JPH04263149A - Magneto-optical recording system - Google Patents

Magneto-optical recording system

Info

Publication number
JPH04263149A
JPH04263149A JP2310091A JP2310091A JPH04263149A JP H04263149 A JPH04263149 A JP H04263149A JP 2310091 A JP2310091 A JP 2310091A JP 2310091 A JP2310091 A JP 2310091A JP H04263149 A JPH04263149 A JP H04263149A
Authority
JP
Japan
Prior art keywords
layer
recording
recording layer
bias
magneto
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2310091A
Other languages
Japanese (ja)
Inventor
Yoshio Suzuki
良夫 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Maxell Ltd
Original Assignee
Hitachi Ltd
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Maxell Ltd filed Critical Hitachi Ltd
Priority to JP2310091A priority Critical patent/JPH04263149A/en
Publication of JPH04263149A publication Critical patent/JPH04263149A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To perform optical modulation overwrite in magneto-optical recording by a method wherein three layers of magnetic films between which exchange couplings are provided are employed. CONSTITUTION:A recording medium has a recording layer 1, a bias layer 3 which gives a bias magnetic field to the layer 1 and a layer 2 which controls the rate of exchange couplings between the layers 1 and 3. By utilizing the fact that difference in temperature gradient in the film thickness direction in accordance with the inbtensity of a luminous power, (a) when the power of the applied light is low, the recording layer is magnetized in the direction following bias layer auxiliary lattice magnetization and, (2) when the power of the applied light is high, the recording layer is magnetized along the direction of an external magnetic field. Magneto-optical recording which facilitates overwrite with a simple record/reproduction apparatus is realized.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、レーザ光などのエネル
ギービームを用いて情報の記録,再生,消去を行なう光
磁気記録にかかわり、高速で書換えができるオーバーラ
イト可能な光磁気記録方式に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to magneto-optical recording in which information is recorded, reproduced and erased using an energy beam such as a laser beam, and relates to a magneto-optical recording system that allows high speed rewriting and overwriting.

【0002】0002

【従来の技術】光磁気記録におけるオーバーライトの手
法には、磁界変調方式および光変調方式がある。
2. Description of the Related Art There are two methods for overwriting in magneto-optical recording: a magnetic field modulation method and an optical modulation method.

【0003】磁界変調方式では、光磁気記録膜に連続的
に光を照射し、記録部分を照射光エネルギーで昇温させ
、同時に、記録すべき情報をもとに変調させた磁界を印
加することにより、光磁気記録膜の磁化を反転させて、
オーバーライトを行なう(例えば特開昭60−2515
39,特開昭60−261051,特開昭61−224
52など)。
[0003] In the magnetic field modulation method, a magneto-optical recording film is continuously irradiated with light, the recording area is heated by the energy of the irradiated light, and at the same time, a magnetic field modulated based on the information to be recorded is applied. By reversing the magnetization of the magneto-optical recording film,
Perform overwriting (for example, Japanese Patent Application Laid-Open No. 60-2515
39, JP 60-261051, JP 61-224
52 etc.).

【0004】一方、光変調によりオーバーライトを行な
う方式としては、磁気的に互いに交換結合した2層の磁
性膜を使う方式(特開昭62−175948)が報告さ
れている。この方式は、交換結合した記録層及び補助層
の2層の磁性膜からなる記録媒体を用い、記録の都度に
、初期化磁石による磁界印加により補助層磁性膜の初期
化を行なう。また、同じく交換結合した2層膜を用いて
、初期化磁石なしにオーバーライトを行う方式が報告さ
れている(第13回日本応用磁気学会学術講演概要集、
191頁、講演番号23aC−3)。これは、レーザ光
強度の変調により、記録層と補助層の間の温度差が変化
することを利用して、交換結合の大きさを変調し、これ
によってオーバーライトを行うものである。
On the other hand, as a method for overwriting by optical modulation, a method using two layers of magnetic films magnetically exchange-coupled with each other has been reported (Japanese Patent Laid-Open No. 175948/1983). This method uses a recording medium consisting of two exchange-coupled magnetic films, a recording layer and an auxiliary layer, and each time recording, the auxiliary layer magnetic film is initialized by applying a magnetic field by an initializing magnet. Additionally, a method of overwriting without an initialization magnet using the same exchange-coupled two-layer film has been reported.
Page 191, lecture number 23aC-3). This utilizes the fact that the temperature difference between the recording layer and the auxiliary layer changes due to modulation of laser light intensity to modulate the magnitude of exchange coupling, thereby performing overwriting.

