JPH04260751A - Fluid heating device by electromagnetic wave - Google Patents

Fluid heating device by electromagnetic wave

Info

Publication number
JPH04260751A
JPH04260751A JP3022293A JP2229391A JPH04260751A JP H04260751 A JPH04260751 A JP H04260751A JP 3022293 A JP3022293 A JP 3022293A JP 2229391 A JP2229391 A JP 2229391A JP H04260751 A JPH04260751 A JP H04260751A
Authority
JP
Japan
Prior art keywords
antenna
liquid
electromagnetic waves
columnar structure
metal container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3022293A
Other languages
Japanese (ja)
Inventor
Fumiaki Komatsu
史明 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP3022293A priority Critical patent/JPH04260751A/en
Publication of JPH04260751A publication Critical patent/JPH04260751A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

PURPOSE:To greatly improve the heating efficiency of a fluid by inserting an antenna into an antenna with a low electromagnetic wave-absorptive columnar structure, and internally inserting the antenna side of the columnar structure into a large hole part, and further dipping the columnar structure in the fluid in a metal container. CONSTITUTION:A fluid 20 to be subjected to dielectric heating is supplied into a metal container 19 through a pipe 21 and is heated, and thereafter the fluid 20 is discharged to the outside through a drain 22. There is provided in a bottom part of the metal container 19 an antenna insertion hole 27 possessing an outside small hole part 25 and an inside large hole part 26 in a stepped manner, and the tip end of a metal hollow pipe 13 of a coaxial cable 12 is inserted into the small hole part 25. The antenna 16 is projected toward the side of the large hole part 27 side and is inserted into a core center of a solid columnar structure 31 formed with a low electromagnetic wave-absorptive material such as quartz and Teflon and the like, and the antenna 16 side of the columnar structure 31 is inserted into the large diameter part 26. The columnar structure 31 is vertically disposed on the bottom of the metal container 19. In this case, the tip end of the columnar structure 31 is located under the level of the fluid 20 injected into the container 19.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、金属容器内の液体を電
磁波にて加熱するようにした電磁波による液体加熱装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid heating device using electromagnetic waves for heating a liquid in a metal container using electromagnetic waves.

【0002】0002

【従来の技術】図7及び図8は、夫々電磁波を使用して
誘電物質である液体を誘電加熱する従来の電磁波による
液体加熱装置を示し、 100KHz以上(好ましくは
 900MKz以上) の電磁波1 は発振器2 で発
生され、矩形あるいは円筒形の金属製導波管3 を介し
て、密閉された金属容器4 中に照射される。金属容器
4 中へ照射された電磁波1 は照射効率を高めるため
に、供給された液体5 より高い位置に接続され、かつ
液体5 への照射を均等化するため、攪拌翼6が付いた
攪拌機7 によって、照射中攪拌混合される。液体5 
はパイプ8 を介して供給され、加熱後ドレイン口9 
より外部へ排出される。
2. Description of the Related Art FIGS. 7 and 8 show a conventional liquid heating device using electromagnetic waves for dielectrically heating a liquid, which is a dielectric substance, using electromagnetic waves, and an electromagnetic wave 1 of 100 KHz or more (preferably 900 MKz or more) is an oscillator. 2 and is irradiated into a sealed metal container 4 through a rectangular or cylindrical metal waveguide 3. The electromagnetic waves 1 irradiated into the metal container 4 are connected to a higher position than the supplied liquid 5 in order to increase the irradiation efficiency, and a stirrer 7 equipped with stirring blades 6 is connected to the liquid 5 in order to equalize the irradiation of the liquid 5 . The mixture is stirred and mixed during irradiation. liquid 5
is supplied through pipe 8, and after heating, drain port 9
is discharged to the outside.

