073]
Furthermore, by transmitting the chirped fiber gratings 76 and 77 (Ch-FBG) created so that the reflection band covers the C band through the optical circulator 73, unnecessary excitation light is removed and only wavelength converted light is transmitted. Extract. Since the PPLN outbound light includes only the converted light in the C band and the second excitation light outside the C band, it may be a fixed chirp FBG having the C band as a reflection band. When the chirp added by the Ch-FBGs 76 and 77 is not desirable, the chirp characteristics can be canceled by inserting the Ch-FBG from the opposite end again. As described above, modulated light having an arbitrary wavelength in the C band can be converted into light having an arbitrary wavelength in the C band.
[0074]
Note that this wavelength conversion circuit has a function of extracting modulated light of an arbitrary wavelength from the wavelength multiplexed modulated light, converting it to an arbitrary wavelength and outputting it when the wavelength multiplexed modulated light is used as input modulated light. . This is because sum frequency generation occurs only for wavelengths that satisfy the phase matching condition with the first excitation light, and the other modulated light groups pass through the PPLN 78.
[0075]
【The invention's effect】
As described above, according to the present invention, the wavelength of the modulated light output by controlling the second excitation light can be arbitrarily determined, so that a simple optical nonlinear medium can be used. Modulated light of an arbitrary wavelength can be output with the configuration, and an economical wavelength conversion circuit and wavelength conversion method can be configured with a small apparatus scale. Even when the wavelengths of the input modulated light, the excitation light, and the converted light are close to each other, they can be effectively separated. Further, the switching speed from the wavelength before conversion to the wavelength after conversion is not limited by the switching speed of the optical wavelength variable filter.
[Brief description of the drawings]
FIG. 1 is a diagram showing an optical frequency arrangement according to an embodiment of the present invention.
FIG. 2 is a diagram showing an optical frequency arrangement in a conventional optical conversion device.
FIG. 3 is a diagram showing a configuration of a circuit according to the first embodiment of the present invention.
FIG. 4 is a diagram showing a circuit configuration according to a second embodiment of the present invention.
FIG. 5 is a diagram showing a configuration of a circuit according to a third embodiment of the present invention.
FIG. 6 is a diagram showing a configuration of a circuit according to a fourth embodiment of the present invention.
FIG. 7 is a diagram showing a specific example of a circuit configuration according to a third embodiment of the present invention.
FIG. 8 is a spectrum diagram showing a sum frequency generation process in an embodiment of the present invention.
FIG. 9 is a spectrum diagram showing a difference frequency generation process in an embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1, 41, 51, 61, 70 ... Modulated light input part 2, 42, 52, 62, 71 ... 1st excitation light generation part 3, 48, 56, 69, 81 ... 2nd excitation light generation part 4, 53, 72 ... multiplexing means, 5, 55 ... secondary optical nonlinear medium, 6 ... optical bandpass filter, 43 ... first multiplexing means, 44, 66 ... first secondary optical nonlinear medium, 45 ... optical frequency separation means, 47 ... second multiplexing means, 48, 67 ... second secondary optical nonlinear medium, 54, 74, 75, 79 ... optical circulator, 57 ... optical multiplexing / demultiplexing means, 63 ... first 64 ... polarization beam splitter (PBS), 65 ... polarization rotator, 68 ... second optical multiplexing / demultiplexing means, 73, 80 ... GS-EDFA, 76, 77 ... chirp FBG, 78 ... PPLN.