【0005】[0005]

【発明が解決しようとする課題】上記従来技術のうち、
磁界変調オーバーライト方式では、数百Oeの強度の磁
界を高速でスイッチングすることが可能な、磁界発生用
電磁石が必要とされる。このため、記録再生装置におけ
る磁界印加機構が複雑になるという欠点がある。一方、
交換結合2層記録膜と初期化磁石を用いた光変調オーバ
ーライト方式は、4kOe程度の大きな磁界を発生する
初期化用磁石を、記録再生装置に組み込む必要があり、
そのため、装置構成が大型化且つ複雑になり、且つ磁気
シールドも難しい、という問題点を有している。
[Problem to be solved by the invention] Among the above conventional techniques,
The magnetic field modulation overwrite method requires a magnetic field generating electromagnet that can switch a magnetic field with an intensity of several hundred Oe at high speed. For this reason, there is a drawback that the magnetic field application mechanism in the recording/reproducing apparatus becomes complicated. on the other hand,
The optical modulation overwrite method using an exchange-coupled two-layer recording film and an initialization magnet requires an initialization magnet that generates a large magnetic field of about 4 kOe to be incorporated into the recording/reproducing device.
Therefore, there are problems in that the device configuration becomes large and complicated, and magnetic shielding is also difficult.

【0006】交換結合2層記録膜を用い、初期化磁石な
しにオーバーライトを行う方式においては、上記の問題
点は解決される。しかし、記録時の印加磁界やレーザ出
力に関するマージンが小さく、且つ、媒体作製時に、記
録層および補助層の磁気特性および2層間の交換結合の
大きさを狭い範囲内にコントロールしなければならない
という難点がある。また、記録時ノイズが大きいという
欠点がある。
[0006] The above-mentioned problems can be solved in a system that uses an exchange-coupled two-layer recording film and performs overwriting without an initializing magnet. However, the margins regarding the applied magnetic field and laser output during recording are small, and the magnetic properties of the recording layer and auxiliary layer as well as the magnitude of exchange coupling between the two layers must be controlled within a narrow range when manufacturing the medium. There is. Another drawback is that there is a lot of noise during recording.

【0007】本発明の目的は、上記従来技術の問題点を
除き、記録の都度に磁界印加による初期化を行うことな
しに、光変調オーバーライトを行うことが可能な光磁気
記録方式を、実現することである。
An object of the present invention is to realize a magneto-optical recording system that can perform optical modulation overwriting without the need for initialization by applying a magnetic field each time recording, while eliminating the problems of the prior art described above. It is to be.

【0008】[0008]

【課題を解決するための手段】上記目的は、磁化の向き
により情報を記録する記録層,前記記録層に磁気的交換
結合によって実効的なバイアス磁界を与えるバイアス層
、および記録層とバイアス層との間存在し、両層の交換
結合の強さを制御する制御層、の3層の磁性膜を有する
光磁気記録媒体を用い、レーザ光強度の変化により、記
録層と制御層の温度差が変化することを利用して、光変
調によりオーバーライトを行う光磁気記録方式を採用す
ることにより、実現される。
[Means for Solving the Problems] The above object is to provide a recording layer that records information depending on the direction of magnetization, a bias layer that applies an effective bias magnetic field to the recording layer through magnetic exchange coupling, and a structure in which the recording layer and the bias layer are connected to each other. Using a magneto-optical recording medium that has three layers of magnetic films, a control layer that exists between This is achieved by employing a magneto-optical recording method that takes advantage of this change and performs overwriting through optical modulation.

