JPH04261354A - Magnetic coupler - Google Patents
Magnetic couplerInfo
- Publication number
- JPH04261354A JPH04261354A JP3918091A JP3918091A JPH04261354A JP H04261354 A JPH04261354 A JP H04261354A JP 3918091 A JP3918091 A JP 3918091A JP 3918091 A JP3918091 A JP 3918091A JP H04261354 A JPH04261354 A JP H04261354A
- Authority
- JP
- Japan
- Prior art keywords
- permanent magnet
- inner ring
- ring permanent
- outer ring
- oriented
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000005415 magnetization Effects 0.000 claims abstract description 30
- 230000008878 coupling Effects 0.000 claims description 17
- 238000010168 coupling process Methods 0.000 claims description 17
- 238000005859 coupling reaction Methods 0.000 claims description 17
- 230000002093 peripheral effect Effects 0.000 claims description 9
- 229910000859 α-Fe Inorganic materials 0.000 description 14
- 230000000052 comparative effect Effects 0.000 description 8
- 238000010586 diagram Methods 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 3
- 230000004907 flux Effects 0.000 description 1
Landscapes
- Dynamo-Electric Clutches, Dynamo-Electric Brakes (AREA)
Abstract
Description
【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は、非接触で回転力を伝達
可能な磁気カップリング装置に関する。
【0002】
【従来の技術】従来の磁気カップリング装置の1例を図
3に示す。この図において、1は円筒状内輪永久磁石、
2は円筒状外輪永久磁石であり、内輪永久磁石1は第1
の回転軸3に固着され、この第1の回転軸3と回転中心
が一致した第2の回転軸(図示せず)に外輪永久磁石2
が固着されるようになっている。前記内輪永久磁石1の
外周面には交互に反対極性の内輪側磁極が形成されてお
り、前記内輪永久磁石の外周面に対向して同心配置され
た外輪永久磁石2の内周面にも交互に反対極性の外輪磁
極が形成されている。
【0003】そして、内輪磁極と外輪磁極相互間の磁力
を利用して第1及び第2の回転軸間のトルク伝達を行う
。
【0004】
【発明が解決しようとする課題】ところで、従来の磁気
カップリング装置では、内輪永久磁石1及び外輪永久磁
石2を等方性永久磁石、又は半径方向に磁化容易軸を配
向させた、すなわち半径方向配向(ラジアル配向)の異
方性永久磁石を使用していた。等方性永久磁石の場合に
は伝達可能なトルクは小さな値となる。また、伝達可能
なトルクの増大を図るために半径方向配向の異方性永久
磁石を使用した場合、確かにトルクが増加するが、その
増加の割合は異方性永久磁石の採用による各磁極の磁束
密度の増大に比べて少なく、思った程トルクの増大を図
れない嫌いがあった。
【0005】本発明は、上記の点に鑑み、異方性永久磁
石とした内輪永久磁石及び外輪永久磁石の磁化容易軸の
配向を工夫することにより、伝達可能なトルクの大幅な
増加を図り得る磁気カップリング装置を提供することを
目的とする。
【0006】
【課題を解決するための手段】上記目的を達成するため
に、本発明は、外周面に交互に反対極性の内輪側磁極を
形成した円筒状内輪永久磁石と、該円筒状内輪永久磁石
の外周面に対向して同心配置されかつ内周面に交互に反
対極性の外輪側磁極を形成した円筒状外輪永久磁石とを
備えた磁気カップリング装置において、前記内輪側磁極
を持つ領域毎に当該内輪側磁極の中心と前記内輪永久磁
石の円筒形状の中心とを結ぶ線に平行となるように磁化
容易軸を平行配向させるか又は前記磁化容易軸の延長線
が前記内輪永久磁石外周面の外側に集まる如く配向させ
た異方性永久磁石で当該内輪永久磁石を構成し、前記外
輪側磁極を持つ領域毎に前記外輪永久磁石の半径方向に
磁化容易軸を配向させるか又は前記磁化容易軸の延長線
が前記外輪永久磁石中心よりも内周面に近い位置に集ま
る如く配向させた異方性永久磁石で当該外輪永久磁石を
構成している。
【0007】
【作用】本発明の磁気カップリング装置は、内輪永久磁
石及び外輪永久磁石として異方性永久磁石を採用した場
合に、内輪側磁極及び外輪側磁極相互間のトルク伝達に
寄与する磁力が大きくなるように、内輪及び外輪の異方
性永久磁石の磁化容易軸の配向を工夫している。
【0008】ここで、図4乃至図8を用いてどのような
配向が磁気カップリング装置として望ましいかを考察す
る(但し、各図中永久磁石内の矢印は配向を示す)。図
4は内輪永久磁石1及び外輪永久磁石2を平板状に展開
して示したもので、内輪永久磁石1の隣接するN極及び
S極による磁界のうちトルク伝達に寄与するのは外輪永
久磁石2の磁極が位置する点Pでの水平方向磁界成分B
xである(垂直方向磁界成分はトルク伝達に寄与しない
。)。このことを念頭において、図5[内輪永久磁石1
が厚み方向(半径方向に相当)に配向している]、図6
[内輪永久磁石1が長さ方向(円周方向に相当)に配向
している]、及び図7を比較すると、図7の配向が最も
水平方向磁界成分が大きくなる。すなわち、円筒形状の
内輪永久磁石1及び外輪永久磁石2に置き換えて考えた
場合、図8のような磁化容易軸の配向(図中矢印で示す
)が理想的である。しかしながら、現実の異方性永久磁
石の場合、図8の如き複雑な配向は実質的に不可能であ
る。
【0009】そこで、本発明では、内輪永久磁石につい
ては、内輪側磁極を持つ領域毎に当該内輪永久磁石の直
径に平行となるように磁化容易軸を平行配向させるか又
は前記磁化容易軸の延長線が前記内輪永久磁石外周面の
外側に集まる如く配向させる。また、外輪永久磁石につ
いては、外輪磁極を持つ領域毎に当該外輪永久磁石の半
径方向に磁化容易軸を配向させるか又は前記磁化容易軸