Claims (11)

入力された中心光周波数fsの変調光を、同一の変調情報を保持させたまま所望の中心周波数fdの変調光に変換して出力する波長変換回路において、
2次の光非線形効果を有し、最も効率よく第2次高調波を出力する波長に相当する光周波数がf0である2次光非線形媒質と、
p=2f0−fsの関係を満足する光周波数fpの第1の励起光を発生する第1の励起光発生部と、
c=2fo−fdの関係を満足する任意の光周波数fcの第2の励起光を発生する第2の励起光発生部とを有し、
入力された変調光と第1の励起光と第2の励起光とを合波させて光非線形媒質に入力し、該光非線形媒質よりその光非線形効果によって出力される光から所望の中心光周波数fdの変調光のみを取り出す
ことを特徴とする波長変換回路。
In the wavelength conversion circuit for converting the input modulated light having the center optical frequency f s to the modulated light having the desired center frequency f d while retaining the same modulation information,
A second-order optical nonlinear medium having a second-order optical nonlinear effect and having an optical frequency f 0 corresponding to the wavelength at which the second-order harmonic is output most efficiently;
a first excitation light generating unit that generates a first excitation light optical frequency f p that satisfies the relationship of f p = 2f 0 -f s,
and a second excitation light generating unit that generates a second excitation light having an arbitrary optical frequency f c which satisfies the relationship f c = 2f o -f d,
The input modulated light, the first pumping light, and the second pumping light are combined and input to the optical nonlinear medium, and a desired center optical frequency is obtained from the light output by the optical nonlinear effect from the optical nonlinear medium. wavelength conversion circuit, characterized in that retrieving the modulated light f d only.
入力された変調光を、同一の変調情報を保持させたまま所望の周波数の変調光に変換して出力する波長変換回路において、
第1の励起光を発生させるとともにその周波数を変えることができる第1の励起光発生部と、
第2の励起光を発生させるとともにその周波数を変えることができる第2の励起光発生部と、
入力された変調光を直交する2つの直線偏波に分離し、それぞれ第1ポート、第2ポートに出力する偏光ビームスプリッタと、前記偏光ビームスプリッタの第2ポートからの出力光の偏波を90度回転させる偏光回転子とを含み、前記偏光ビームスプリッタの第1ポートからの出力光と前記第1の励起光発生部からの第1の励起光とを、2次の光非線形効果を有する第1の2次光非線形媒質の一端に入射し、前記偏光回転子からの出力光と前記第1の励起光発生部からの第1の励起光とを、2次の光非線形効果を有する第2の2次光非線形媒質の一端に入射する第1の光合分波手段と、
前記第1の2次光非線形媒質の他端からの出力光のうち和周波光を前記第2の2次光非線形媒質の他端に入射させ、前記第2の2次光非線形媒質の他端からの出力光のうち和周波光を前記第1の2次光非線形媒質の他端に入射させ、前記第1の2次光非線形媒質の前記他端からの出力光及び前記第2の2次光非線形媒質の前記他端からの出力光のうち和周波光以外の光を分離し、前記第2の励起光発生部からの第2の励起光を前記第1の2次光非線形媒質の前記他端及び前記第2の2次光非線形媒質の前記他端に入射する第2の光合分波手段とを有し、
前記第1の2次光非線形媒質の前記一端からの出力光が前記偏光ビームスプリッタの第1ポートに入射され、前記第2の2次光非線形媒質の前記一端からの出力光が前記偏光回転子を介して前記偏光ビームスプリッタの第2ポートに入射され、前記偏光ビームスプリッタから所望の周波数の変調光を出力する
ことを特徴とする波長変換回路。
In the wavelength conversion circuit that converts the input modulated light into a modulated light of a desired frequency while retaining the same modulation information, and outputs it,
A first excitation light generator capable of generating first excitation light and changing its frequency;
A second excitation light generating section capable of generating the second excitation light and changing the frequency thereof;
The input modulated light is separated into two orthogonally polarized waves orthogonal to each other, and the polarization beam splitter that outputs to the first port and the second port, respectively, and the polarization of the output light from the second port of the polarization beam splitter is 90%. and a polarization rotator to degrees rotation, and a first pump light from the output light from the first excitation light generation portion from the first port of the polarization beam splitter, first with a second-order optical nonlinear effect A second light having a second-order optical nonlinear effect, which is incident on one end of the first-order second-order nonlinear light medium, and that outputs light from the polarization rotator and first excitation light from the first excitation light generator. First optical multiplexing / demultiplexing means incident on one end of the second-order nonlinear optical medium;