【0009】[0009]

【作用】図1に本発明に用いる光磁気記録媒体の構成を
示す。記録媒体は、記録層1,バイアス層2および制御
層3の三層の磁性膜を有する。記録層は、記録情報を保
持し、且つこの情報が、再生時にレーザ光6を用いて読
みだされる。バイアス層は製膜後、磁界を印加すること
によって、媒体全面にわたって一方向に初期磁化する。 バイアス層は高いキュリー温度をもつため、記録再生時
には磁化反転せず、初期磁化方向を半永久的に維持する
。バイアス層から記録層には、制御層を介して、遷移金
属副格子磁化5を同方向にそろえようとする交換結合力
が作用している。この交換結合力は記録層の磁化に対し
て、あたかも膜面垂直方向にバイアス磁界が加わったよ
うに作用する。そこで、以下では、この交換結合力によ
る効果を、実際に外部から印加する磁界に加えたものを
、記録層にかかる実効的なバイアス磁界と呼ぶ。制御層
は、記録層とバイアス層との中間に位置し、バイアス層
から記録層におよぼされる交換結合力を制御する機能を
持つ。
[Operation] FIG. 1 shows the structure of a magneto-optical recording medium used in the present invention. The recording medium has three magnetic layers: a recording layer 1, a bias layer 2, and a control layer 3. The recording layer holds recorded information, and this information is read out using laser light 6 during reproduction. After the bias layer is formed, a magnetic field is applied to initially magnetize the entire surface of the medium in one direction. Since the bias layer has a high Curie temperature, the magnetization does not reverse during recording and reproduction and maintains the initial magnetization direction semi-permanently. An exchange coupling force acts from the bias layer to the recording layer via the control layer to align the transition metal sublattice magnetizations 5 in the same direction. This exchange coupling force acts on the magnetization of the recording layer as if a bias magnetic field was applied in the direction perpendicular to the film surface. Therefore, hereinafter, the effect of this exchange coupling force added to the magnetic field actually applied from the outside will be referred to as the effective bias magnetic field applied to the recording layer. The control layer is located between the recording layer and the bias layer, and has a function of controlling the exchange coupling force exerted on the recording layer from the bias layer.

【0010】書き込み用のレーザ光6はこれらの三層の
磁性膜に対し、必ず記録層1の側から照射されるものと
する。レーザ光はパルス的に照射されるか、もしくは高
速で移動する媒体上に連続光として照射されるものとし
、いずれの場合にも磁性膜はレーザ光照射後に急速に冷
却されるようにする。
It is assumed that the writing laser beam 6 is always irradiated onto these three magnetic layers from the recording layer 1 side. The laser light is irradiated in pulses or as continuous light onto a medium moving at high speed, and in either case, the magnetic film is cooled rapidly after irradiation with the laser light.

【0011】図2に、本発明に用いる記録層,制御層,
バイアス層の保磁力Hc の温度依存性の一例を示す。 記録層,制御層,バイアス層のキュリー温度をそれぞれ
、T1,T2,T3とする。本発明のオーバーライトを
実現する為には、これらの温度が、T2<T1<T3の
関係に有る記録媒体が適している。
FIG. 2 shows the recording layer, control layer, and
An example of the temperature dependence of the coercive force Hc of the bias layer is shown. Let the Curie temperatures of the recording layer, control layer, and bias layer be T1, T2, and T3, respectively. In order to realize the overwriting of the present invention, a recording medium in which these temperatures satisfy the relationship T2<T1<T3 is suitable.

【0012】図3に、本発明による光変調オーバーライ
トの記録原理を示す。左側に記録媒体の概念図を、右側
に、記録膜温度Tの膜厚方向zでの分布を表わす。記録
膜温度は、バイアス層のキュリー温度T3 よりも常に
十分低く保たれるために、バイアス層の副格子磁化の向
きは、半永久的に保持される。この副格子磁化の向きを
、図3上では仮に上向きに表示している。この記録媒体
に、固定した外部印加磁界8(Hex)のもとで、記録
層1の側からレーザ光を照射する。
FIG. 3 shows the recording principle of optical modulation overwriting according to the present invention. The left side shows a conceptual diagram of the recording medium, and the right side shows the distribution of the recording film temperature T in the film thickness direction z. Since the recording film temperature is always kept sufficiently lower than the Curie temperature T3 of the bias layer, the orientation of the sublattice magnetization of the bias layer is maintained semi-permanently. The direction of this sublattice magnetization is tentatively shown upward in FIG. This recording medium is irradiated with a laser beam from the recording layer 1 side under a fixed externally applied magnetic field 8 (Hex).