の延長線が前記外輪永久磁石中心よりも内周面に近い位
置に集まる如く配向させている。
【0010】
【実施例】以下、本発明に係る磁気カップリング装置の
実施例を図面に従って説明する。
【0011】図1は本発明の第1実施例を示す。この図
において、矢印は配向を示し、11は円筒状内輪永久磁
石、12は円筒状外輪永久磁石であり、内輪永久磁石1
1は第1の回転軸(図示せず)に固着され、この第1の
回転軸と回転中心が一致した第2の回転軸(図示せず)
に外輪永久磁石12が固着されるようになっている。前
記内輪永久磁石11の外周面には交互に反対極性の内輪
側磁極が形成されており、前記内輪永久磁石11の外周
面に対向して同心配置された外輪永久磁石12の内周面
にも交互に反対極性の外輪側磁極が形成されている。こ
こで、内輪永久磁石11は、内輪側磁極を持つ領域毎に
当該内輪側磁極の中心と内輪永久磁石の円筒形状の中心
とを結ぶ線に平行となるように磁化容易軸を平行配向さ
せたフェライト等の異方性永久磁石で構成されている。
また、外輪永久磁石12は、外輪側磁極を持つ領域毎に
半径方向に磁化容易軸を配向させたフェライト等の異方
性永久磁石で構成されている。
【0012】以下の表1は、第1実施例の場合のトルク
実測値を、内輪永久磁石及び外輪永久磁石共に等方性フ
ェライト永久磁石を用いた第1比較例と、内輪永久磁石
を等方性、外輪永久磁石を半径方向配向のフェライト永
久磁石とした第2比較例と、内輪永久磁石及び外輪永久
磁石共に半径方向配向の異方性フェライト永久磁石とし
た第3比較例の場合とそれぞれ比較して示したものであ
る。
【0013】
表1 外輪
永久磁石 内輪永久磁石 トルク
実測値(kg・cm)第1比較例 等方性フェラ
イト 等方性フェライト 8.45
外径66.27mm
外径48.97mm
内径55.02mm 内径33
.06mm 長さ29.9
8mm 長さ29.97mm
残留磁化2110G 残
留磁化2133G 第2比較例 半径方向配向
同 上 1
0.81 異方性フェライ
ト 外径67.10
mm
内径54.94mm
長さ29.96mm
残留磁化3748G 第
3比較例 同 上
半径方向配向 12.85
異方性フェライト
外径48.95
mm
内径32.88mm
長さ29.94mm
残留磁化
3840G 第1実施例 同 上
平行配向 15
.72
異方性フェライト
外径48.94mm
内径32
.88mm
長さ29.95mm
残留磁化3840G 【0014】上記表1
から本発明の第1実施例の磁気カップリング装置は、内
輪永久磁石及び外輪永久磁石共に等方性フェライト永久
磁石を用いた第1比較例に比して約2倍のトルクを伝達
でき、また内輪永久磁石及び外輪永久磁石共に半径方向
配向の異方性フェライト永久磁石を用いた第3比較例に
比較しても2割乃至3割程度トルクを増大させ得ること
が判る。
【0015】図2は本発明の第2実施例を示す。この場
合、内輪永久磁石11は、図中矢印にて示す如く、内輪
側磁極を持つ領域毎に磁化容易軸の延長線が当該内輪永
久磁石外周面の外側に集まる如く配向させたフェライト
等の異方性永久磁石で構成されている。また、外輪永久
磁石12は、外輪側磁極を持つ領域毎に磁化容易軸の延
長線が当該外輪永久磁石中心よりも内周面に近い位置に
集まる如く配向させたフェライト等の異方性永久磁石で
構成されている。その他は前述の第1実施例と同じであ
る。この図2の第2実施例の場合、さらに図8の理想的
な配向に近付くので伝達可能なトルクをより一層大きく
できる。
【0016】なお、内輪永久磁石11及び外輪永久磁石
12は1個の円筒形状の成型体に複数個の磁極を形成し
たものであってもよいが、円筒形状を適当に等分割した
セグメント磁石を組み合わせ一体化した構造体であって
もよい。また、内輪永久磁石の磁極及び外輪永久磁石の
磁極の極数は同じであり、2極以上の任意の偶数極数を
とることができる。
【0017】
【発明の効果】以上説明したように、本発明の磁気カッ
プリング装置によれば、内輪永久磁石及び外輪永久磁石
共に異方性永久磁石で構成するとともに、それらの異方
性永久磁石の配向を理想的な配向に近付ける如く工夫し
たので、等方性永久磁石を採用したものの約2倍のトル
クを伝達でき、さらに、内輪永久磁石及び外輪永久磁石
共に半径方向配向(ラジアル配向)の異方性永久磁石を
使用したものよりも2割乃至3割程度トルクを増やすこ
とができ利点がある。Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic coupling device capable of transmitting rotational force without contact. 2. Description of the Related Art An example of a conventional magnetic coupling device is shown in FIG. In this figure, 1 is a cylindrical inner ring permanent magnet;
2 is a cylindrical outer ring permanent magnet, and the inner ring permanent magnet 1 is a cylindrical outer ring permanent magnet.
An outer ring permanent magnet 2 is attached to a second rotating shaft (not shown) whose rotation center coincides with the first rotating shaft 3.
is now fixed. Inner ring side magnetic poles of opposite polarity are alternately formed on the outer circumferential surface of the inner ring permanent magnet 1, and inner ring side magnetic poles of opposite polarity are alternately formed on the inner circumferential surface of the outer ring permanent magnet 2, which is arranged concentrically opposite to the outer circumferential surface of the inner ring permanent magnet. Outer ring magnetic poles of opposite polarity are formed. [0003] Torque is transmitted between the first and second rotating shafts using the magnetic force between the inner ring magnetic pole and the outer ring magnetic pole. [0004]In the conventional magnetic coupling device, the inner ring permanent magnet 1 and the outer ring permanent magnet 2 are isotropic permanent magnets, or the axis of easy magnetization is oriented in the radial direction. That is, radially oriented anisotropic permanent magnets were used. In the case of isotropic permanent magnets, the transmittable torque is a small value. Furthermore, if radially oriented anisotropic permanent magnets are used to increase the transmittable torque, the torque will certainly increase, but the proportion of the increase is due to the use of anisotropic permanent magnets. There was a dislike that the increase in torque was small compared to the increase in magnetic flux density, and the torque could not be increased as much as expected. In view of the above points, the present invention makes it possible to significantly increase the transmittable torque by devising the orientation of the axis of easy magnetization of the inner ring permanent magnet and the outer ring permanent magnet, which are anisotropic permanent magnets. The present invention aims to provide a magnetic coupling device. Means for Solving the Problems In order to achieve the above object, the present invention provides a cylindrical inner ring permanent magnet in which inner ring side magnetic poles of opposite polarity are alternately formed on the outer peripheral surface, and a cylindrical inner ring permanent magnet. In a magnetic coupling device comprising a cylindrical outer ring permanent magnet arranged concentrically opposite to the outer circumferential surface of the magnet and having outer ring side magnetic poles of opposite polarity alternately formed on the inner circumferential surface, each region having the inner ring side magnetic poles is provided. The easy magnetization axis is oriented parallel to the line connecting the center of the inner ring side magnetic pole and the center of the cylindrical shape of the inner ring permanent magnet, or the extension line of the easy magnetization axis is parallel to the outer peripheral surface of the inner ring permanent magnet. The inner ring permanent magnet is composed of anisotropic permanent magnets oriented so as to gather on the outside of the outer ring, and the axis of easy magnetization is oriented in the radial direction of the outer ring permanent magnet for each region having the outer ring side magnetic pole, or the easy magnetization axis is oriented in the radial direction of the outer ring permanent magnet. The outer ring permanent magnet is composed of anisotropic permanent magnets that are oriented such that the extension line of the shaft is gathered at a position closer to the inner circumferential surface than the center of the outer ring permanent magnet. [Operation] In the magnetic coupling device of the present invention, when anisotropic permanent magnets are used as the inner ring permanent magnet and the outer ring permanent magnet, magnetic force that contributes to torque transmission between the inner ring side magnetic pole and the outer ring side magnetic pole is generated. The orientation of the axes of easy magnetization of the anisotropic permanent magnets in the inner and outer rings has been devised so that the Now, what kind of orientation is desirable for the magnetic coupling device will be considered using FIGS. 4 to 8 (however, the arrows inside the permanent magnets in each figure indicate the orientations). FIG. 4 shows the inner ring permanent magnet 1 and the outer ring permanent magnet 2 developed into a flat plate. Of the magnetic field generated by the adjacent north and south poles of the inner ring permanent magnet 1, the outer ring permanent magnet contributes to torque transmission. Horizontal magnetic field component B at point P where magnetic pole No. 2 is located
x (the vertical magnetic field component does not contribute to torque transmission). With this in mind, Fig. 5 [Inner ring permanent magnet 1]
is oriented in the thickness direction (corresponding to the radial direction)], Fig. 6
Comparing [inner ring permanent magnet 1 is oriented in the length direction (corresponding to the circumferential direction)] and FIG. 7, the orientation in FIG. 7 has the largest horizontal magnetic field component. That is, when considering replacing the inner ring permanent magnet 1 and the outer ring permanent magnet 2 with cylindrical shapes, the orientation of the axis of easy magnetization as shown in FIG. 8 (indicated by the arrow in the figure) is ideal. However, in the case of actual anisotropic permanent magnets, complicated orientation as shown in FIG. 8 is virtually impossible. Therefore, in the present invention, for the inner ring permanent magnet, the axis of easy magnetization is oriented parallel to the diameter of the inner ring permanent magnet for each region having the inner ring side magnetic pole, or the axis of easy magnetization is oriented parallel to the diameter of the inner ring permanent magnet, or the axis of easy magnetization is oriented parallel to the diameter of the inner ring permanent magnet. The wires are oriented so as to gather on the outside of the outer peripheral surface of the inner ring permanent magnet. Regarding the outer ring permanent magnet, the axis of easy magnetization is oriented in the radial direction of the outer ring permanent magnet for each region having outer ring magnetic poles, or the extension line of the axis of easy magnetization is located closer to the inner peripheral surface than the center of the outer ring permanent magnet. They are oriented so that they gather in close positions. [Embodiments] Hereinafter, embodiments of the magnetic coupling device according to the present invention will be described with reference to the drawings. FIG. 1 shows a first embodiment of the invention. In this figure, arrows indicate orientation, 11 is a cylindrical inner ring permanent magnet, 12 is a cylindrical outer ring permanent magnet, and inner ring permanent magnet 1
1 is fixed to a first rotating shaft (not shown), and a second rotating shaft (not shown) whose center of rotation coincides with the first rotating shaft.
An outer ring permanent magnet 12 is fixed to the outer ring permanent magnet 12. Inner ring side magnetic poles of opposite polarity are alternately formed on the outer peripheral surface of the inner ring permanent magnet 11, and inner ring side magnetic poles of opposite polarity are also formed on the inner peripheral surface of the outer ring permanent magnet 12 that is concentrically arranged opposite to the outer peripheral surface of the inner ring permanent magnet 11. Outer ring side magnetic poles of opposite polarity are alternately formed. Here, the inner ring permanent magnet 11 has an axis of easy magnetization oriented parallel to a line connecting the center of the inner ring side magnetic pole and the center of the cylindrical shape of the inner ring permanent magnet for each region having an inner ring side magnetic pole. It is composed of anisotropic permanent magnets such as ferrite. Further, the outer ring permanent magnet 12 is composed of an anisotropic permanent magnet such as ferrite, in which the axis of easy magnetization is oriented in the radial direction in each region having an outer ring side magnetic pole. [0012] Table 1 below shows the actual measured torque values for the first example and the first comparative example in which isotropic ferrite permanent magnets were used for both the inner and outer permanent magnets, and Comparison with a second comparative example in which the outer ring permanent magnet is a radially oriented ferrite permanent magnet and a third comparative example in which both the inner ring permanent magnet and outer ring permanent magnet are radially oriented anisotropic ferrite permanent magnets. This is what was shown. [0013]
Table 1 Outer ring permanent magnet Inner ring permanent magnet Actual torque value (kg cm) 1st comparative example Isotropic ferrite Isotropic ferrite 8.45
Outer diameter 66.27mm
Outer diameter 48.97mm
Inner diameter 55.02mm Inner diameter 33
.. 06mm length 29.9
8mm length 29.97mm
Residual magnetization 2110G Residual magnetization 2133G Second comparative example Radial orientation
Same as above 1
0.81 Anisotropic ferrite Outer diameter 67.10
mm
Inner diameter 54.94mm
Length 29.96mm
Residual magnetization 3748G 3rd comparative example Same as above
Radial orientation 12.85
anisotropic ferrite
Outer diameter 48.95
mm
Inner diameter 32.88mm
Length 29.94mm
Residual magnetization 3840G 1st example Same as above
Parallel orientation 15
.. 72
anisotropic ferrite
Outer diameter 48.94mm
Inner diameter 32
.. 88mm
Length 29.95mm
Residual magnetization 3840G [0014] Table 1 above
Therefore, the magnetic coupling device of the first embodiment of the present invention can transmit approximately twice as much torque as the first comparative example in which both the inner ring permanent magnet and the outer ring permanent magnet use isotropic ferrite permanent magnets. It can be seen that the torque can be increased by about 20% to 30% even when compared with the third comparative example in which both the inner ring permanent magnet and the outer ring permanent magnet are radially oriented anisotropic ferrite permanent magnets. FIG. 2 shows a second embodiment of the invention. In this case, the inner ring permanent magnet 11 is made of a different material such as ferrite, which is oriented so that the extension line of the axis of easy magnetization gathers on the outside of the outer peripheral surface of the inner ring permanent magnet in each region having an inner ring side magnetic pole, as shown by the arrow in the figure. It is composed of directional permanent magnets. The outer ring permanent magnet 12 is an anisotropic permanent magnet such as ferrite, which is oriented so that the extension line of the axis of easy magnetization gathers at a position closer to the inner circumferential surface than the center of the outer ring permanent magnet in each region having an outer ring side magnetic pole. It consists of The rest is the same as the first embodiment described above. In the case of the second embodiment shown in FIG. 2, since the orientation is closer to the ideal orientation shown in FIG. 8, the transmittable torque can be further increased. Note that the inner ring permanent magnet 11 and the outer ring permanent magnet 12 may be formed by forming a plurality of magnetic poles on one cylindrical molded body, but segment magnets obtained by appropriately dividing the cylindrical shape into equal parts may be used. It may be a combined and integrated structure. Further, the number of magnetic poles of the inner ring permanent magnet and the outer ring permanent magnet are the same, and can be any even number of two or more poles. [0017] As explained above, according to the magnetic coupling device of the present invention, both the inner ring permanent magnet and the outer ring permanent magnet are composed of anisotropic permanent magnets, and the anisotropic permanent magnets Since we have devised a way to bring the orientation of the magnets closer to the ideal orientation, it is possible to transmit approximately twice as much torque as when using isotropic permanent magnets. It has the advantage that the torque can be increased by about 20 to 30 percent compared to those using anisotropic permanent magnets.
【図1】本発明に係る磁気カップリング装置の第1実施
例を示す正面図である。FIG. 1 is a front view showing a first embodiment of a magnetic coupling device according to the present invention.
【図2】本発明の第2実施例を示す正面図である。FIG. 2 is a front view showing a second embodiment of the invention.
【図3】従来の磁気カップリング装置を示す正面図であ
る。FIG. 3 is a front view showing a conventional magnetic coupling device.
【図4】磁気カップリング装置の内輪永久磁石及び外輪
永久磁石を平板状に展開して示す説明図である。FIG. 4 is an explanatory diagram showing an inner ring permanent magnet and an outer ring permanent magnet of the magnetic coupling device developed into a flat plate shape.
【図5】内輪永久磁石が厚み方向(半径方向に相当)に
配向している場合の説明図である。FIG. 5 is an explanatory diagram when the inner ring permanent magnet is oriented in the thickness direction (corresponding to the radial direction).
【図6】内輪永久磁石が長さ方向(円周方向に相当)に
配向している場合の説明図である。FIG. 6 is an explanatory diagram when the inner ring permanent magnet is oriented in the length direction (corresponding to the circumferential direction).
【図7】内輪永久磁石の配向の他の例を示す説明図であ
る。FIG. 7 is an explanatory diagram showing another example of the orientation of the inner ring permanent magnet.
【図8】円筒状内輪永久磁石及び外輪永久磁石を用いた
磁気カップリング装置における理想的な配向を説明する
正面図である。FIG. 8 is a front view illustrating an ideal orientation in a magnetic coupling device using a cylindrical inner ring permanent magnet and an outer ring permanent magnet.
1,11 内輪永久磁石 2,12 外輪永久磁石 1,11 Inner ring permanent magnet 2,12 Outer ring permanent magnet
Claims (2)
を形成した円筒状内輪永久磁石と、該円筒状内輪永久磁
石の外周面に対向して同心配置されかつ内周面に交互に
反対極性の外輪側磁極を形成した円筒状外輪永久磁石と
を備えた磁気カップリング装置において、前記内輪側磁
極を持つ領域毎に当該内輪側磁極の中心と前記内輪永久
磁石の円筒形状の中心とを結ぶ線に平行となるように磁
化容易軸を平行配向させるか又は前記磁化容易軸の延長
線が前記内輪永久磁石外周面の外側に集まる如く配向さ
せた異方性永久磁石で当該内輪永久磁石を構成し、前記
外輪側磁極を持つ領域毎に前記外輪永久磁石の半径方向
に磁化容易軸を配向させるか又は前記磁化容易軸の延長
線が前記外輪永久磁石中心よりも内周面に近い位置に集
まる如く配向させた異方性永久磁石で当該外輪永久磁石
を構成したことを特徴とする磁気カップリング装置。1. A cylindrical inner ring permanent magnet having inner ring side magnetic poles of opposite polarity formed alternately on the outer circumferential surface, and a cylindrical inner ring permanent magnet arranged concentrically opposite the outer circumferential surface of the cylindrical inner ring permanent magnet and alternately opposite on the inner circumferential surface. In a magnetic coupling device comprising a cylindrical outer ring permanent magnet forming a polar outer ring side magnetic pole, the center of the inner ring side magnetic pole and the cylindrical center of the inner ring permanent magnet are connected for each region having the inner ring side magnetic pole. The inner ring permanent magnet is oriented with an anisotropic permanent magnet whose axis of easy magnetization is oriented parallel to the connecting line or so that an extension line of the axis of easy magnetization is gathered outside the outer peripheral surface of the inner ring permanent magnet. and the easy magnetization axis is oriented in the radial direction of the outer ring permanent magnet for each region having the outer ring side magnetic pole, or the extension line of the easy magnetization axis is located at a position closer to the inner circumferential surface than the center of the outer ring permanent magnet. A magnetic coupling device characterized in that the outer ring permanent magnet is composed of anisotropic permanent magnets that are oriented so as to gather together.
石が円筒形状を分割したセグメント磁石の組み合わせで
構成されている請求項1記載の磁気カップリング装置。2. The magnetic coupling device according to claim 1, wherein the inner ring permanent magnet or the outer ring permanent magnet is composed of a combination of segment magnets obtained by dividing a cylindrical shape.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3918091A JP2889384B2 (en) | 1991-02-08 | 1991-02-08 | Magnetic coupling device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3918091A JP2889384B2 (en) | 1991-02-08 | 1991-02-08 | Magnetic coupling device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04261354A true JPH04261354A (en) | 1992-09-17 |
JP2889384B2 JP2889384B2 (en) | 1999-05-10 |
Family
ID=12545918
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3918091A Expired - Fee Related JP2889384B2 (en) | 1991-02-08 | 1991-02-08 | Magnetic coupling device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2889384B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000060618A1 (en) * | 1999-04-06 | 2000-10-12 | Jae Jin Kim | A method for manufacturing magnets having inclined magnetic force lines and power plants using it |
DE102014224151A1 (en) * | 2014-11-26 | 2016-06-02 | Mahle International Gmbh | Device for non-contact transmission of rotational movements |
CN106300890A (en) * | 2016-11-09 | 2017-01-04 | 中国船舶重工集团公司第七0三研究所 | A kind of high power density radial permanent magnet bonder |
CN106555839A (en) * | 2015-09-22 | 2017-04-05 | 李明生 | A kind of novel variable speed box technology |
CN107959401A (en) * | 2017-12-12 | 2018-04-24 | 武汉船用电力推进装置研究所(中国船舶重工集团公司第七二研究所) | A kind of Halbach array type permanent magnet magnetic gear |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102018201030A1 (en) | 2018-01-24 | 2019-07-25 | Kardion Gmbh | Magnetic coupling element with magnetic bearing function |
DE102018207578A1 (en) * | 2018-05-16 | 2019-11-21 | Kardion Gmbh | Method for producing a cylindrical permanent magnet and method for producing radial couplings |
-
1991
- 1991-02-08 JP JP3918091A patent/JP2889384B2/en not_active Expired - Fee Related
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000060618A1 (en) * | 1999-04-06 | 2000-10-12 | Jae Jin Kim | A method for manufacturing magnets having inclined magnetic force lines and power plants using it |
KR100383576B1 (en) * | 1999-04-06 | 2003-05-16 | 김재진 | Process for preparation of magnet having an inclined magnetic force line and power plants utilizing them |
DE102014224151A1 (en) * | 2014-11-26 | 2016-06-02 | Mahle International Gmbh | Device for non-contact transmission of rotational movements |
US10361617B2 (en) | 2014-11-26 | 2019-07-23 | Mahle International Gmbh | Magnetic coupling device for transmitting rotational motions without contact |
CN106555839A (en) * | 2015-09-22 | 2017-04-05 | 李明生 | A kind of novel variable speed box technology |
CN106300890A (en) * | 2016-11-09 | 2017-01-04 | 中国船舶重工集团公司第七0三研究所 | A kind of high power density radial permanent magnet bonder |
CN107959401A (en) * | 2017-12-12 | 2018-04-24 | 武汉船用电力推进装置研究所(中国船舶重工集团公司第七二研究所) | A kind of Halbach array type permanent magnet magnetic gear |
Also Published As
Publication number | Publication date |
---|---|
JP2889384B2 (en) | 1999-05-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US2768316A (en) | Permanent magnetic couplings | |
JPS5959054A (en) | Permanent magnet field rotor structure | |
US20210322756A1 (en) | Rotor, magnetic coupling device, electric motor for a cardiac support system, pump unit for a cardiac support system, and method for producing a rotor | |
WO2007010780A1 (en) | Power transmission mechanism | |
CN103904950B (en) | High torque (HT) desk permanent-magnet deceleration device | |
JPH04261354A (en) | Magnetic coupler | |
JP2020087672A5 (en) | ||
CN211744318U (en) | Composite three-disk permanent magnetic coupler | |
US20020186647A1 (en) | Magnetic coupling power transmission apparatus for optical disk drive | |
JP2001082507A (en) | Clutch mechanism for power transmission using magnet | |
JPH05202947A (en) | Torque-restrictive joint | |
JPS6255390B2 (en) | ||
JP4878746B2 (en) | Torque sensor | |
JP6390172B2 (en) | Rotor and motor | |
JPH0246327A (en) | Electromagnetic clutch | |
JP2001208094A (en) | Co-axial cylindrical torque limiter and its process of manufacture | |
CN211522545U (en) | Magnetic frame for clamping cloth | |
JPS61116956A (en) | Rotor for motor of magnet rotation type | |
JPH02294261A (en) | Magnetic coupling | |
JP3013899U (en) | Flywheel magnet rotor | |
KR20190080229A (en) | Magnetic Coupling | |
JPS6013455A (en) | Laminated magnet for motor | |
JPH0756620Y2 (en) | DC motor | |
JPH02299457A (en) | Hysteresis magnetic coupling | |
JP2006162460A (en) | Torque sensor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19990112 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |