JP2006272055A - Micro-wave chemical reaction apparatus - Google Patents

Micro-wave chemical reaction apparatus Download PDF

Info

Publication number
JP2006272055A
JP2006272055A JP2005091313A JP2005091313A JP2006272055A JP 2006272055 A JP2006272055 A JP 2006272055A JP 2005091313 A JP2005091313 A JP 2005091313A JP 2005091313 A JP2005091313 A JP 2005091313A JP 2006272055 A JP2006272055 A JP 2006272055A
Authority
JP
Japan
Prior art keywords
chemical reaction
waveguide
reaction
wave
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005091313A
Other languages
Japanese (ja)
Inventor
Tadashi Okamoto
正 岡本
Eiji Matsuo
英治 松尾
Masahiro Yasuda
昌弘 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IDX CORP
Original Assignee
IDX CORP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IDX CORP filed Critical IDX CORP
Priority to JP2005091313A priority Critical patent/JP2006272055A/en
Priority to DE602005021923T priority patent/DE602005021923D1/en
Priority to PCT/JP2005/024111 priority patent/WO2006070881A1/en
Priority to EP05844836A priority patent/EP1839741B1/en
Priority to US11/794,233 priority patent/US8138458B2/en
Publication of JP2006272055A publication Critical patent/JP2006272055A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new apparatus uniformly performing a chemical reaction of an object to be reacted at a high efficiency by flowing the object to be reacted along a central axis of a rectangular wave-guide pipe for transmitting a micro-wave of TE10 mode. <P>SOLUTION: The chemical reaction apparatus is provided with the rectangular wave-guide pipe for transmitting the micro-wave of TE10 mode; and a circulation passage 2 arranged in the wave-guide pipe for circulating the fluid reaction object 3, in which passage the chemical reaction is performed. The circulation passage 2 is made of a material for permeating the micro-wave and extends in an axial direction of the wave-guide pipe 1. It is a rectangular shape in which a side parallel to an electric field is longer than a side perpendicular to the electric field in a cross section of the circulation passage 2 and the most in a longitudinal direction is arranged near the central axis of the wave-guide pipe. The reaction object is made flowing from an upstream end of the circulation passage and the reaction object is irradiated with the micro-wave to generate the chemical reaction during flowing from a downstream end. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、マイクロ波を照射することにより化学反応を促進する化学反応装置に係り、空胴共振器を用いないで、液体、気体、粉体等の被化学反応対象を高効率でほぼ均一に加熱できるマイクロ波化学反応装置に関する。   The present invention relates to a chemical reaction apparatus that promotes a chemical reaction by irradiating a microwave, and without using a cavity resonator, a chemical reaction target such as a liquid, a gas, and a powder can be made highly efficient and almost uniform. The present invention relates to a microwave chemical reactor that can be heated.

マイクロ波は、電子レンジを始め、産業用加熱炉の熱源として広く利用されている。マイクロ波は、物質に含まれる水を加熱するだけでなく、極性を持った誘電物質に作用してこれを直接、かつ選択的に加熱できるので、従来の加熱手段のように外部から被加熱物を加熱する装置に比較して、短時間で効率よくこれを加熱できる特徴を持っている。
近年、化学反応を行わせたい物質(以下「反応対象」という)にマイクロ波を照射すると、化学反応を大幅に促進できる現象が見出され、単なる加熱装置に留まらず、短時間で化学反応を行う化学反応装置への適用が大きく開けつつある。
マイクロ波化学反応装置は、現状、殆どの装置が実験装置レベルであり、プラントへの適用はまだ未成熟で、これから開発が進められる状況にある。
化学反応実験装置には、大別して、終端に整合負荷を接続した整合導波管型、終端を短絡した短絡導波管型、および、空胴共振器を用いた空胴共振器型がある。
一般に化学反応実験は、これらの装置内に反応対象を置いて行われる。均一に化学反応を行うには、均一な電界分布が必要である。一般に物質を収容する容器は殆どが試験管やフラスコであって、これらの容器は導波管型の場合、導波管の軸方向の限定された一部に配置される。このため、通常、効率が低くなるという問題を抱えている。整合導波管型の化学反応実験装置としては、特許文献1,特許文献2に記載されたものが知られている。短絡導波管型の化学反応実験装置は、整合導波管型の無反射終端器の部分を短絡器に置き換えたもので、整合導波管型が進行波のエネルギーしか利用できないのに比し、短絡型では反射波のエネルギーも利用できるので効率が高くなるが、効率を上げるために反応対象の近傍で定在波を最大にする必要がある。そのため、短絡位置を調整しなければならないので、使用上、手数がかかるという問題を持っている。空胴型は、マイクロ波を空胴壁で多重反射させるので、その分、マイクロ波の吸収が高まり、結果として効率が高くなるが、同調を取る必要があって、それだけ装置が複雑となり、これも使用上、手数がかかるという欠陥がある。空胴型で、特にマルチモードを利用する装置では、必ずしも同調を取る必要はないが、マイクロ波が励起される空間内の電磁界の分布に山と谷が発生し、これを平均化するために、ターンテーブルの上に反応対象を載せて移動させながらマイクロ波を照射したり、マイクロ波が励起されている空間の一部にスタラーと呼ばれる回転反射板を置いて均一化を図ったり、空間内にらせん状の細管を設けてその中に反応対象を流すことにより均一化を図る等の手法を用いている。いずれも、それだけ装置が複雑になるという問題がある。シングルモードの空胴を用いる場合、電界分布が比較的均一になるという利点を持っているが、同調が必須で、同様に機構が複雑なるだけでなく使用上も手数がかかるという欠点がある。
特開2002−79078号公報 特開2005−13901号公報
Microwaves are widely used as a heat source for industrial heating furnaces including microwave ovens. Microwave not only heats water contained in a substance, but also acts on a dielectric material with polarity to directly and selectively heat it, so that the object to be heated from the outside like conventional heating means Compared to a device that heats, it has the feature that it can be heated efficiently in a short time.
In recent years, when a substance to be subjected to a chemical reaction (hereinafter referred to as “reaction target”) is irradiated with microwaves, a phenomenon that can greatly accelerate the chemical reaction has been found, and the chemical reaction is not limited to a simple heating device. The application to the chemical reaction apparatus to perform is opening up greatly.
Currently, most microwave chemical reaction devices are at the experimental equipment level, and their application to plants is still immature, and development is now underway.
Chemical reaction experimental devices are roughly classified into a matching waveguide type in which a matching load is connected to the terminal, a short-circuited waveguide type in which the terminal is short-circuited, and a cavity resonator type using a cavity resonator.
In general, a chemical reaction experiment is performed by placing a reaction object in these apparatuses. In order to perform a chemical reaction uniformly, a uniform electric field distribution is required. In general, most of the containers for containing substances are test tubes and flasks. In the case of a waveguide type, these containers are arranged in a limited part in the axial direction of the waveguide. For this reason, there is usually a problem that efficiency is lowered. As the matching waveguide type chemical reaction experimental apparatus, those described in Patent Document 1 and Patent Document 2 are known. The short-waveguide-type chemical reaction experimental device is a device that replaces the matching-waveguide-type non-reflective terminator with a short-circuit, compared to the fact that the matched-waveguide-type can only use traveling wave energy. In the short-circuit type, since the energy of the reflected wave can be used, the efficiency increases. However, in order to increase the efficiency, it is necessary to maximize the standing wave in the vicinity of the reaction target. For this reason, since the short-circuit position must be adjusted, there is a problem in that it is troublesome in use. The cavity type multi-reflects microwaves on the cavity wall, so that the absorption of microwaves is increased, resulting in higher efficiency, but it is necessary to be tuned. However, there is a defect that it takes time to use. It is not always necessary to tune in a cavity type device that uses multi-mode, but in order to average the peaks and valleys in the electromagnetic field distribution in the space where microwaves are excited. In addition, microwaves are irradiated while moving the reaction target on the turntable, and a rotating reflector called a stirrer is placed in a part of the space where the microwaves are excited to equalize the space. A method is used in which a spiral thin tube is provided in the inside and the reaction target is made to flow in the tube to make it uniform. In either case, there is a problem that the apparatus becomes complicated accordingly. When a single mode cavity is used, there is an advantage that the electric field distribution is relatively uniform. However, tuning is essential, and there is a disadvantage in that not only the mechanism is complicated but also the use is troublesome.
JP 2002-79078 A JP-A-2005-13901

この発明は、短絡導波管型や空胴共振器型の高効率特性と、整合導波管型の簡便さを合わせ持ち、特にプラントに適する、構造が単純で、使用上、簡便であり、高効率の化学反応装置を提供することを目的としている。   This invention combines the high efficiency characteristics of a short-circuited waveguide type and a cavity resonator type with the simplicity of a matching waveguide type, and is particularly suitable for a plant, with a simple structure and simple use. The object is to provide a highly efficient chemical reaction apparatus.

請求項1に記載された発明においては、上記課題を解決するため、方形導波管内に伝送されるTE01の電界を、この導波管の中に配設される流通路に流れる反応対象に作用させ、その化学反応を促進する。流通路は、断面において電界に平行な辺が電界に垂直な辺より長い長方形状とし、長さ方向の大半が導波管の中心軸付近に位置するように配置する。   In the invention described in claim 1, in order to solve the above-described problem, the electric field of TE01 transmitted in the rectangular waveguide acts on the reaction target flowing in the flow path disposed in the waveguide. And promote the chemical reaction. The flow path has a rectangular shape in which the side parallel to the electric field is longer than the side perpendicular to the electric field in the cross section, and is arranged so that most of the length direction is located near the central axis of the waveguide.

請求項2に記載された発明は、請求項1に記載のマイクロ波化学反応装置において、導波管の短絡部を貫通して流通路を導波管から導出することにより、化学反応が進んだ反応対象を電波漏れを防ぎながら安全に取り出す手段を提供する。   In the microwave chemical reaction device according to the first aspect, the chemical reaction proceeds in the microwave chemical reaction device according to the first aspect by passing the short-circuit portion of the waveguide and leading the flow path out of the waveguide. Provide a means for safely extracting reaction targets while preventing radio wave leakage.

請求項3に記載された発明は、請求項1または2に記載のマイクロ波化学反応装置において、反応対象の流通路を導波管内の少なくとも一部を上方に開放し、かつ化学反応によって気化したガスを導波管の外部に排出するための排気装置を付設する構成を採用する。   According to a third aspect of the present invention, in the microwave chemical reaction device according to the first or second aspect, the flow path to be reacted is vaporized by a chemical reaction with at least a part of the waveguide opened upward. A configuration is employed in which an exhaust device for exhausting the gas to the outside of the waveguide is attached.

請求項4および5に記載された発明は、請求項1または2に記載のマイクロ波化学反応装置において、流通路の下流部分において反応対象を機械的に吸引し、または押し流すための吸引装置または送出装置を付設する構成を採用する。   The invention described in claims 4 and 5 is the microwave chemical reaction device according to claim 1 or 2, wherein a suction device or a delivery device for mechanically sucking or forcing the reaction object in the downstream portion of the flow path. A configuration in which a device is attached is adopted.

請求項1に記載された発明においては、反応対象の化学反応をほぼ均一に進行させるとともに、特に反応対象を流す流通路の長さが十分長いときに伝送されるマイクロ波の殆どを吸収できるようにした。同調を取ることなく、高効率でほぼ均一な化学反応を促進するマイクロ波化学反応装置を提供できる。   In the first aspect of the present invention, the chemical reaction of the reaction target is allowed to proceed substantially uniformly, and most of the microwaves transmitted particularly when the length of the flow path through which the reaction target flows is sufficiently long can be absorbed. I made it. It is possible to provide a microwave chemical reaction apparatus that promotes an almost uniform chemical reaction with high efficiency without synchronization.

請求項2に記載された発明においては、殆ど電波漏れを生じない簡易な装置を提供できる。   According to the second aspect of the present invention, it is possible to provide a simple device that hardly causes radio wave leakage.

請求項3に記載された発明においては、不要な反応生成物を効率よく除去でき、それによって反応をより効率よく進行させることができる。   In the invention described in claim 3, unnecessary reaction products can be efficiently removed, and thereby the reaction can proceed more efficiently.

請求項4および5に記載された発明においては、化学反応によって粘性が増加することによる反応対象の流れの滞留を是正し、停滞させることなく反応対象を流出させることができる。   In the inventions described in claims 4 and 5, the retention of the flow of the reaction object due to the increase in viscosity due to the chemical reaction is corrected, and the reaction object can be allowed to flow out without stagnation.

図面を参照してこの発明の一実施形態を説明する。図1は本発明の化学反応装置の基本構造を示す側面図、図2は図1におけるII−II断面図、図3は図1におけるIII−III断面図、図4は図1におけるIV−IV断面図、図5は図1におけるV−V断面図、図6は他の実施形態の化学反応装置を示す断面図、図7は反応対象の流通路の他の実施形態を示す断面図、図8,図9は反応対象の送出装置の実施形態を示す説明図である。   An embodiment of the present invention will be described with reference to the drawings. 1 is a side view showing the basic structure of the chemical reaction apparatus of the present invention, FIG. 2 is a sectional view taken along line II-II in FIG. 1, FIG. 3 is a sectional view taken along line III-III in FIG. FIG. 5 is a cross-sectional view taken along the line V-V in FIG. 1, FIG. 6 is a cross-sectional view showing a chemical reaction apparatus according to another embodiment, and FIG. 7 is a cross-sectional view showing another embodiment of the flow path to be reacted. 8 and 9 are explanatory views showing an embodiment of a delivery device to be reacted.

図3において、方形導波管1のほぼ中心に方形管状の流通路2があり、その中に反応対象3が流れている。流通路2は、マイクロ波の吸収が少ない誘電体で構成され、方形導波管1の短辺方向(左右方向)に長く長辺方向(上下方向)に短い方形断面を有する。方形導波管1内に何も挿入しない場合に、その内部に伝送される電磁波モードはTE10であり、このモードの電界は方形導波管1の短辺方向(左右方向)に向かい、強度は長辺方向(上下方向)に対して正弦波状に変化し、導波管1の側壁1c,1dでゼロ、中心部で極大値をとる。左右方向に対して強度は変化しない。方形導波管1内に誘電体等が挿入された場合、通常、電界の分布は若干変化するが、図3に示される配置では、誘電体である反応対象3の上下の境界面、すなわち流通路2の上下面が電界と平行であるから、誘電体内外の電界の大きさは同じである。この境界条件を満たす結果、誘電体を挿入した場合、電界に若干の変化は生じるが、電磁解析を行ってみると、誘電体である反応対象3の上下方向の厚さがあまり大きくない限り、全体として、誘電体内部の電界は、誘電体を挿入しない場合の電界と大きい差を生じないことが判る。反応対象3内の電界分布はほぼ均一であるので、均一な化学反応を期待できる点が重要である。言うまでもなく、境界条件が不適切な場合は、誘電体内外の電界分布が大きく乱れ、誘電体内の電界の強度も低くなる。   In FIG. 3, there is a rectangular tubular flow passage 2 substantially at the center of a rectangular waveguide 1, and a reaction object 3 flows therein. The flow path 2 is made of a dielectric material that absorbs less microwaves, and has a rectangular cross section that is long in the short side direction (left-right direction) of the rectangular waveguide 1 and short in the long side direction (up-down direction). When nothing is inserted into the rectangular waveguide 1, the electromagnetic wave mode transmitted therein is TE 10, the electric field of this mode is directed in the short side direction (left-right direction) of the rectangular waveguide 1, and the intensity is It changes in a sinusoidal shape with respect to the long side direction (vertical direction), and takes zero at the side walls 1c and 1d of the waveguide 1 and a maximum value at the center. The intensity does not change in the left-right direction. When a dielectric or the like is inserted into the rectangular waveguide 1, the electric field distribution usually changes slightly, but in the arrangement shown in FIG. 3, the upper and lower boundary surfaces of the reaction object 3 that is a dielectric, that is, the flow Since the upper and lower surfaces of the path 2 are parallel to the electric field, the magnitude of the electric field inside and outside the dielectric is the same. As a result of satisfying this boundary condition, when a dielectric is inserted, a slight change occurs in the electric field. However, when electromagnetic analysis is performed, unless the vertical thickness of the reaction target 3 that is a dielectric is too large, As a whole, it can be seen that the electric field inside the dielectric does not make a large difference from the electric field without inserting the dielectric. Since the electric field distribution in the reaction target 3 is almost uniform, it is important that a uniform chemical reaction can be expected. Needless to say, when the boundary condition is inappropriate, the electric field distribution inside and outside the dielectric body is greatly disturbed, and the strength of the electric field inside the dielectric body is also lowered.

この結果、反応対象3内部のマイクロ波電界の強さは、図1の左右方向でほぼ均一となる。反応対象3内部のマイクロ波電界の強さは上下方向で正弦波状に変化するが、反応対象3が極大値の近傍である導波管1のほぼ中央に位置するため、その上下方向の厚さが導波管1の上下方向寸法に比較して十分小さい場合、ほぼ均一である。   As a result, the intensity of the microwave electric field inside the reaction target 3 is substantially uniform in the left-right direction in FIG. The intensity of the microwave electric field inside the reaction target 3 changes in a sine wave shape in the vertical direction, but since the reaction target 3 is located at the approximate center of the waveguide 1 in the vicinity of the maximum value, its thickness in the vertical direction. Is substantially uniform when is sufficiently smaller than the vertical dimension of the waveguide 1.

なお、流通路2の中心は必ずしも方形導波管1の中心と一致する必要はなく、必要に応じて少し偏心させて配置してもかまわない。若干、電界強度が変化するが、偏心の程度が小さい場合、均一性はそれほど阻害されない。また流通路2の中心軸と導波管1の中心軸は必ずしも平行でなくてもかまわない。要は、流通路2の上下の側壁2c,2dが電界と平行で、軸方向に亘って、流通路2内の大部分が、電界が極大となる導波管の中心軸付近にあることである。   Note that the center of the flow path 2 does not necessarily coincide with the center of the rectangular waveguide 1, and may be slightly decentered as necessary. Although the electric field strength slightly changes, the uniformity is not so hindered when the degree of eccentricity is small. Further, the central axis of the flow path 2 and the central axis of the waveguide 1 do not necessarily have to be parallel. The point is that the upper and lower side walls 2c, 2d of the flow path 2 are parallel to the electric field, and most of the flow path 2 is in the vicinity of the central axis of the waveguide where the electric field is maximized. is there.

流通路内を流れる反応対象3は、図1、2の左方向に移動する。マイクロ波もこの方向に伝送されるので両者は互いに並進しながら下流に向かって流れる。マイクロ波の伝播速度が反応対象3の移動速度より極めて速いので、反応対象3は流れの方向に対して平均的に同じ強さのマイクロ波照射を受け、化学反応は流れの方向に均一に進行する。マイクロ波のエネルギーは、軸方向に進むにつれ反応対象3に消費され、反応対象3の流出部に達したときには殆どのエネルギーが消費されるようにする。あるいは流出部の付近に、マイクロ波を遮断し、反射する短絡板を設け、マイクロ波が反射して上流端に戻るまでに殆どのマイクロ波のエネルギーが消費されるようにしてもよい。
以上の説明は、導波管1と流通路2が直線状に伸びる場合を想定してなされているが、両者が、幾分、曲がっていても、導波管1が、流通路2を内蔵している限り、問題はない。
The reaction object 3 flowing in the flow passage moves to the left in FIGS. Since the microwaves are also transmitted in this direction, both flow toward the downstream while being translated from each other. Since the propagation speed of the microwave is much faster than the moving speed of the reaction target 3, the reaction target 3 receives microwave irradiation of the same intensity on the average in the flow direction, and the chemical reaction proceeds uniformly in the flow direction. To do. The energy of the microwave is consumed by the reaction target 3 as it advances in the axial direction, and most of the energy is consumed when it reaches the outflow portion of the reaction target 3. Alternatively, a short-circuit plate that blocks and reflects the microwave may be provided in the vicinity of the outflow portion so that most of the microwave energy is consumed before the microwave is reflected and returns to the upstream end.
The above description is made on the assumption that the waveguide 1 and the flow path 2 extend in a straight line, but the waveguide 1 has the flow path 2 built in even if both are bent somewhat. As long as you have, there is no problem.

流通路2の上流端には、流入管4,5を介して反応対象3が流入する。図示の実施形態において、流入管4,5は、断面が上下方向に扁平な長円形状をしている。このような形状の流入管だと、流通路2の上流端で反応対象3が滞留するおそれがない。しかし、流入管4,5の断面形状はこれに限定されない。流入管4,5の導波管1内に位置する部分は、通常、マイクロ波損失の少ない誘電体で作られ、一方、導波管1外に位置する部分は金属で作られるか、またはマイクロ波がカットオフの状態になるような形状の管状の金属性部品で覆われる。   The reaction object 3 flows into the upstream end of the flow passage 2 through the inflow pipes 4 and 5. In the illustrated embodiment, the inflow pipes 4 and 5 have an oval shape whose cross section is flat in the vertical direction. With the inflow pipe having such a shape, there is no possibility that the reaction object 3 stays at the upstream end of the flow passage 2. However, the cross-sectional shape of the inflow pipes 4 and 5 is not limited to this. The portion of the inflow tubes 4 and 5 located in the waveguide 1 is usually made of a dielectric material with low microwave loss, while the portion located outside the waveguide 1 is made of metal or microscopic. It is covered with a tubular metallic part shaped so that the waves are cut off.

反応対象3の流出部の一例を図5に示す。マイクロ波は反応対象と併進する間に大部分が消費され、終端部ではかなり弱くなっている。導波管1は終端部において平板状の短絡板6で短絡される。短絡板6は、中心に流通路2が貫通する方形の開口6aを持つ。マイクロ波はカットオフの状態になるので、短絡板6の厚さが適切であればマイクロ波の漏洩は、安全上まったく問題を起こさないレベルに抑えられる。短絡板6で反射されたマイクロ波は上流に向かって伝播するが、この過程でもエネルギーは反応対象に吸収されるので、上流端に達したときは問題なく微弱な値になっている。すなわち極めて効率の良い化学反応装置を提供できることを意味する。
流通路2は、短絡板6を貫通して導波管1から導出され、反応を終えた反応対象3を所要の場所に導く。
An example of the outflow part of the reaction object 3 is shown in FIG. Most of the microwave is consumed while translating with the reaction target, and it is considerably weak at the end. The waveguide 1 is short-circuited by a flat short-circuit plate 6 at the terminal end. The short-circuit plate 6 has a rectangular opening 6a through which the flow passage 2 passes. Since the microwave is cut off, if the thickness of the short-circuit plate 6 is appropriate, the leakage of the microwave can be suppressed to a level that does not cause any problem for safety. Although the microwave reflected by the short-circuit plate 6 propagates upstream, the energy is absorbed by the reaction object even in this process, and when it reaches the upstream end, it becomes a weak value without a problem. That is, it means that an extremely efficient chemical reaction apparatus can be provided.
The flow path 2 is led out from the waveguide 1 through the short-circuit plate 6, and guides the reaction target 3 that has finished the reaction to a required place.

図6は流通路2の他の実施形態を示す。この実施形態において、流通路2は、上部が開放した、深さ寸法より幅寸法が大きい溝型断面を有する。なお、境界条件の関係で底面の大部分が電界と平行になるように配置される。
化学反応では、反応水のような不要生成物が生じることが少なくない。生成された反応水は水蒸気となって流通路2の上部から導波管1内に放出される。導波管1内の水蒸気等のガスを排出するために、短絡板6あるいは、例えば導波管上壁1cを貫通するように排気管(図示せず)を設け、排気ポンプにつないで吸引する。排気管やその貫通部は、マイクロ波に対して遮断条件を満足するように設計される。
FIG. 6 shows another embodiment of the flow passage 2. In this embodiment, the flow passage 2 has a groove-type cross section having an open top and a width dimension larger than a depth dimension. Note that most of the bottom surface is arranged in parallel with the electric field due to the boundary condition.
In chemical reactions, unnecessary products such as reaction water often occur. The generated reaction water becomes water vapor and is discharged into the waveguide 1 from the upper part of the flow path 2. In order to discharge gas such as water vapor in the waveguide 1, an exhaust pipe (not shown) is provided so as to penetrate the short-circuit plate 6 or, for example, the waveguide upper wall 1 c, and is connected to an exhaust pump for suction. . The exhaust pipe and its penetrating part are designed so as to satisfy the cutoff condition for microwaves.

化学反応が進むと粘性が増す場合が少なくない。その場合、反応対象の流れに滞留が起きる可能性があるので、強制的に流れを促進、向上させる必要が生じる。導波管1と流通路2を傾斜するように配置するのもひとつの選択肢であるが、それだけでは不十分の場合が多い。
滞留が起きると液面が上昇する。そこで図7に示すように、溝型の流通路2の上部を蓋7で覆うようにする。これによって、流通路2の下流側(矢印先端側)端部は、上下、左右が閉じた管状になる。下流端で反応対象が一体となって流出するようにポンプで吸引する。うまくバランスをとれば、このような方法で粘性が増した反応対象を取り出すことができる。
In many cases, the viscosity increases as the chemical reaction progresses. In that case, there is a possibility that stagnation occurs in the flow of the reaction target, so that it is necessary to forcibly promote and improve the flow. Arranging the waveguide 1 and the flow path 2 so as to be inclined is one option, but it is often insufficient.
When stagnation occurs, the liquid level rises. Therefore, as shown in FIG. 7, the upper part of the groove-type flow passage 2 is covered with a lid 7. As a result, the downstream side (arrow tip side) end of the flow passage 2 has a tubular shape that is closed vertically and horizontally. Suction is performed by a pump so that the reaction target is integrally discharged at the downstream end. If balanced well, the reaction target having increased viscosity can be taken out by such a method.

図8,9は反応対象が本来流れるべき速度で流れるようにする他の実施例である。粘性の増した反応対象3は、送出装置8により、へら状の羽根板で機械的に押し流される。図8では、送出装置8は、複数の水車9で構成される。また、図9では、送出装置8は、プーリーに掛け回された羽根板付きの無端ベルト10で構成される。押し出された反応対象3は、収容槽11に流入する。無端ベルト10は、導波管1の短絡板6を貫通するが、開口6aがマイクロ波をカットオフ状態にできる程度の大きさに設定されるので、短絡板6の厚さを実効的に厚くすれば、電磁波漏洩の問題を生じない。これらの実施例のポイントは機械的に反応対象を押し出す送出装置8を付設することである。送出装置8は、少なくとも導波管1内に位置する大部分はマイクロ波損失が少なく誘電率も小さい誘電体で構成される。送出装置8が付設される導波管1の下流側端部付近では、マイクロ波がかなり弱くなっているので、例えば、羽根板やその主要支持機構を石英で構成し、軸受けには一部、金属を使用してもかまわない。温度はかなり上がるので、耐熱性、耐磨耗性などについてはそれなりの工夫を必要とする。   8 and 9 show another embodiment in which the reaction object flows at a speed that should flow. The reaction target 3 having increased viscosity is mechanically swept away by the delivery device 8 with a spatula blade. In FIG. 8, the delivery device 8 includes a plurality of water wheels 9. Moreover, in FIG. 9, the delivery apparatus 8 is comprised with the endless belt 10 with the blade board hung around the pulley. The extruded reaction target 3 flows into the storage tank 11. The endless belt 10 passes through the short-circuit plate 6 of the waveguide 1, but since the opening 6a is set to a size that can cut off the microwave, the thickness of the short-circuit plate 6 is effectively increased. If this is the case, the problem of electromagnetic wave leakage does not occur. The point of these embodiments is to attach a delivery device 8 that mechanically pushes out a reaction target. The delivery device 8 is composed of a dielectric material having a low microwave loss and a low dielectric constant, at least most of which is located in the waveguide 1. In the vicinity of the downstream end portion of the waveguide 1 to which the delivery device 8 is attached, the microwave is considerably weak. For example, the blade plate and its main support mechanism are made of quartz, and the bearing is partially Metal may be used. Since the temperature rises considerably, a certain amount of ingenuity is required for heat resistance and wear resistance.

コンパクトな化学反応装置を構成できるので、必要に応じこれを複数個並列に配列することで、より大量の反応対象の処理を行えるようにシステムアップしても、大きな設置スペースを要しない。   Since a compact chemical reaction apparatus can be configured, a large installation space is not required even if the system is upgraded so that a larger amount of reaction objects can be processed by arranging a plurality of them in parallel as necessary.

この発明は、比較的大量の流体の化学反応を工業的に効率よく行うための化学反応装置に利用できる。   The present invention can be used in a chemical reaction apparatus for industrially efficiently performing a chemical reaction of a relatively large amount of fluid.

本発明の化学反応装置の基本構造を示す側面図である。It is a side view which shows the basic structure of the chemical reaction apparatus of this invention. 図1におけるII−II断面図である。It is II-II sectional drawing in FIG. 図1におけるIII−III断面図である。It is III-III sectional drawing in FIG. 図1におけるIV−IV断面図である。It is IV-IV sectional drawing in FIG. 図1におけるV−V断面図である。It is VV sectional drawing in FIG. 他の実施形態の化学反応装置を示す断面図である。It is sectional drawing which shows the chemical reaction apparatus of other embodiment. 反応対象の流通路の他の実施形態を示す断面図である。It is sectional drawing which shows other embodiment of the flow path of reaction object. 反応対象の送出装置の実施形態を示す説明図である。It is explanatory drawing which shows embodiment of the delivery apparatus of reaction object. 反応対象の送出装置の他の実施形態を示す説明図である。It is explanatory drawing which shows other embodiment of the delivery apparatus of reaction object.

符号の説明Explanation of symbols

1 方形導波管
2 流通路
3 反応対象
4 流入管
5 流入管
6 短絡板
6a 開口
7 蓋
8 送出装置
9 水車
10 無端ベルト
11 収容槽
DESCRIPTION OF SYMBOLS 1 Rectangular waveguide 2 Flow path 3 Reaction object 4 Inflow pipe 5 Inflow pipe 6 Short circuit board 6a Opening 7 Lid 8 Feeding device 9 Water wheel 10 Endless belt 11 Storage tank

Claims (5)

TE10モードのマイクロ波を伝送する方形導波管と、化学反応を行わせる流動性の反応対象を流通させるために前記導波管内に配置される流通路とを具備し、
前記流通路は、マイクロ波を透過させる物質で作られ、導波管の軸方向に延伸し、軸に直角な断面において電界に平行な辺が電界に垂直な辺より長い長方形状で、長さ方向の大半が導波管の中心軸付近に位置するように配置され、
前記流通路の上流端から反応対象を流し込み、下流端から流出させる間に、反応対象にマイクロ波を照射して化学反応を起こさせることを特徴とするマイクロ波化学反応装置。
A rectangular waveguide that transmits TE10 mode microwaves, and a flow path that is arranged in the waveguide to circulate a fluid reaction target that causes a chemical reaction,
The flow path is made of a material that transmits microwaves, extends in the axial direction of the waveguide, has a rectangular shape with a side parallel to the electric field in a cross section perpendicular to the axis and longer than a side perpendicular to the electric field, and has a length. Arranged so that most of the direction is located near the central axis of the waveguide,
A microwave chemical reaction device that causes a chemical reaction to occur by irradiating the reaction target with microwaves while flowing the reaction target from the upstream end of the flow passage and flowing out from the downstream end.
前記流通路の下流側で、マイクロ波の漏洩が十分抑制されるように前記導波管が短絡され、この短絡部を貫通して前記流通路が前記導波管から導出されることを特徴とする請求項1に記載のマイクロ波化学反応装置。   The waveguide is short-circuited on the downstream side of the flow path so that microwave leakage is sufficiently suppressed, and the flow path is led out from the waveguide through the short-circuit portion. The microwave chemical reaction apparatus according to claim 1. 前記流通路が、前記導波管内の少なくとも一部において上方に開放しており、前記導波管には、化学反応によって前記流通路内の反応対象から気化したガスを外部に排出するための排気装置が付設されていることを特徴とする請求項1または2に記載の化学反応装置。   The flow path is opened upward in at least a part of the waveguide, and the waveguide is exhausted to discharge gas vaporized from a reaction target in the flow path to the outside by a chemical reaction. The chemical reaction apparatus according to claim 1, wherein an apparatus is attached. 前記流通路は、少なくとも下流側において方形管状に構成され、下流端には、反応対象を吸引する吸引装置が付設されることを特徴とする請求項1ないし3のいずれかに記載の化学反応装置。   The chemical reaction device according to any one of claims 1 to 3, wherein the flow passage is formed in a rectangular tube shape at least on the downstream side, and a suction device for sucking a reaction target is attached to the downstream end. . 前記流通路の下流側には、下流に向けて反応対象を機械的に押し流すためのマイクロ波低損失材料で構成された送出装置が付設されることを特徴とする請求項1ないし3のいずれかに記載の化学反応装置。   4. A delivery device made of a microwave low-loss material for mechanically pushing the reaction target downstream is attached to the downstream side of the flow passage. The chemical reaction apparatus according to 1.
JP2005091313A 2004-12-28 2005-03-28 Micro-wave chemical reaction apparatus Pending JP2006272055A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2005091313A JP2006272055A (en) 2005-03-28 2005-03-28 Micro-wave chemical reaction apparatus
DE602005021923T DE602005021923D1 (en) 2004-12-28 2005-12-28 DEVICE FOR CHEMICAL REACTIONS USING MICROWAVES
PCT/JP2005/024111 WO2006070881A1 (en) 2004-12-28 2005-12-28 Micro wave chemical reaction device
EP05844836A EP1839741B1 (en) 2004-12-28 2005-12-28 Micro wave chemical reaction device
US11/794,233 US8138458B2 (en) 2004-12-28 2005-12-28 Microwave chemical reaction device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005091313A JP2006272055A (en) 2005-03-28 2005-03-28 Micro-wave chemical reaction apparatus

Publications (1)

Publication Number Publication Date
JP2006272055A true JP2006272055A (en) 2006-10-12

Family

ID=37207316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005091313A Pending JP2006272055A (en) 2004-12-28 2005-03-28 Micro-wave chemical reaction apparatus

Country Status (1)

Country Link
JP (1) JP2006272055A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012531384A (en) * 2009-06-30 2012-12-10 クラリアント・ファイナンス・(ビーブイアイ)・リミテッド Continuous process for the production of esters of aromatic carboxylic acids
JP2012531450A (en) * 2009-06-30 2012-12-10 クラリアント・ファイナンス・(ビーブイアイ)・リミテッド Continuous process for acylation of organic acids with amino groups
JP2012531452A (en) * 2009-06-30 2012-12-10 クラリアント・ファイナンス・(ビーブイアイ)・リミテッド Process for the continuous production of esters of aliphatic carboxylic acids
JP2012531451A (en) * 2009-06-30 2012-12-10 クラリアント・ファイナンス・(ビーブイアイ)・リミテッド Continuous process for the preparation of aliphatic carboxylic acid amides.
JP2012533417A (en) * 2009-07-20 2012-12-27 北京思踐通科技發展有限公司 Chemical reactor and its use in chemical reactions
JP2013505275A (en) * 2009-09-22 2013-02-14 クラリアント・ファイナンス・(ビーブイアイ)・リミテッド Continuous transesterification process
JP2013107058A (en) * 2011-11-23 2013-06-06 Microwave Chemical Co Ltd Chemical reaction device
US8884040B2 (en) 2008-04-04 2014-11-11 Clariant Finance (Bvi) Limited Continuous method for producing fatty acid amides
US8974743B2 (en) 2009-06-30 2015-03-10 Clariant Finance (Bvi) Limited Device for continuously carrying out chemical reactions at high temperatures
US9039870B2 (en) 2006-10-09 2015-05-26 Clariant Finance (Bvi) Limited Method for producing alkaline (meth)acrylamides
US9221938B2 (en) 2010-12-30 2015-12-29 Clariant Finance (Bvi) Limited Polymers carrying hydroxyl groups and ester groups and method for the production thereof
US9243116B2 (en) 2010-12-30 2016-01-26 Clariant International Ltd. Method for modifying polymers comprising hydroxyl groups
US9302245B2 (en) 2009-09-22 2016-04-05 Clariant International Ltd. Apparatus for continuously carrying out heterogeneously catalyzed chemical reactions at elevated temperatures
US10091841B2 (en) 2010-09-30 2018-10-02 Pacific Microwave Technology Corp. Microwave device and flow tube used therein

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6032793A (en) * 1983-07-30 1985-02-19 Suntory Ltd Novel bruceolide derivative and its preparation
JPH01133910A (en) * 1987-06-08 1989-05-26 Cil Inc Method and apparatus for generating sulfur trioxide from fuming sulfuric acid using microwave energy

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6032793A (en) * 1983-07-30 1985-02-19 Suntory Ltd Novel bruceolide derivative and its preparation
JPH01133910A (en) * 1987-06-08 1989-05-26 Cil Inc Method and apparatus for generating sulfur trioxide from fuming sulfuric acid using microwave energy

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9039870B2 (en) 2006-10-09 2015-05-26 Clariant Finance (Bvi) Limited Method for producing alkaline (meth)acrylamides
US8884040B2 (en) 2008-04-04 2014-11-11 Clariant Finance (Bvi) Limited Continuous method for producing fatty acid amides
US8974743B2 (en) 2009-06-30 2015-03-10 Clariant Finance (Bvi) Limited Device for continuously carrying out chemical reactions at high temperatures
JP2012531450A (en) * 2009-06-30 2012-12-10 クラリアント・ファイナンス・(ビーブイアイ)・リミテッド Continuous process for acylation of organic acids with amino groups
JP2012531452A (en) * 2009-06-30 2012-12-10 クラリアント・ファイナンス・(ビーブイアイ)・リミテッド Process for the continuous production of esters of aliphatic carboxylic acids
JP2012531451A (en) * 2009-06-30 2012-12-10 クラリアント・ファイナンス・(ビーブイアイ)・リミテッド Continuous process for the preparation of aliphatic carboxylic acid amides.
JP2012531384A (en) * 2009-06-30 2012-12-10 クラリアント・ファイナンス・(ビーブイアイ)・リミテッド Continuous process for the production of esters of aromatic carboxylic acids
JP2012533417A (en) * 2009-07-20 2012-12-27 北京思踐通科技發展有限公司 Chemical reactor and its use in chemical reactions
US9000197B2 (en) 2009-09-22 2015-04-07 Clariant Finance (Bvi) Limited Continuous transesterification method
JP2013505275A (en) * 2009-09-22 2013-02-14 クラリアント・ファイナンス・(ビーブイアイ)・リミテッド Continuous transesterification process
US9302245B2 (en) 2009-09-22 2016-04-05 Clariant International Ltd. Apparatus for continuously carrying out heterogeneously catalyzed chemical reactions at elevated temperatures
US10091841B2 (en) 2010-09-30 2018-10-02 Pacific Microwave Technology Corp. Microwave device and flow tube used therein
US9221938B2 (en) 2010-12-30 2015-12-29 Clariant Finance (Bvi) Limited Polymers carrying hydroxyl groups and ester groups and method for the production thereof
US9243116B2 (en) 2010-12-30 2016-01-26 Clariant International Ltd. Method for modifying polymers comprising hydroxyl groups
JP2013107058A (en) * 2011-11-23 2013-06-06 Microwave Chemical Co Ltd Chemical reaction device

Similar Documents

Publication Publication Date Title
JP2006272055A (en) Micro-wave chemical reaction apparatus
EP1839741B1 (en) Micro wave chemical reaction device
JP4759668B2 (en) Microwave heating device
US8969768B2 (en) Applicator and apparatus for heating samples by microwave radiation
JP3717403B2 (en) Microwave sintering method and apparatus for nuclear fuel
JP5016984B2 (en) Microwave chemical reaction apparatus and method
JP5107278B2 (en) Microwave heating apparatus and heating method
JP2010184230A (en) Continuous microwave reactor and continuous microwave reaction system
JPWO2009110245A1 (en) Microwave chemical reaction apparatus and reaction method using the apparatus
JP5461758B2 (en) Microwave chemical reaction vessel and equipment
US20220161221A1 (en) Internally cooled impedance tuner for microwave pyrolysis systems
Radoiu et al. Technical advances, barriers, and solutions in microwave—assisted technology for industrial processing
US11805578B2 (en) Microwave processing equipment for continuous flow liquids
US8759074B2 (en) Device for applying electromagnetic energy to a reactive medium
JP2011249106A (en) Microwave heating device
JP2020043051A (en) Microwave processing apparatus, microwave processing method, and chemical reaction method
Sturm et al. Microwave reactor concepts: From resonant cavities to traveling fields
US20080170974A1 (en) Microwave sewage treating apparatus
CN108439766A (en) Handle the method and microwave processing equipment of oily sludge
JP2009226370A (en) Fluid treatment apparatus
KR20120060013A (en) Apparatus for treating wastewater using microwave
JP4113426B2 (en) Sample processing equipment
CN114425289A (en) Microwave reactor
KR100977544B1 (en) Microwave Reactor Using Traveling Wave and Method thereof
CN109688653B (en) Microwave pipeline type heating rapid heating device

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20080326

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Effective date: 20110127

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20111007

Free format text: JAPANESE INTERMEDIATE CODE: A02