【0003】0003

【発明が解決しようとする課題】しかし、従来の場合導
波管3 を使用して液面上部から電磁波1 を照射して
いたため、液面上方からの一方的な照射により、照射部
の領域が限定され、加熱効率が低かった。また液面上か
らの照射のため、例えば容器4 の上蓋部を開閉可能に
した場合等、電磁波1 の外部へのリーク防止のための
構造あるいはリーク防止材を付加する必要があり、電磁
波液漏洩防止のためのシール構造が複雑になった。
[Problems to be Solved by the Invention] However, in the conventional case, the waveguide 3 was used to irradiate the electromagnetic wave 1 from above the liquid surface, so the area of the irradiation part was affected by the unilateral irradiation from above the liquid surface. heating efficiency was low. In addition, since the irradiation is performed from above the liquid surface, for example, when the top lid of the container 4 is made openable and closable, it is necessary to add a structure or leak prevention material to prevent electromagnetic waves 1 from leaking to the outside, which may prevent electromagnetic waves from leaking into the liquid. The seal structure to prevent this has become complicated.

【0004】本発明は上記問題点に鑑み、加熱効率を向
上し得ると共に、シール構造が簡単になるようにしたも
のである。
In view of the above-mentioned problems, the present invention is designed to improve heating efficiency and to simplify the sealing structure.

【0005】[0005]

【課題を解決するための手段】この技術的課題を解決す
る本発明の技術的手段は、金属容器19内に電磁波を照
射して、金属容器19内の液体20を電磁波にて加熱す
るようにした電磁波による液体加熱装置において、電磁
波を伝送する同軸ケーブル12の先端にアンテナ16が
設けられ、金属容器19の底壁に、外側の小孔部25と
内側の大孔部26とを階段状に有するアンテナ挿通孔2
7が設けられ、前記アンテナ16がアンテナ挿通孔27
に挿通されると共に、アンテナ16に電磁波吸収性の低
い柱状体31が套嵌され、該柱状体31のアンテナ16
側が前記大孔部26に内嵌され、柱状体31が金属容器
19の液体20内に浸漬されている点にある。
[Means for Solving the Problems] The technical means of the present invention to solve this technical problem is to irradiate electromagnetic waves into the metal container 19 and heat the liquid 20 inside the metal container 19 with the electromagnetic waves. In a liquid heating device using electromagnetic waves, an antenna 16 is provided at the tip of a coaxial cable 12 that transmits electromagnetic waves, and an outer small hole 25 and an inner large hole 26 are formed in a step-like manner on the bottom wall of a metal container 19. Antenna insertion hole 2 with
7 is provided, and the antenna 16 is inserted into the antenna insertion hole 27.
At the same time, a columnar body 31 with low electromagnetic wave absorption is fitted on the antenna 16, and the antenna 16 of the columnar body 31 is inserted into the antenna 16.
The columnar body 31 is immersed in the liquid 20 of the metal container 19 with its side fitted into the large hole 26 .

【0006】[0006]

【作用】発振器11で発生した電磁波は、同軸ケーブル
12により伝送されてそのアンテナ16から放射され、
柱状体31の全面から液体20中に照射される。従って
、電磁波の照射領域が広くなり、液体20の加熱効率が
高まる。また、この場合電磁波は液体20中に吸収され
て、容器19の空間部へは照射されない。
[Operation] Electromagnetic waves generated by the oscillator 11 are transmitted by the coaxial cable 12 and radiated from the antenna 16.
The liquid 20 is irradiated from the entire surface of the columnar body 31 . Therefore, the irradiation area of the electromagnetic waves becomes wider, and the heating efficiency of the liquid 20 increases. Further, in this case, the electromagnetic waves are absorbed into the liquid 20 and are not irradiated into the space of the container 19.

【0007】そして、攪拌機37の攪拌翼39が柱状体
31の周囲を回転し、柱状体31の周囲の液体20を攪
拌して、電磁波による加熱効率をさらに高める。
[0007] The stirring blades 39 of the stirrer 37 rotate around the columnar body 31 to stir the liquid 20 around the columnar body 31, thereby further increasing the heating efficiency by electromagnetic waves.