Of the output light from the other end of the first secondary optical nonlinear medium, sum frequency light is incident on the other end of the second secondary optical nonlinear medium, and the other end of the second secondary optical nonlinear medium. the sum frequency light is incident on the other end of said first secondary light nonlinear medium of the output light from the output light and the second second-order from said other end of said first secondary light nonlinear medium light other than the sum frequency light of the output light from the other end of the optical nonlinear medium is separated, said second pumping light from the second excitation light generating portion of the first second-order optical nonlinear medium It has the other end and a second optical demultiplexing means for entering the other end of the second secondary optical nonlinear medium,
The output light from the one end of the first secondary light nonlinear medium is incident on the first port of the polarization beam splitter, and the output light from the one end of the second secondary light nonlinear medium is the polarization rotator. A wavelength conversion circuit , which is incident on the second port of the polarizing beam splitter via the optical axis and outputs modulated light having a desired frequency from the polarizing beam splitter.
前記2次光非線形媒質が最も効率よく第2次高調波を出力する波長に相当する周波数f0、入力変調光の周波数fs、出力変調光の所望の周波数fdを、
前記第1の励起光発生部から発せられる第1の励起光の周波数fpが、fp=2f0−fsを満たし、
前記第2の励起光発生部から発せられる第2の励起光の周波数fcが、fc=2f0−fdを満たす値とした
ことを特徴とする請求項記載の波長変換回路。
A frequency f 0 corresponding to a wavelength at which the second-order nonlinear optical medium outputs the second harmonic most efficiently, a frequency f s of the input modulated light, and a desired frequency f d of the output modulated light,
Frequency f p of the first excitation light emitted from the first excitation light generating unit satisfies f p = 2f 0 -f s,
3. The wavelength conversion circuit according to claim 2, wherein the frequency f c of the second pumping light emitted from the second pumping light generator is a value satisfying f c = 2f 0 −f d .
前記2次光非線形媒質は、入力される変調光の周波数及び変換先の周波数が含まれる連続した変調光周波数帯域の片端付近に、最も効率よく第2次高調波を出力する光周波数f0を有し、
前記第1及び第2の励起光発生部は、前記変調光周波数帯域と周波数スペクトル上のf0と反対側の励起光周波数帯域にその出力光周波数を有し、
0付近に透過周波数帯域のエッジを有する固定帯域フィルタを有する
ことを特徴とする請求項1乃至何れか1項記載の波長変換回路。
The second-order nonlinear optical medium has an optical frequency f 0 that outputs the second harmonic most efficiently near one end of a continuous modulated optical frequency band including the frequency of the input modulated light and the conversion destination frequency. Have
The first and second pumping light generators have their output optical frequencies in the pumping light frequency band opposite to the modulated light frequency band and f 0 on the frequency spectrum,
Wavelength converter according to claim 1 to 3 any one of claims, characterized in that it has a fixed bandpass filter having a transmission frequency band of the edge in the vicinity of f 0.
前記2次光非線形媒質は、周期的に光軸を反転させた疑似位相整合ニオブ酸リチウム結晶導波路及びタンタル酸リチウム結晶導波路である
ことを特徴とする請求項1乃至何れか1項記載の波長変換回路。
The secondary light nonlinear medium is periodically claims 1 to 4 any one of claims, characterized in that a quasi-phase matched lithium niobate crystal waveguide and lithium-tantalate crystal waveguide obtained by inverting the optical axis Wavelength conversion circuit.
入力された中心光周波数fsの変調光を光非線形媒質に入力させ、同一の変調情報を保持させたまま所望の中心周波数fdの変調光に変換して出力する波長変換方法において、
入力された中心光周波数fsの変調光と、該変調光の中心光周波数fsと光非線形媒質の零分散波長に相当する光周波数f0とがfp=2f0−fsの関係を満足する光周波数fpの第1の励起光と、出力する変調光の中心光周波数fdの所望値に応じてfc=2f0−fdの関係を満足するように制御した光周波数fcの第2の励起光とを合波し、
該合波光を、2次の光非線形効果を有し最も効率よく第2次高調波光を出力する波長に相当する光周波数がf0である2次光非線形媒質に入力し、該2次光非線形媒質よりその光非線形効果によって出力される光から所望の中心光周波数fdの変調光のみを取り出す
ことを特徴とする波長変換方法。