【0013】低パワー照射時には、記録層の温度がキュ
リー温度T1 に達し、記録層の磁化の向きが固定され
るのは、温度がピークに達した直後である。その時点で
は、記録膜厚方向の温度分布は、光入射側である記録層
が高温となり、図3(a)に示すように、記録層と制御
層との間に大きな温度差がある。このとき、制御層はそ
のキュリー温度T2 より十分に低い温度となっている
ため、バイアス層から記録層へは制御層を介して大きな
交換結合力がはたらく。本発明では、この交換結合力に
よる実効磁界を、外部印加磁界Hexとは逆向きで、且
つそれよりも十分に大きくなるように設定する。そうす
ると、記録層の副格子磁化は交換結合力に従い、バイア
ス層の副格子磁化と同じ方向に向く。
During low power irradiation, the temperature of the recording layer reaches the Curie temperature T1, and the direction of magnetization of the recording layer is fixed immediately after the temperature reaches its peak. At that point, the temperature distribution in the recording film thickness direction is such that the recording layer on the light incident side is at a high temperature, and as shown in FIG. 3(a), there is a large temperature difference between the recording layer and the control layer. At this time, since the temperature of the control layer is sufficiently lower than its Curie temperature T2, a large exchange coupling force acts from the bias layer to the recording layer via the control layer. In the present invention, the effective magnetic field due to this exchange coupling force is set to be opposite to and sufficiently larger than the externally applied magnetic field Hex. Then, the sublattice magnetization of the recording layer follows the exchange coupling force and is oriented in the same direction as the sublattice magnetization of the bias layer.

【0014】一方、高パワー照射時には、媒体温度は、
記録層のキュリー温度T1 よりも十分高温まで加熱さ
れた後に、ゆっくり冷却する。このため、記録層温度が
そのキュリー温度T1 まで降下し、記録層の磁化の向
きが固定される時点においては、記録膜厚方向の温度分
布は、より均一化しており、図3(b)に示すように、
記録層と制御層との温度差は、低パワー照射の場合より
小さい。この場合には、記録層がそのキュリー温度T1
 に達しても、制御層の温度は、まだそのキュリー温度
T2以上もしくはT2直下であり、制御層における交換
結合が存在しないか若しくは非常に弱い。したがって、
バイアス層から制御層を介して記録層へ及ぼされる交換
結合力は小さく、記録層の磁化の受ける実効的なバイア
ス磁界はもっぱら外部印加磁界Hexに支配されている
。そこで、記録層磁化は外部印加磁界の方向を向いて、
固定される。この場合でも、さらに温度が降下して制御
層がそのキュリー温度T2 より十分低くなると、バイ
アス層からの交換結合力が記録層に及ぶことになる。し
かし、その時点では、既に記録層の温度がそのキュリー
温度T1 よりも十分に低くなっており、保磁力が大き
くなっているために、バイアス層からの交換結合の影響
を受けて、記録層の磁化が再反転することはない。結果
として、高パワー照射時には、低パワー照射時とは逆方
向に、記録層の磁化の向きが固定される。
On the other hand, during high power irradiation, the medium temperature is
After being heated to a temperature sufficiently higher than the Curie temperature T1 of the recording layer, it is slowly cooled. Therefore, when the recording layer temperature drops to its Curie temperature T1 and the direction of magnetization of the recording layer is fixed, the temperature distribution in the recording film thickness direction becomes more uniform, as shown in Figure 3(b). As shown,
The temperature difference between the recording layer and the control layer is smaller than in the case of low power irradiation. In this case, the recording layer has its Curie temperature T1
Even when the temperature of the control layer is reached, the temperature of the control layer is still above or just below its Curie temperature T2, and exchange coupling in the control layer does not exist or is very weak. therefore,
The exchange coupling force exerted from the bias layer to the recording layer via the control layer is small, and the effective bias magnetic field that magnetizes the recording layer is dominated by the externally applied magnetic field Hex. Therefore, the recording layer magnetization is oriented in the direction of the externally applied magnetic field,
Fixed. Even in this case, if the temperature further decreases and the control layer becomes sufficiently lower than its Curie temperature T2, the exchange coupling force from the bias layer will reach the recording layer. However, at that point, the temperature of the recording layer is already sufficiently lower than its Curie temperature T1 and the coercive force is large, so the recording layer is affected by exchange coupling from the bias layer. The magnetization will not be reversed again. As a result, during high power irradiation, the direction of magnetization of the recording layer is fixed in the opposite direction to that during low power irradiation.

