JPH0426085B2 - - Google Patents

Info

Publication number
JPH0426085B2
JPH0426085B2 JP16697383A JP16697383A JPH0426085B2 JP H0426085 B2 JPH0426085 B2 JP H0426085B2 JP 16697383 A JP16697383 A JP 16697383A JP 16697383 A JP16697383 A JP 16697383A JP H0426085 B2 JPH0426085 B2 JP H0426085B2
Authority
JP
Japan
Prior art keywords
optical waveguide
optical
conversion element
length
wavelength conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP16697383A
Other languages
Japanese (ja)
Other versions
JPS6057825A (en
Inventor
Kazuhisa Yamamoto
Tetsuo Yanai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP16697383A priority Critical patent/JPS6057825A/en
Publication of JPS6057825A publication Critical patent/JPS6057825A/en
Publication of JPH0426085B2 publication Critical patent/JPH0426085B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/37Non-linear optics for second-harmonic generation
    • G02F1/377Non-linear optics for second-harmonic generation in an optical waveguide structure

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)
  • Liquid Crystal (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、レーザ光を使用する情報処理分野あ
るいは光応用計測制御分野に利用する光波長変換
素子に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an optical wavelength conversion element used in the information processing field or optical applied measurement control field using laser light.

従来例の構造とその問題点 従来、0.7μm以下の短波長領域においては半導
体レーザによる発振が困難であるため、気体レー
ザなどの大型レーザが使われており、大型化がさ
けられなかつた。そのためSHG(第2高調波発
生)現象を利用し半導体レーザ光を半分の波長に
変換する素子が作製されていた。第1図は従来の
LiNbO3光導波路を使用した光波長変換素子によ
り半導体レーザ光を変換する構成を示した斜視図
である。半導体レーーザ1から出た波長λの光は
レンズ2により集光されてLiNbO3Y板3に形成
された光導波路4に入る。この波長λの半導体レ
ーザよりの入射光を変換された波長λ/2の光の
位相整合条件をLiNbO3光導波路4の温度を変え
るなどの方法により満たしてやることにより数パ
ーセントの変換効率で波長λ/2の変換光を得て
いた。実際にLiNNbO3Y板3に幅6μm,深さ
1.5μm長さ2cmのTi拡散光導波路4を作製し、波
長1.3μm,出力40mWの半導体レーザの光を光導
波路4に入射することにより、2%の変換効率で
波長0.65μmの変換光が得られている。しかし、
変換効率は光導波路4アスペクト比(幅と深さの
比)が1に近い程良く、LiNbO3Y板3ではZ軸
方向の拡散係数が大きいために、光導波路4が大
きく横に広がつてしまい変換率が極端に悪くな
る。また変換効率は光導波路4の長さの二乗に比
例するのであるが、変換効率を上げようとした場
合、X軸方向のLiNbO3Y板3の長さを長くとら
なければならず、光波長変換素子の大きさが大き
くなつてしまう。
Conventional structures and their problems Conventionally, it has been difficult to oscillate with semiconductor lasers in the short wavelength region of 0.7 μm or less, so large lasers such as gas lasers have been used, and larger lasers have been unavoidable. For this reason, elements have been created that utilize the SHG (second harmonic generation) phenomenon to convert semiconductor laser light into half the wavelength. Figure 1 shows the conventional
FIG. 2 is a perspective view showing a configuration in which semiconductor laser light is converted by an optical wavelength conversion element using a LiNbO 3 optical waveguide. Light with wavelength λ emitted from semiconductor laser 1 is focused by lens 2 and enters optical waveguide 4 formed in LiNbO 3 Y plate 3 . By satisfying the phase matching condition for the converted light of wavelength λ/2 from the incident light from the semiconductor laser of wavelength λ by changing the temperature of the LiNbO 3 optical waveguide 4, the wavelength λ can be converted with a conversion efficiency of several percent. /2 converted light was obtained. Actually, LiNNbO 3 Y plate 3 has a width of 6 μm and a depth of
By fabricating a Ti diffused optical waveguide 4 with a length of 1.5 μm and 2 cm, and inputting light from a semiconductor laser with a wavelength of 1.3 μm and an output of 40 mW into the optical waveguide 4, converted light with a wavelength of 0.65 μm was obtained with a conversion efficiency of 2%. It is being but,
The conversion efficiency is better when the aspect ratio (width to depth ratio) of the optical waveguide 4 is close to 1, and because the LiNbO 3 Y plate 3 has a large diffusion coefficient in the Z-axis direction, the optical waveguide 4 spreads widely laterally. As a result, the conversion rate becomes extremely poor. Furthermore, the conversion efficiency is proportional to the square of the length of the optical waveguide 4, but in order to increase the conversion efficiency, it is necessary to increase the length of the LiNbO 3 Y plate 3 in the X-axis direction, which increases the optical wavelength. The size of the conversion element becomes large.

発明の目的 本発明の目的は、X,Y,Z各軸を有する非線
形光学結晶のZ板を用いることにより、Z面に形
成された光導波路のアスペクト比を1に近付け、
さらに上記光導波路路を折り返しまた曲り構造に
して光導波路の長さをかせぐことによりり、従来
では困難であつた変換効率を大きく上げるコンパ
クトな光波長変換素子を提供することにある。
Purpose of the Invention The purpose of the present invention is to bring the aspect ratio of the optical waveguide formed on the Z plane close to 1 by using a Z plate of a nonlinear optical crystal having each of the X, Y, and Z axes.
Furthermore, it is an object of the present invention to provide a compact optical wavelength conversion element that greatly increases the conversion efficiency, which has been difficult in the past, by increasing the length of the optical waveguide by folding or bending the optical waveguide.

発明の構成 本発明の光波長変換素子は、X,Y,Z各軸を
有する非線形光学結晶のZ面に、前記X,Y軸方
向の長さよりも長い光導波路を設けた構成であ
る。また本発明の光波長変換素子は上記非線光学
結晶としてLiNbO3Z板,LiTaO3Z板を用いた構
成である。また本発明の光波長変換素子は上記光
導波路として全反射または方向性結合による折り
返し光導波路、または曲り光導波路を用いた構成
である。
Configuration of the Invention The optical wavelength conversion element of the present invention has a configuration in which an optical waveguide longer than the length in the X and Y axis directions is provided on the Z plane of a nonlinear optical crystal having each of the X, Y, and Z axes. Further, the optical wavelength conversion element of the present invention has a structure using a LiNbO 3 Z plate and a LiTaO 3 Z plate as the non-linear optical crystal. Further, the optical wavelength conversion element of the present invention has a configuration in which a folded optical waveguide by total reflection or directional coupling, or a curved optical waveguide is used as the optical waveguide.

実施例の説明 第2図は、本発明よる光波長変換素子の第1の
実施例の構成を示した斜視図である。第2図にお
いて、X軸方向に2cm,Y軸方向に1cmの長さを
持つたLiNbO3Z板3′のZ面にTiを熱拡散するこ
とにより幅6μm,深さ4μmの光導波路4aを形成
した。この光導波路4aに入射端部5より波長λ
の光が入射され、この光は金属膜が蒸着された反
射端部6で反射され、次の光導波路4bに移る。
光導波路aと光導波路bは3゜の角度をもたせてあ
る。同様の過程を経て光導波路4cに入つた光は
出射端部7よ出射する。全光導波路の長さはほぼ
6cmとなる。
DESCRIPTION OF EMBODIMENTS FIG. 2 is a perspective view showing the structure of a first embodiment of the optical wavelength conversion element according to the present invention. In Fig. 2, an optical waveguide 4a with a width of 6 μm and a depth of 4 μm is formed by thermally diffusing Ti on the Z plane of a LiNbO 3 Z plate 3' having a length of 2 cm in the X-axis direction and 1 cm in the Y-axis direction. Formed. The wavelength λ from the input end 5 to this optical waveguide 4a
This light is reflected by the reflective end 6 on which a metal film is deposited, and moves to the next optical waveguide 4b.
The optical waveguide a and the optical waveguide b are at an angle of 3°. The light that has entered the optical waveguide 4c through a similar process is output from the output end 7. The length of the entire optical waveguide is approximately 6 cm.

ここで波長λの入射光の光と波長λ/2変換波
の光との位相を温度などにより整合させることに
より、変換波の出力パワーを最大にすることがで
きる。実際には波長1.3μm,出力パワー40mWの
半導体レーザをレンズで集光して入射端部5より
入射させ、温度より位相を整合させることで20%
強の変換効率が得られた。
Here, the output power of the converted wave can be maximized by matching the phases of the incident light having the wavelength λ and the wavelength λ/2 converted wave using temperature or the like. In reality, a semiconductor laser with a wavelength of 1.3 μm and an output power of 40 mW is focused by a lens and made incident from the input end 5, and the phase is matched by temperature to achieve a 20%
Strong conversion efficiency was obtained.

第3図は、本発明による光波長変換素子の第2
の実施例を示した斜視図である。LiNbO3Z板
3′に設けられた光導波路4aと4b,4bと4
c間の結合は完全結合長を持つた方向性結合によ
つて行つてる以外は実施例1と同様である。
FIG. 3 shows a second optical wavelength conversion element according to the present invention.
FIG. 2 is a perspective view showing an embodiment of the invention. Optical waveguides 4a and 4b, 4b and 4 provided on LiNbO 3 Z plate 3'
The bonding between c and c is the same as in Example 1 except that the bonding is performed by directional bonding having a complete bond length.

第4図は、本発明よる光波長変換素子の第3の
実施例を示した斜視図である。この実施例では折
り返し導波路を用いる代りに、曲り光導波路とし
て渦巻き光導波路4を用いて波長変換素子を構成
した。LiNbO3Y板では曲りを付けることにより
伝搬定数が変化し位相整合条件が各場所により異
なるが、LiNbO3Z板を用いているため伝搬定数
は変化しないいので位相整合条件は場所により異
ならない。光導波路4は全長5cmである。この光
導波路4′に波長0.8μm,出力パワー30mWの半
導体レーザ光を入射させ、温度により位相を整合
させたところ15%の変換効率で波長0.4μmの変換
光が得られた。
FIG. 4 is a perspective view showing a third embodiment of the optical wavelength conversion element according to the present invention. In this embodiment, instead of using a folded waveguide, a spiral optical waveguide 4 was used as a curved optical waveguide to construct a wavelength conversion element. When bending a LiNbO 3 Y plate, the propagation constant changes and the phase matching conditions differ depending on the location, but since the LiNbO 3 Z plate is used, the propagation constant does not change, so the phase matching conditions do not differ depending on the location. The optical waveguide 4 has a total length of 5 cm. When a semiconductor laser beam with a wavelength of 0.8 μm and an output power of 30 mW was introduced into this optical waveguide 4' and the phase was matched by temperature, converted light with a wavelength of 0.4 μm was obtained with a conversion efficiency of 15%.

以上実施例では結晶としてLiNbO3Z板を用い
たが他にLiTaO3などX,Y,Z軸を持つ非線形
光学結晶であればよい。また、実施例ではX軸方
向の前記非線形光学結晶の長さの数倍の長さを持
つ光導波路を用いたが、折り返す回数を増すなど
によりさらに光導波路長を長くして変換効率をさ
らにあげることも可能である。また曲り光導波路
として渦巻き光導波路を用いて説明を行つたが、
U字型,S字型などこれに限ることはない。また
本実施例ではSHGについて説明を行つたが、光
パラメトリツク増幅,和周波,差周波などにも用
いることができる。
In the above embodiments, a LiNbO 3 Z plate was used as the crystal, but any other nonlinear optical crystal having X, Y, and Z axes such as LiTaO 3 may be used. In addition, in the example, an optical waveguide having a length several times the length of the nonlinear optical crystal in the X-axis direction was used, but the conversion efficiency can be further increased by increasing the optical waveguide length by increasing the number of turns. It is also possible. Also, although the explanation was given using a spiral optical waveguide as a curved optical waveguide,
The shape is not limited to U-shape, S-shape, etc. Further, in this embodiment, the SHG has been explained, but it can also be used for optical parametric amplification, sum frequency, difference frequency, etc.

発明の効果 以上説明したように、本発明の光波長変換素子
においては、X,Y,Z各軸を有する非線形光学
結晶のZ面に前記X,Y軸方向の基板の長さより
長い光導波路を作製することにより、従来のX,
Y面に作製された光導波路に比べSHG変換効率
を十数倍程度高めることができるすぐれた効果を
発揮することができる。
Effects of the Invention As explained above, in the optical wavelength conversion element of the present invention, an optical waveguide longer than the length of the substrate in the X, Y axis directions is provided on the Z plane of the nonlinear optical crystal having each of the X, Y, and Z axes. By making the conventional X,
It can exhibit an excellent effect of increasing the SHG conversion efficiency by more than ten times compared to an optical waveguide fabricated in the Y plane.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のLiNbO3光導波路を使用した光
波長変換素子により半導体レーザ光を変換する装
置の概略斜視図、第2図は本発明による光波長変
換素子の第1の実施例の構成を示した概略斜視
図、第3図は本発明による光波長変換素子による
第2の実施例を示した概略斜視図、第4図は本発
明による光波長変換素子の第3の実施例を示した
概略斜視図である。 1……半導体レーザ、2……レンズ、3……
LiNbO3Y板、4a,4b,4c,4′……光導波
路、3′……LiNbO3Z板、5……入射端部、6…
…反射端部、7……出射端部。
Fig. 1 is a schematic perspective view of a device for converting semiconductor laser light by an optical wavelength conversion element using a conventional LiNbO 3 optical waveguide, and Fig. 2 shows the configuration of a first embodiment of the optical wavelength conversion element according to the present invention. 3 is a schematic perspective view showing a second embodiment of the optical wavelength conversion element according to the present invention, and FIG. 4 is a schematic perspective view showing a third embodiment of the optical wavelength conversion element according to the present invention. It is a schematic perspective view. 1... Semiconductor laser, 2... Lens, 3...
LiNbO 3 Y plate, 4a, 4b, 4c, 4'... optical waveguide, 3'... LiNbO 3 Z plate, 5... incident end, 6...
...Reflection end, 7...Emission end.

Claims (1)

【特許請求の範囲】 1 X,Y,Z各軸を有する非線形光学結晶のZ
面に前記X,Y軸方向の長さよりも長い光導波路
を設けたことを特徴とする光波長変換素子。 2 X,Y,Z各軸を有する非線形半学結晶とし
てLiNbO3Z板又はLiTaO3Z板を用いたことを特
徴とする特許請求の範囲第1項記載の光波長変換
素子。 3 X,Y軸方向の長さよりも長い光導波路とし
て折り返し光導波路を設けたことを特徴とする特
許請求の範囲第1項記載の光波長変換素子。 4 X,Y軸方向の長さよりも長い光導波路とし
て、方向性結合による折り返し光導波路を設けた
ことを特徴とする特許請求の範囲第1項記載の光
波長変換素子。 5 X,Y軸方向の長さよりも長い光導波路とし
て、曲り光導波路を設けたことを特徴とする特許
請求の範囲第1項記載の光波長変換素子。
[Claims] 1. Z of a nonlinear optical crystal having X, Y, and Z axes
An optical wavelength conversion element characterized in that an optical waveguide having a length longer than the length in the X and Y axis directions is provided on the surface. 2. The optical wavelength conversion element according to claim 1, characterized in that a LiNbO 3 Z plate or a LiTaO 3 Z plate is used as the nonlinear semimagnetic crystal having X, Y, and Z axes. 3. The optical wavelength conversion element according to claim 1, characterized in that a folded optical waveguide is provided as an optical waveguide that is longer than the length in the X and Y axis directions. 4. The optical wavelength conversion element according to claim 1, characterized in that a folded optical waveguide by directional coupling is provided as the optical waveguide which is longer than the length in the X and Y axis directions. 5. The optical wavelength conversion element according to claim 1, characterized in that a curved optical waveguide is provided as the optical waveguide which is longer than the length in the X and Y axis directions.
JP16697383A 1983-09-09 1983-09-09 Light wavelength converting element Granted JPS6057825A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16697383A JPS6057825A (en) 1983-09-09 1983-09-09 Light wavelength converting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16697383A JPS6057825A (en) 1983-09-09 1983-09-09 Light wavelength converting element

Publications (2)

Publication Number Publication Date
JPS6057825A JPS6057825A (en) 1985-04-03
JPH0426085B2 true JPH0426085B2 (en) 1992-05-06

Family

ID=15841045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16697383A Granted JPS6057825A (en) 1983-09-09 1983-09-09 Light wavelength converting element

Country Status (1)

Country Link
JP (1) JPS6057825A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8294979B2 (en) 2007-11-21 2012-10-23 Panasonic Corporation Wavelength conversion device and image display apparatus using the same

Also Published As

Publication number Publication date
JPS6057825A (en) 1985-04-03

Similar Documents

Publication Publication Date Title
JP2892938B2 (en) Wavelength converter
US5091915A (en) Semiconductor laser excited solid laser device
EP0377988B1 (en) Wavelength converting optical device
JPH04107536A (en) Second harmonic generation device
US5082340A (en) Wavelength converting device
JPS6118934A (en) Device for changing wavelength of light
KR20010092756A (en) A device for reflecting light
JPH02179626A (en) Light wavelength converter
JPS60112023A (en) Light wavelength conversion element
JPS63121829A (en) Harmonic generating device
JP2751914B2 (en) Optical waveguide device
JPH0460524A (en) Light wavelength converter
JPH0426085B2 (en)
JPH08286160A (en) Acoustooptic filter
JP5361897B2 (en) Optical wavelength conversion element, wavelength conversion laser device, and image display device
JPS60112024A (en) Light wavelength converter
JPH01257922A (en) Waveguide type wavelength converting element
JP3147412B2 (en) Incident taper optical waveguide and wavelength conversion element using the same
JPS62124510A (en) Grating optical coupler
JPS61189686A (en) Laser device
JPH01312529A (en) Nonlinear optical element
WO2023017709A1 (en) Ring resonator
JP2003202606A (en) Optical switch
JPS6118933A (en) Device for changing wavelength of light
JP2688102B2 (en) Optical wavelength converter