In the wavelength conversion method for inputting the input modulated light having the center optical frequency f s to the optical nonlinear medium, converting the modulated light to the desired center frequency f d while retaining the same modulation information, and outputting the modulated light.
And modulating light of the input center optical frequency f s, the relationship between optical frequency f 0 corresponding to the center optical frequency f s and the zero dispersion wavelength of the optical nonlinear medium of modulation light f p = 2f 0 -f s The optical frequency f controlled so as to satisfy the relationship of f c = 2f 0 −f d according to a desired value of the center optical frequency f d of the first pumping light having a satisfactory optical frequency f p and the modulated light to be output. c with the second excitation light of c ,
The combined light is input to a second-order nonlinear optical medium having a second-order optical nonlinear effect and having an optical frequency f 0 corresponding to the wavelength at which the second-order harmonic light is output most efficiently. A wavelength conversion method characterized in that only modulated light having a desired center optical frequency f d is extracted from light output by a nonlinear optical effect from a medium.
入力された変調光を直交する2つの偏波に分離し、それぞれの信号光に対して請求項記載の波長変換方法により変換光を発生させそれらを再び合波する
ことを特徴とする波長変換方法。
7. The wavelength conversion characterized in that the input modulated light is separated into two orthogonally polarized waves, converted light is generated for each signal light by the wavelength conversion method according to claim 6, and they are combined again. Method.
入力された変調光を、同一の変調情報を保持させたまま所望の周波数の変調光に変換して出力する波長変換方法において、
第1の光合分波手段に変調光を入力し、入力された変調光を、偏光ビームスプリッタにおいて、直交する2つの直線偏波に分離してそれぞれ第1ポート、第2ポートに出力し、
前記偏光ビームスプリッタの第2ポートからの出力光の偏波を、偏光回転子によって90度回転させ、
前記偏光ビームスプリッタの第1ポートからの出力光と、第1の励起光を発生させるとともにその周波数を変えることができる第1の励起光発生部からの第1の励起光とを、2次の光非線形効果を有する第1の2次光非線形媒質の一端に入射し、
前記偏光回転子からの出力光と前記第1の励起光発生部からの第1の励起光とを、2次の光非線形効果を有する第2の2次光非線形媒質の一端に入射し、
第2の光合分波手段によって、前記第1の2次光非線形媒質の他端からの出力光のうち和周波光を前記第2の2次光非線形媒質の他端に入射させ、前記第2の2次光非線形媒質の前記他端からの出力光のうち和周波光を前記第1の2次光非線形媒質の前記他端に入射させ、前記第1の2次光非線形媒質の前記他端からの出力光及び前記第2の2次光非線形媒質の前記他端からの出力光のうち和周波光以外の光を分離し、第2の励起光を発生させるとともにその周波数を変えることができる第2の励起光発生部からの第2の励起光を前記第1の2次光非線形媒質の前記他端及び前記第2の2次光非線形媒質の前記他端に入射し、
前記第1の2次光非線形媒質の前記一端からの出力光を前記偏光ビームスプリッタの第1ポートに入射し、
前記第2の2次光非線形媒質の前記一端からの出力光を前記偏光回転子を介して前記偏光ビームスプリッタの第2ポートに入射し、
前記偏光ビームスプリッタから所望の周波数の変調光を出力する
ことを特徴とする波長変換方法。
In the wavelength conversion method for converting the input modulated light into a modulated light having a desired frequency while retaining the same modulation information and outputting it,
The modulated light is inputted to the first optical multiplexing / demultiplexing means, and the inputted modulated light is separated into two linearly polarized waves orthogonal to each other in the polarization beam splitter and outputted to the first port and the second port, respectively.
The polarization of the output light from the second port of the polarization beam splitter is rotated 90 degrees by a polarization rotator,
The output light from the first port of the polarization beam splitter and the first excitation light from the first excitation light generator that can generate the first excitation light and change the frequency thereof are the second order. Incident to one end of the first second-order optical nonlinear medium having an optical nonlinear effect,
The output light from the polarization rotator and the first excitation light from the first excitation light generator are incident on one end of a second secondary optical nonlinear medium having a secondary optical nonlinear effect,