【0015】記録層の温度は、高パワー照射時と低パワ
ー照射時のいずれの場合にも、一旦キュリー温度T1 
よりも高くなるため、記録層に以前から記録されている
磁区パターンは昇温過程で消去される。すなわち、前回
の記録情報にかかわらず、直接にオーバーライト可能で
ある。
[0015] The temperature of the recording layer is once set to the Curie temperature T1 in both cases of high power irradiation and low power irradiation.
The magnetic domain pattern previously recorded in the recording layer is erased during the temperature rise process. In other words, direct overwriting is possible regardless of the previously recorded information.

【0016】上記の記録原理から、レーザ光強度を強弱
2つのレベルの間で変調することにより記録層の磁化の
向きをコントロールし、情報の記録を行なうことが可能
である。記録後に、記録膜温度が室温(R.T.)まで
降下した状態では、図3(c)のように、低パワー照射
位置にのみ記録磁区9ができる。
Based on the above recording principle, it is possible to record information by controlling the direction of magnetization of the recording layer by modulating the intensity of the laser beam between two levels: strong and weak. After recording, when the recording film temperature drops to room temperature (RT), recording magnetic domains 9 are formed only at low power irradiation positions, as shown in FIG. 3(c).

【0017】上記の記録原理の説明においては、T1,
T2をそれぞれ記録層と制御層のキュリー温度としたが
、より一般的には、T1を記録層の磁区が固定される温
度、T2を制御層の交換結合が小さくなる温度と置き換
えても、同様の記録原理が成立する。
In the above explanation of the recording principle, T1,
Although T2 is the Curie temperature of the recording layer and the control layer, more generally, the same result can be obtained by replacing T1 with the temperature at which the magnetic domain of the recording layer is fixed and T2 with the temperature at which the exchange coupling of the control layer becomes small. The recording principle holds true.

【0018】図4に本発明による、レーザ光の変調方式
の一例を示す。二値記録情報(a)に対して、レーザ光
出力Pを,(b)のように,記録信号0に対応しては、
高いレーザエネルギーレベルPH を、記録信号1に対
応しては、低いレーザエネルギーレベルPL に対応さ
せて記録媒体上に照射する。この時、(c)のように記
録層上に記録磁区9によるパターンが形成される。この
例においては、媒体上で情報1に対応する位置において
は、記録層の磁化が反転し、情報0に対応する位置にお
いては記録層磁化は初期磁化方向となる。このようにし
て記録された、磁区パターンは、再生光レベルPW の
レーザ光により、カー効果を利用して、本技術で通常用
いられる再生装置を用いて再生できる。
FIG. 4 shows an example of a laser beam modulation method according to the present invention. For the binary recording information (a), the laser light output P is as shown in (b), corresponding to the recording signal 0,
The recording medium is irradiated with a high laser energy level PH corresponding to recording signal 1 and a low laser energy level PL . At this time, a pattern of recording magnetic domains 9 is formed on the recording layer as shown in (c). In this example, at a position on the medium corresponding to information 1, the magnetization of the recording layer is reversed, and at a position corresponding to information 0, the recording layer magnetization is in the initial magnetization direction. The magnetic domain pattern recorded in this manner can be reproduced by a laser beam at the reproduction light level PW and by using the Kerr effect using a reproduction apparatus commonly used in the present technology.

【0019】[0019]

【実施例】以下、実施例に基づいて、本発明を詳細に説
明する。
EXAMPLES The present invention will be explained in detail below based on examples.

【0020】〔実施例1〕記録層としては、キュリー温
度150℃,補償温度40℃,膜厚40nmのTbGd
FeCoを、補助層としては、キュリー温度400℃以
上,補償温度150℃,膜厚60nmのTbCo膜を、
制御層としては、キュリー温度130℃,補償温度は室
温以下,膜厚8nmのTbGdFeCo膜を用いる。上
記の磁性膜を2p法でグルーブを形成したガラス基板上
にマグネトロンスパッタ法により形成した。磁性膜の上
下には、保護層として、SiNx膜を配した。
[Example 1] The recording layer was made of TbGd with a Curie temperature of 150°C, a compensation temperature of 40°C, and a film thickness of 40 nm.
FeCo was used as an auxiliary layer, and a TbCo film with a Curie temperature of 400°C or higher, a compensation temperature of 150°C, and a film thickness of 60 nm was used as an auxiliary layer.
As the control layer, a TbGdFeCo film with a Curie temperature of 130° C., a compensation temperature of below room temperature, and a film thickness of 8 nm is used. The above magnetic film was formed by magnetron sputtering on a glass substrate on which grooves were formed by the 2p method. SiNx films were placed above and below the magnetic film as protective layers.