【0008】[0008]

【実施例】以下、本発明を図示の実施例に従って説明す
ると、図1において、11は発振器で、 100KHz
以上(好ましくは 900MHz以上)の電磁波を出力
する。12は電磁波を伝送する同軸ケーブルで、図2に
示すように銅あるいはアルミ製の金属中空管13の内部
に、電磁波伝送用の金属線14がポリエチレン等の電気
絶縁材15によって非接触に保たれて成る。金属中空管
13は電磁波シールならびにアース作用目的のものであ
る。金属線14の先端部には、伝送される電磁波周波数
の1/4波長に相当する長さの棒状金属体により構成し
たアンテナ16が接続されている。同軸ケーブル12の
アンテナ16とは反対側は発振器11に接続され、発振
器11からの電磁波を同軸ケーブル12の金属線14を
通してアンテナ16側に伝送するようになっている。
[Embodiment] The present invention will be explained below according to the illustrated embodiment. In FIG. 1, 11 is an oscillator, and the frequency
or above (preferably 900 MHz or above). Reference numeral 12 denotes a coaxial cable for transmitting electromagnetic waves, and as shown in FIG. 2, a metal wire 14 for transmitting electromagnetic waves is held in a non-contact manner inside a metal hollow tube 13 made of copper or aluminum by an electrical insulating material 15 such as polyethylene. It sag. The metal hollow tube 13 is used for electromagnetic shielding and grounding purposes. Connected to the tip of the metal wire 14 is an antenna 16 made of a rod-shaped metal body with a length corresponding to 1/4 wavelength of the electromagnetic wave frequency to be transmitted. The side of the coaxial cable 12 opposite to the antenna 16 is connected to the oscillator 11, and electromagnetic waves from the oscillator 11 are transmitted to the antenna 16 side through the metal wire 14 of the coaxial cable 12.

【0009】19は密閉された金属容器で、金属容器1
9内に誘電加熱される液体20がパイプ21を介して供
給され、加熱後液体20はドレン口22より外部へ排出
されるようになっている。金属容器19の底部には、図
2に示すように外側の小孔部25と内側の大孔部26と
を階段状に有するアンテナ挿通孔27が設けられ、小孔
部25に同軸ケーブル12の金属中空管13の先端部が
内嵌されている。アンテナ16は大孔部26側に突出さ
れ、石英、テフロン等の電磁波吸収性の低い材質で構成
した中実の柱状体31の軸芯中心部に凹孔部29を介し
て差し込まれている。柱状体31のアンテナ16側は大
孔部26に内嵌され、柱状体31は金属容器19の底部
に垂直に設置されている。この場合、柱状体31の先端
部は容器19内に注入した液体20の液面より下方に位
置している。柱状体31と金属容器19の底部との間に
、シール用のOリング33,34 が大孔部26の側面
と底面とに対応して設けられている。また、容器19の
底部と同軸ケーブル12の金属中空管13はその先端部
がアースとの取合いで溶接固着34されている。
19 is a sealed metal container, metal container 1
A liquid 20 to be dielectrically heated is supplied into the interior of the pipe 9 through a pipe 21, and after heating, the liquid 20 is discharged to the outside from a drain port 22. An antenna insertion hole 27 is provided at the bottom of the metal container 19, as shown in FIG. The tip of the metal hollow tube 13 is fitted inside. The antenna 16 protrudes toward the large hole 26 and is inserted through the recessed hole 29 into the center of the axis of a solid columnar body 31 made of a material with low electromagnetic wave absorption such as quartz or Teflon. The antenna 16 side of the columnar body 31 is fitted into the large hole 26, and the columnar body 31 is installed vertically at the bottom of the metal container 19. In this case, the tip of the columnar body 31 is located below the level of the liquid 20 injected into the container 19. O-rings 33 and 34 for sealing are provided between the columnar body 31 and the bottom of the metal container 19 so as to correspond to the side and bottom surfaces of the large hole 26. Further, the bottom of the container 19 and the tip of the metal hollow tube 13 of the coaxial cable 12 are welded and fixed 34 to earth.

【0010】37は攪拌機で、容器19上方の回転モー
タ38によって、攪拌翼39が柱状体31の周囲を回る
ように回転軸40廻りに回転駆動されるようになってい
る。尚、柱状体31の断面径は挿入されたアンテナ16
の軸芯を中心にして半径方向に対し、伝送される電磁波
の1/4波長以上の長さをとることが望ましい。垂直方
向の長さ(高さ) は限定された長さの規定は不要であ
る。
Reference numeral 37 denotes a stirrer, and a stirring blade 39 is driven to rotate around a rotating shaft 40 by a rotary motor 38 located above the container 19 so as to rotate around the columnar body 31. Note that the cross-sectional diameter of the columnar body 31 is the same as that of the inserted antenna 16.
It is desirable that the length be at least 1/4 wavelength of the electromagnetic wave to be transmitted in the radial direction with the axis of the wave as the center. There is no need to specify a limited length for the vertical length (height).

【0011】図3は他の実施例を示し、攪拌機37に、
柱状体31表面の付着物を掻き落とすためのスクレーパ
ー42を設けている。即ち、柱状体31の表面に液体2
0中の析出物、例えば液体20が海水の場合は塩類或い
は糖類等が付着し、この付着物によって電磁波放射の効
率が低下するので、攪拌翼39の回転と共にスクレーパ
ー42を回転させて、付着物を柱状体31表面から落と
すようにしたものである。その他の点は前記実施例と同
様の構成である。
FIG. 3 shows another embodiment, in which the stirrer 37 includes:
A scraper 42 is provided to scrape off deposits on the surface of the columnar body 31. That is, the liquid 2 is on the surface of the columnar body 31.
For example, if the liquid 20 is seawater, precipitates such as salts or sugars will adhere to the liquid 20, and the efficiency of electromagnetic radiation will decrease due to these deposits. is dropped from the surface of the columnar body 31. In other respects, the configuration is similar to that of the previous embodiment.

【0012】なお、金属容器(19)内の液体が加圧さ
れたり、容器深さが深くなることによる水圧等の加圧状
態下では、柱状体(31)は、前記実施例の如く耐圧強
度を有する中実のものが必要となるが、加圧力がない液
体雰囲気では、柱状体(31)として図4に示す如く先
端が閉じられた中空のものを用いることが可能であり、
この場合、柱状体(31)の内部に空気またはシリコン
オイルなどの電磁波吸収性の低い液体を封入するように
すればよい。
[0012] In addition, under pressurized conditions such as water pressure caused by pressurizing the liquid in the metal container (19) or increasing the depth of the container, the columnar body (31) has a pressure-resistant strength as in the above embodiment. However, in a liquid atmosphere where there is no pressurizing force, it is possible to use a hollow columnar body (31) with a closed end as shown in FIG.
In this case, air or a liquid with low electromagnetic wave absorption such as silicone oil may be sealed inside the columnar body (31).

【0013】また、前記柱状体(31)は中実あるいは
中空のいずれの場合でも、図5及び図6に示す如く柱状
体表面にアルミ箔等の環状または四角状の金属テープ(
42)を張り付け、これにより電磁波を極部的あるいは
一定方向に放射させるようにしてもよい。この場合、柱
状体(31)からの電磁波放射を受けて極部的又は方向
的に液体(20)が加熱され、その結果、加熱した液体
(20)の上昇流を制御し、前記攪拌機(37)がなく
ても、それに等しい攪拌効果が期待できるようになる。
In addition, whether the columnar body (31) is solid or hollow, as shown in FIGS.
42) may be attached so that the electromagnetic waves are radiated locally or in a fixed direction. In this case, the liquid (20) is heated locally or directionally by receiving electromagnetic radiation from the columnar body (31), and as a result, the upward flow of the heated liquid (20) is controlled, and the agitator (37) ), the same stirring effect can be expected.

【0014】[0014]

【発明の効果】本発明によれば、アンテナ16に套嵌し
た柱状体31の全面から液体20中に電磁波を照射でき
るため、電磁波による照射領域を極力拡げることができ
、液体の加熱効率を大幅に向上し得る。しかも、電磁波
は液体下部より照射されて、液体20中に吸収され、容
器19の空間部への照射はなくなるため、容器19の空
間部への電磁波シールが不要になり、それだけシール構
造が簡単になる。
According to the present invention, since electromagnetic waves can be irradiated into the liquid 20 from the entire surface of the columnar body 31 fitted over the antenna 16, the area irradiated by the electromagnetic waves can be expanded as much as possible, and the heating efficiency of the liquid can be greatly increased. can be improved. Moreover, the electromagnetic waves are irradiated from the lower part of the liquid and absorbed into the liquid 20, and the space in the container 19 is no longer irradiated with electromagnetic waves, so there is no need to seal the space in the container 19 with electromagnetic waves, and the sealing structure is simplified accordingly. Become.

【0015】また、アンテナ16に柱状体31が套嵌さ
れ、柱状体31のアンテナ16側が大孔部26に内嵌さ
れているので、電磁波を導入するための容器19の開口
部を小さくでき、またシール材としてアルミナ等の電磁
波吸収性が低くかつ塑性変形が小さい材質のものを使用
することが可能になり、シール材の高圧による塑性変形
乃至シール機能の劣化を効果的に防止できる。
Furthermore, since the columnar body 31 is fitted over the antenna 16 and the antenna 16 side of the columnar body 31 is fitted into the large hole 26, the opening of the container 19 for introducing electromagnetic waves can be made small; Further, it is possible to use a material such as alumina which has low electromagnetic wave absorption and small plastic deformation as the sealing material, and it is possible to effectively prevent plastic deformation of the sealing material or deterioration of the sealing function due to high pressure.

【0016】また、攪拌翼39が前記柱状体31の周囲
を回るように回転駆動される攪拌機37が設けられてい
るので、攪拌機37によって加熱される液体20を攪拌
して、より一層加熱効率を高めることができる。
Furthermore, since a stirrer 37 is provided, the stirring blades 39 are driven to rotate around the columnar body 31, so that the liquid 20 heated by the stirrer 37 is stirred, thereby further improving the heating efficiency. can be increased.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の一実施例を示す側面図である。FIG. 1 is a side view showing one embodiment of the present invention.

【図2】要部の側断面図である。FIG. 2 is a side sectional view of essential parts.

【図3】他の実施例を示す側面図である。FIG. 3 is a side view showing another embodiment.

【図4】他の実施例を示す側断面図である。FIG. 4 is a side sectional view showing another embodiment.

【図5】他の従来例を示す側面図である。FIG. 5 is a side view showing another conventional example.

【図6】他の実施例を示す側面図である。FIG. 6 is a side view showing another embodiment.

【図7】従来例を示す側面図である。FIG. 7 is a side view showing a conventional example.

【図8】他の従来例を示す側面図である。FIG. 8 is a side view showing another conventional example.

【符号の説明】[Explanation of symbols]

12  同軸ケーブル 16  アンテナ 19  金属容器 20  液体 25  小孔部 26  大孔部 27  挿通孔 31  柱状体 37  攪拌機 39  攪拌翼 12 Coaxial cable 16 Antenna 19 Metal container 20 Liquid 25 Small hole part 26 Large hole 27 Insertion hole 31 Column body 37 Stirrer 39 Stirring blade

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  金属容器(19)内に電磁波を照射し
て、金属容器(19)内の液体(20)を電磁波にて加
熱するようにした電磁波による液体加熱装置において、
電磁波を伝送する同軸ケーブル(12)の先端にアンテ
ナ(16)が設けられ、金属容器(19)の底壁に、外
側の小孔部(25)と内側の大孔部(26)とを階段状
に有するアンテナ挿通孔(27)が設けられ、前記アン
テナ(16)がアンテナ挿通孔(27)に挿通されると
共に、アンテナ(16)に電磁波吸収性の低い柱状体(
31)が套嵌され、該柱状体(31)のアンテナ(16
)側が前記大孔部(26)に内嵌され、柱状体(31)
が金属容器(19)の液体(20)内に浸漬されている
ことを特徴とする電磁波による液体加熱装置。
1. A liquid heating device using electromagnetic waves that heats a liquid (20) in the metal container (19) with electromagnetic waves by irradiating electromagnetic waves into the metal container (19), comprising:
An antenna (16) is provided at the tip of a coaxial cable (12) that transmits electromagnetic waves, and a staircase is installed between the outer small hole (25) and the inner large hole (26) on the bottom wall of the metal container (19). An antenna insertion hole (27) having a shape is provided, and the antenna (16) is inserted into the antenna insertion hole (27).
31) is fitted onto the antenna (16) of the columnar body (31).
) side is fitted into the large hole (26), and the columnar body (31)
A liquid heating device using electromagnetic waves, characterized in that the liquid heating device is immersed in a liquid (20) in a metal container (19).
【請求項2】  攪拌翼(39)が前記中実柱状体(3
1)の周囲を回るように回転駆動される攪拌機(37)
が設けられている第1項記載の電磁波による液体加熱装
置。
2. A stirring blade (39) is connected to the solid columnar body (3).
1) A stirrer (37) that is driven to rotate around the
2. The liquid heating device using electromagnetic waves according to claim 1, wherein the liquid heating device is provided with an electromagnetic wave.
JP3022293A 1991-02-15 1991-02-15 Fluid heating device by electromagnetic wave Pending JPH04260751A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3022293A JPH04260751A (en) 1991-02-15 1991-02-15 Fluid heating device by electromagnetic wave

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3022293A JPH04260751A (en) 1991-02-15 1991-02-15 Fluid heating device by electromagnetic wave

Publications (1)

Publication Number Publication Date
JPH04260751A true JPH04260751A (en) 1992-09-16

Family

ID=12078702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3022293A Pending JPH04260751A (en) 1991-02-15 1991-02-15 Fluid heating device by electromagnetic wave

Country Status (1)

Country Link
JP (1) JPH04260751A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11998035B2 (en) 2017-12-31 2024-06-04 Evertron Holdings Pte Ltd Moisture control apparatus and moisture control method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11998035B2 (en) 2017-12-31 2024-06-04 Evertron Holdings Pte Ltd Moisture control apparatus and moisture control method

Similar Documents

Publication Publication Date Title
BRPI0701638B1 (en) microwave assisted reactor and system
JPH0749175A (en) Equipment conducting microwave heating in cylindrical vessel
JP2006272055A (en) Micro-wave chemical reaction apparatus
JP5461758B2 (en) Microwave chemical reaction vessel and equipment
EP0306563B1 (en) Apparatus for drying material which is mixed with a solvent
CN108423319B (en) Capsule for thermal decomposition system
JPH04260751A (en) Fluid heating device by electromagnetic wave
EP0307003A2 (en) Electromagnetic energy heating
JP7268854B2 (en) Microwave processing device, microwave processing method and chemical reaction method
JPH0572092U (en) Electromagnetic wave supply device to high-pressure container
KR101361648B1 (en) Waterload for absorbing high power microwave
RU2075839C1 (en) Device for microwave treatment of liquid dielectrics
JPH02206800A (en) Decontaminating method for column vessel or the like
SU1611432A1 (en) Method and apparatus for preparing liquid heterogeneous media
JP2878889B2 (en) Vacuum microwave heating and drying equipment
RU2134244C1 (en) Liquid glass production method and reactor
CN218076496U (en) Ultrasonic propolis extraction device with sufficient stirring
KR100977542B1 (en) Microwave Reactor with Cavity using Coaxial Waveguide and Method thereof
KR100453159B1 (en) Microwave tempering system using the two-frequency microwave heating
CN112969253B (en) Device for preventing radio frequency microwave leakage and use method thereof
CN211988573U (en) Large-capacity microwave chemical reaction device
CN109688653B (en) Microwave pipeline type heating rapid heating device
KR102014317B1 (en) Transformer coil coating removing apparatus
CN205953750U (en) Microwave chemistry sewage treatment plant
KR20180003026A (en) A rectangular microwave guide waterload with a button on short plate for broadband enhancement