The second optical multiplexing / demultiplexing means causes the sum frequency light of the output light from the other end of the first secondary optical nonlinear medium to enter the other end of the second secondary optical nonlinear medium, and the other end of the sum frequency light of the output light from the other end of the secondary optical nonlinear medium is incident on the other end of the first secondary optical nonlinear medium, the first secondary light nonlinear medium it is possible to change the second end separated light other than the sum frequency light of the output light from, the frequency with generating a second pumping light of the output light and the second secondary light nonlinear medium from the second excitation light from the second excitation light generator enters the other end of said other end and said second secondary light nonlinear medium of the first second-order optical nonlinear medium,
The output light from the one end of the first secondary light nonlinear medium is incident on the first port of the polarization beam splitter,
The output light from the one end of the second secondary light nonlinear medium is incident on the second port of the polarization beam splitter via the polarization rotator,
A wavelength conversion method, wherein modulated light having a desired frequency is output from the polarization beam splitter.
前記2次光非線形媒質が最も効率よく第2次高調波を出力する波長に相当する周波数f0、入力変調光の周波数fs、出力変調光の所望の周波数fdを、
前記第1の励起光発生部から発せられる第1の励起光の周波数fpが、fp=2f0−fsを満たし、
前記第2の励起光発生部から発せられる第2の励起光の周波数fcが、fc=2f0−fdを満たす値にした
ことを特徴とする請求項記載の波長変換方法。
A frequency f 0 corresponding to a wavelength at which the second-order nonlinear optical medium outputs the second harmonic most efficiently, a frequency f s of the input modulated light, and a desired frequency f d of the output modulated light,
Frequency f p of the first excitation light emitted from the first excitation light generating unit satisfies f p = 2f 0 -f s,
The second frequency f c of the second excitation light emitted from the excitation light generating unit, a wavelength conversion method according to claim 8, characterized in that the value satisfying f c = 2f 0 -f d.
前記2次光非線形媒質において、最も効率よく第2次高調波を出力する光周波数f0を、入力される変調光の周波数及び変換先の周波数が含まれる連続した変調光周波数帯域の片端付近に設定し、
前記第1及び第2の励起光発生部の出力光周波数を、前記変調光周波数帯域と周波数スペクトル上のf0と反対側の励起光周波数帯域に設定し、
前記固定帯域フィルタが、f0付近に透過周波数帯域のエッジを有する
ことを特徴とする請求項乃至何れか1項記載の波長変換方法。
In the second-order nonlinear optical medium, the optical frequency f 0 for outputting the second harmonic most efficiently is placed near one end of a continuous modulated optical frequency band including the frequency of the input modulated light and the conversion destination frequency. Set,
The output optical frequency of the first and second pumping light generators is set to the pumping light frequency band opposite to the modulated light frequency band and f 0 on the frequency spectrum,
The fixed band filter is a wavelength conversion method of claims 6 to 9 any one of claims, characterized in that it has an edge of the transmission frequency band in the vicinity of f 0.
前記2次光非線形媒質は、周期的に光軸を反転させた疑似位相整合ニオブ酸リチウム結晶導波路及びタンタル酸リチウム結晶導波路である
ことを特徴とする請求項乃至10何れか1項記載の波長変換方法。
The secondary light nonlinear medium is periodically claims 6 to 10 any one of claims, characterized in that a quasi-phase matched lithium niobate crystal waveguide and lithium-tantalate crystal waveguide obtained by inverting the optical axis Wavelength conversion method.
JP2002242001A 2002-07-12 2002-08-22 Wavelength conversion circuit and wavelength conversion method Expired - Fee Related JP4080819B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002242001A JP4080819B2 (en) 2002-07-12 2002-08-22 Wavelength conversion circuit and wavelength conversion method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002204323 2002-07-12
JP2002242001A JP4080819B2 (en) 2002-07-12 2002-08-22 Wavelength conversion circuit and wavelength conversion method