【0021】この記録媒体を用いて、図4(a)と類似
のPHとPLの2つのレベルからなる波形(duty比
50%)で、レーザ光を変調し、3MHzと5MHzの
2つの周波数で、同一トラック上に交互に繰返し重ね書
きした。高パワーレベルPH と低パワーレベルPL 
は、それぞれ膜面エネルギー15mWおよび12mWに
設定した。記録媒体のレーザスポットに対する相対線速
度は20m/sとした。記録時に印加される外部磁界は
200Oeとした。
Using this recording medium, the laser beam is modulated with a waveform consisting of two levels of PH and PL (duty ratio 50%) similar to that shown in FIG. , were alternately and repeatedly overwritten on the same track. High power level PH and low power level PL
were set at film surface energies of 15 mW and 12 mW, respectively. The relative linear velocity of the recording medium to the laser spot was 20 m/s. The external magnetic field applied during recording was 200 Oe.

【0022】図5に、5MHzと3MHz信号の搬送波
対雑音比(C/N)(帯域幅30kHz)を示す。C/
Nは3MHz信号に対して43dB5MHz信号に対し
て41dBである。また、いずれの周波数信号も、別の
周波数信号を重ね書きした後にはC/Nが0dBまで下
がっており、消し残りのないオーバライトが可能である
ことが確認された。
FIG. 5 shows the carrier-to-noise ratio (C/N) of 5 MHz and 3 MHz signals (bandwidth 30 kHz). C/
N is 43 dB for a 3 MHz signal and 41 dB for a 5 MHz signal. Furthermore, the C/N of each frequency signal decreased to 0 dB after overwriting with another frequency signal, confirming that overwriting without any unerased data is possible.

【0023】[0023]

【発明の効果】本発明によれば、光変調で、初期化磁石
を用いずに、オーバーライト可能光磁気記録ができるの
で、簡便で小型な記録再生装置を用いて、高速での記録
を行うことが可能となる。
[Effects of the Invention] According to the present invention, overwritable magneto-optical recording can be performed by optical modulation without using an initialization magnet, so high-speed recording can be performed using a simple and compact recording/reproducing device. becomes possible.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明に用いる光磁気記録媒体の構成図である
FIG. 1 is a configuration diagram of a magneto-optical recording medium used in the present invention.

【図2】本発明に用いる、記録層、バイアス層、制御層
のそれぞれの保磁力Hcの温度変化の一例を示す図であ
る。
FIG. 2 is a diagram showing an example of temperature changes in coercive force Hc of each of a recording layer, a bias layer, and a control layer used in the present invention.

【図3】本発明による光変調オーバライトの原理を表わ
す図である。
FIG. 3 is a diagram illustrating the principle of optical modulation overwriting according to the present invention.

【図4】本発明によるレーザ変調方式の一例を表わす図
である.
FIG. 4 is a diagram showing an example of a laser modulation method according to the present invention.

【図5】実施例1において、5MHzおよび3MHzの
記録信号で重ね書きを繰り返したときの、搬送波対雑音
比を示す図である。
FIG. 5 is a diagram showing the carrier wave-to-noise ratio when overwriting is repeated with 5 MHz and 3 MHz recording signals in Example 1.

【符号の説明】[Explanation of symbols]

1…記録層、2…制御層、3…バイアス層、4…基板、
5…遷移金属の副格子磁化、6…レーザ光、7…レンズ
、8…外部印加磁界、9…記録磁区、10…グルーブ。
DESCRIPTION OF SYMBOLS 1... Recording layer, 2... Control layer, 3... Bias layer, 4... Substrate,
5... Sublattice magnetization of transition metal, 6... Laser light, 7... Lens, 8... Externally applied magnetic field, 9... Recording magnetic domain, 10... Groove.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】磁化の向きにより情報を記録する記録層,
前記記録層に磁気的交換結合によって実効的なバイアス
磁界を与えるバイアス層、および前記記録層と前記バイ
アス層との間に存在し、両層の間の交換結合の強さを制
御する制御層、の3層の磁性膜を有する記録媒体を用い
、照射されるレーザ光強度の変化により、記録層と制御
層の温度差が変化し、これにより記録層の磁化の方向が
固定されるときに記録層に印加される実効的なバイアス
磁界が変化することを利用して、レーザ光強度の変調に
よりオーバーライトを行うことを特徴とする光磁気記録
方式。
Claim 1: A recording layer that records information based on the direction of magnetization;
a bias layer that provides an effective bias magnetic field to the recording layer by magnetic exchange coupling; and a control layer that is present between the recording layer and the bias layer and controls the strength of exchange coupling between both layers. Recording occurs when the temperature difference between the recording layer and the control layer changes as the intensity of the irradiated laser light changes, and the direction of magnetization of the recording layer is thereby fixed. A magneto-optical recording method that performs overwriting by modulating the intensity of laser light by utilizing changes in the effective bias magnetic field applied to the layer.
【請求項2】記録層のキュリー温度T1,制御層のキュ
リー温度T2,バイアス層のキュリー温度T3が、T2
<T1<T3の関係を満足することを特徴とする、請求
項1記載の光磁気記録方式。
2. The Curie temperature T1 of the recording layer, the Curie temperature T2 of the control layer, and the Curie temperature T3 of the bias layer are T2.
2. The magneto-optical recording method according to claim 1, wherein the magneto-optical recording method satisfies the relationship <T1<T3.
JP2310091A 1991-02-18 1991-02-18 Magneto-optical recording system Withdrawn JPH04263149A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2310091A JPH04263149A (en) 1991-02-18 1991-02-18 Magneto-optical recording system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2310091A JPH04263149A (en) 1991-02-18 1991-02-18 Magneto-optical recording system

Publications (1)

Publication Number Publication Date
JPH04263149A true JPH04263149A (en) 1992-09-18

Family

ID=12101036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2310091A Withdrawn JPH04263149A (en) 1991-02-18 1991-02-18 Magneto-optical recording system

Country Status (1)

Country Link
JP (1) JPH04263149A (en)

Similar Documents

Publication Publication Date Title
JP2969963B2 (en) Signal reproducing method in magneto-optical recording medium
JPS60236137A (en) Simultaneously erasing-recording type photomagnetic recording system and recording device and medium used for this system
JPH07105082B2 (en) Magneto-optical recording medium
US5164926A (en) Over-write capable magnetooptical recording medium with four magnetic layered structure dispensing with external initializing field
US6226234B1 (en) Magneto-optic recording medium and reproducing method for reproducing magnetic domain in enlarged form on a reproducing layer
US5339298A (en) Over-write capable magnetooptical recording method with widened power margin, and magnetooptical recording apparatus used in this method
US5343449A (en) Over-write capable magnetooptical recording medium having reading layer
JP3185932B2 (en) Magneto-optical recording / reproducing method and magneto-optical recording / reproducing apparatus
US5574703A (en) Magneto-optical method and apparatus for recording/reproducing data
US5389455A (en) Over-write capable magnetooptical recording medium having C/N ratio exceeding 53 dB
JPH04263149A (en) Magneto-optical recording system
JPH0536141A (en) Magneto-optical recorder
JPH03266243A (en) Magneto-optical recording method
JPS63302444A (en) Magneto-optical recording medium
JP2570777B2 (en) Recording method of magneto-optical recording
KR100198245B1 (en) Magneto-optical recording medium
JPS63237242A (en) Magneto-optical recording system
JPH0242664A (en) Thermo-magneto-optical recording medium, recording device thereof and thermomagneto-optical recording system using them
JPH0196844A (en) Magneto-optical recording and reproducing system
JPH07240039A (en) Overwritable magneto-optical recording medium
JPH10326441A (en) Magneto-optical recording medium and its reproduction method
JPH02227844A (en) Magneto-optical recording medium and magneto-optical recording/reproducing device
JPH0536147A (en) Magneto-optical recording method
JPH01227245A (en) Magneto-optical recording system
JPH0376040A (en) Magneto-optical recording system

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980514