Publications (2)

Publication Number Publication Date
JP2004093583A JP2004093583A (en) 2004-03-25
JP4080819B2 true JP4080819B2 (en) 2008-04-23

Family

ID=32072239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002242001A Expired - Fee Related JP4080819B2 (en) 2002-07-12 2002-08-22 Wavelength conversion circuit and wavelength conversion method

Country Status (1)

Country Link
JP (1) JP4080819B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4715706B2 (en) * 2006-09-29 2011-07-06 沖電気工業株式会社 Wavelength conversion element
JP6512756B2 (en) 2014-06-06 2019-05-15 キヤノン株式会社 Light source device and information acquisition device using the same
JP6776596B2 (en) 2016-04-20 2020-10-28 富士通株式会社 Optical frequency shift device and optical frequency shift method
WO2023175691A1 (en) * 2022-03-14 2023-09-21 日本電信電話株式会社 Wavelength conversion device

Also Published As

Publication number Publication date
JP2004093583A (en) 2004-03-25

Similar Documents

Publication Publication Date Title
Marpaung et al. Nonlinear integrated microwave photonics
US6867903B2 (en) Optical parametric circuit
Zhang et al. Flexible wavelength conversion via cascaded second order nonlinearity using broadband SHG in MgO-doped PPLN
JP7189470B2 (en) optical signal processor
US7009759B2 (en) Multiple channel optical frequency mixers for all-optical signal processing
JP4080819B2 (en) Wavelength conversion circuit and wavelength conversion method
Liu et al. Theoretical analyses and optimizations for wavelength conversion by quasi-phase-matching difference frequency generation
Wu et al. Optimal design for broadband quasi-phase-matched second-harmonic generation using simulated annealing
JP4602923B2 (en) Wavelength converter
US20020118439A1 (en) Optical frequency synthesizing structure
JP4251040B2 (en) How to use wavelength converter
US6856450B2 (en) Method and apparatus for generating a sequence of optical wavelength bands
JPH10213826A (en) Wavelength converter
JP3575434B2 (en) Optical parametric circuit
Odele et al. High-speed switching of biphoton delays through electro-optic pump frequency modulation
Pan et al. Proposal for collinear integrated acousto-optic tunable filters featuring ultrawide tuning ranges and multi-band operations
Chang et al. Monolithically integrated multi-wavelength filter and second harmonic generator in aperiodically poled lithium niobate
Pan et al. Tunable Acousto-Optic Filter Based on Suspended Lithium Niobate Waveguides
JP2001305593A (en) Wavelength changing
JP2002328405A (en) Optical frequency shifter and its control method
Wang et al. Tunable wavelength conversion based on cascaded sum and difference frequency generation with double-conversion configuration using M-QPM-LN waveguides
JP3971731B2 (en) Optical frequency shifter array
JP4454008B2 (en) Multi-wavelength batch wavelength converter and multi-wavelength batch wavelength conversion method
JP2000010130A (en) Wavelength converter
JP2001133820A (en) Wavelength converter, quasi phase matching type wave conversion element, and method for using quasi phase matching type wave conversion element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040806

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061024

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080207

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110215

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110215

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120215

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130215

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees