JPH0426068B2 - - Google Patents

Info

Publication number
JPH0426068B2
JPH0426068B2 JP58104603A JP10460383A JPH0426068B2 JP H0426068 B2 JPH0426068 B2 JP H0426068B2 JP 58104603 A JP58104603 A JP 58104603A JP 10460383 A JP10460383 A JP 10460383A JP H0426068 B2 JPH0426068 B2 JP H0426068B2
Authority
JP
Japan
Prior art keywords
magnetic
coil
frequency current
frequency
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58104603A
Other languages
Japanese (ja)
Other versions
JPS59228175A (en
Inventor
Takeshi Endo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP58104603A priority Critical patent/JPS59228175A/en
Publication of JPS59228175A publication Critical patent/JPS59228175A/en
Publication of JPH0426068B2 publication Critical patent/JPH0426068B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は高周波電流成分、特に電力系統におけ
る絶縁劣化等によるコロナ放電による高周波電流
成分あるいは系統制御用高周波電流信号等の検出
装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a detection device for high frequency current components, particularly high frequency current components caused by corona discharge due to insulation deterioration in power systems, high frequency current signals for system control, etc.

商用周波の負荷電流が流れている電力系統にお
いて絶縁劣化その他により生じる高周波電流成分
を含む部分放電電流あるいは制御用の高周波電流
信号を効果的に検出するためには、負荷電流が流
れている線路に直列にリアクトルを接続してその
両端間に生じる電圧を検出することが広く行われ
ており、この電圧が周波数に比例するものであり
そして或る周波数までは周波数が高い程効率よく
信号を検出出来ることは周知である。
In order to effectively detect partial discharge currents or control high-frequency current signals that contain high-frequency current components caused by insulation deterioration or other causes in power systems where commercial-frequency load currents are flowing, it is necessary to It is widely used to connect a reactor in series and detect the voltage generated between its ends.This voltage is proportional to the frequency, and up to a certain frequency, the higher the frequency, the more efficiently the signal can be detected. This is well known.

しかしながらこのリアクトルには非常に大きな
負荷電流が流れていること、また例えば空芯コイ
ルでは一定のインダクタンスを得るには大型のコ
イルを用いなければならず、更に近接して通常配
置される金属体に電磁誘導による影響を与えると
共にそれにより高周波検出電圧が低下するという
欠点がある。これを解決するために空芯コイルの
代りに強磁性体を芯とする磁気回路を用いること
が行われているが、負荷電流による大きな起磁力
のために磁気飽和あるいは発熱等の問題があり、
いずれにしても小型のその種の信号の検出装置を
つくることが困難である。
However, a very large load current flows through this reactor, and for example, with an air-core coil, a large coil must be used to obtain a constant inductance. This has the disadvantage that it is affected by electromagnetic induction and that the high frequency detection voltage is lowered thereby. To solve this problem, a magnetic circuit with a ferromagnetic material as the core has been used instead of an air-core coil, but there are problems such as magnetic saturation and heat generation due to the large magnetomotive force caused by the load current.
In any case, it is difficult to create a small-sized detection device for such a signal.

本発明の目的は小型で極めて効率の高い電力系
統における高周波電流成分の検出装置を提供する
ことである。
An object of the present invention is to provide a small and extremely efficient detection device for high frequency current components in a power system.

本発明によれば商用周波電流成分により生じる
磁束のみを打消し、高周波電流成分による磁束の
みを生じさせるようにすることにより上記目的を
達成する。
According to the present invention, the above object is achieved by canceling only the magnetic flux generated by the commercial frequency current component and generating only the magnetic flux due to the high frequency current component.

以上図面に示す一実施例にもとづき本発明を説
明する。
The present invention will be described based on one embodiment shown in the drawings.

第1図は本発明の実施例を示す概略図であつ
て、強磁性材料よりなる第1鉄心1と、第1鉄心
1とは磁気粘性の異なる強磁性材料よりなる第2
鉄心2とを用いて磁気閉回路を構成し、これら鉄
心にコイル3,4を夫々設け、両コイルを直列減
極接続により接続して構成れている。従つて原理
的には各鉄心が漏洩磁束により飽和する電流まで
商用周波電圧が直列コイルの端子5に生じること
はない。
FIG. 1 is a schematic diagram showing an embodiment of the present invention, in which a first core 1 is made of a ferromagnetic material, and a second core 1 is made of a ferromagnetic material having a different magnetic viscosity.
A magnetic closed circuit is constructed using the iron core 2, coils 3 and 4 are respectively provided on these iron cores, and both coils are connected by a series depolarization connection. Therefore, in principle, no commercial frequency voltage is generated at the terminals 5 of the series coils until the current reaches saturation of each core due to leakage magnetic flux.

第2図に鉄心の透磁率の周波数依存性を示す。 Figure 2 shows the frequency dependence of the magnetic permeability of the iron core.

鉄心1の透磁率特性を6で鉄心2の透磁率特性
を7で夫々示しており、この例では鉄心1は10K
Hz以上の周波数の電流で透磁率が低下するように
なつている。従つてそれ以上の周波数の電流では
そのコイル3はリアクトルとしての性質を示すよ
うになる。すなわち、この磁気回路は周波数10K
Hz以上では空芯コイル3と鉄心を有するコイル4
の直列リアクトルとして作用する。そして商用周
波数の電流による磁束を考える必要がないから磁
気回路自体を充分小型化することが出来る。
The magnetic permeability characteristic of iron core 1 is shown as 6, and the magnetic permeability characteristic of iron core 2 is shown as 7. In this example, iron core 1 is 10K.
Magnetic permeability decreases with currents at frequencies higher than Hz. Therefore, the coil 3 begins to exhibit the properties of a reactor when the current has a frequency higher than that. In other words, this magnetic circuit has a frequency of 10K
Above Hz, air core coil 3 and iron core coil 4
acts as a series reactor. Since there is no need to consider magnetic flux due to commercial frequency current, the magnetic circuit itself can be sufficiently miniaturized.

ところで、鉄心における磁束φは、次式で求め
られる。
By the way, the magnetic flux φ in the iron core is obtained by the following equation.

φ=BS=μNS=μNIS ここで、Bは磁束密度、 Sは鉄心の断面積、 μは透磁率、 Nはコイルの巻回数 Iはコイルにおける電流である。 φ=BS=μNS=μNIS Here, B is the magnetic flux density, S is the cross-sectional area of the iron core, μ is magnetic permeability, N is the number of turns of the coil I is the current in the coil.

従つて、今、コイル3に流れる電流の周波数が
1KHzの時の鉄心1の透磁率が18000、コイル4に
流れる電流の周波数が1KHzの時の鉄心2の透磁
率が1800、コイル3の巻回数が10回、コイル4の
巻回数が100回とし、また、鉄心1及び2の断面
積Sが等しく、コイル3及び4に流れる電流Iも
等しいとすると、鉄心1における磁束φ1及び鉄
心2における磁束φ2は、それぞれ次式で求めら
れる。
Therefore, the frequency of the current flowing through coil 3 now is
Assume that the permeability of iron core 1 is 18000 when the frequency of the current flowing through coil 4 is 1KHz, the permeability of iron core 2 is 1800 when the frequency of the current flowing through coil 4 is 1KHz, the number of turns of coil 3 is 10, and the number of turns of coil 4 is 100. , Further, assuming that the cross-sectional areas S of the iron cores 1 and 2 are equal and the currents I flowing through the coils 3 and 4 are also the same, the magnetic flux φ 1 in the iron core 1 and the magnetic flux φ 2 in the iron core 2 are respectively calculated by the following equations.

φ1=μ6N3IS φ2=μ7N4IS ここで、μ6は鉄心1の透磁率、 N3はコイル3の巻回数、 μ7は鉄心2の透磁率、 N4はコイル4の巻回数である。 φ 1 = μ 6 N 3 IS φ 2 = μ 7 N 4 IS Where, μ 6 is the magnetic permeability of core 1, N 3 is the number of turns of coil 3, μ 7 is the magnetic permeability of core 2, and N 4 is the coil The number of turns is 4.

そうすると、第1図においてコイル3と4は、
減極性接続だから鉄心1及び2の閉磁路における
磁束φは、 φ=φ1−φ2 =18000×10×I×S−1800×100×I×S =0 となる。つまり、上記閉磁路磁束は互いに打ち消
し合つて零となる。
Then, in Fig. 1, coils 3 and 4 are
Since it is a depolarization connection, the magnetic flux φ in the closed magnetic path of iron cores 1 and 2 is as follows: φ=φ 1 −φ 2 =18000×10×I×S−1800×100×I×S =0. In other words, the closed magnetic circuit magnetic fluxes cancel each other out and become zero.

また、第1図におけるコイル3及び4全体のイ
ンダクタンスは、鉄心1及び2の等価透磁率(第
2図参照)に比例し、コイル3及び4全体のリア
クタンスは、そのインダクタンスとそこに流れる
電流の周波数に比例する。一方、コイル3及び4
の両端5を通して商用周波数の負荷電流が流れる
と、計算上等価透磁率が1となるから、空芯とし
て作用するため磁気飽和が生じず、従つて、第1
図の構成によれば、高周波数帯でのインダクタン
スも高く、高周波数帯で高透磁率のインダクタン
スとして作用し、結果として高周波数電流成分の
検出ができるようになる。
Furthermore, the inductance of the entire coils 3 and 4 in Fig. 1 is proportional to the equivalent magnetic permeability of the iron cores 1 and 2 (see Fig. 2), and the reactance of the entire coils 3 and 4 is the sum of their inductance and the current flowing there. Proportional to frequency. On the other hand, coils 3 and 4
When a commercial frequency load current flows through both ends 5 of the first
According to the configuration shown in the figure, the inductance is high in the high frequency band and acts as an inductance with high magnetic permeability in the high frequency band, and as a result, high frequency current components can be detected.

このように本発明によればコイルの減極接続に
より商用周波数の電流による磁束は打消されて端
子5に電圧出力として生じることはない。一方高
周波数の電流成分については夫々のコイルの鉄心
の磁気粘性を異なつたものとしているためにその
アンバランス分として端子5に検出される。
As described above, according to the present invention, the magnetic flux due to the commercial frequency current is canceled by the depolarized connection of the coil, and no voltage output is generated at the terminal 5. On the other hand, the high frequency current component is detected at the terminal 5 as an unbalanced component since the magnetic viscosity of the iron core of each coil is different.

なお、商用周波数の電流に対して各鉄心の透磁
率、および飽和磁束密度が異なる場合には一方の
鉄心とコイルの寸法を他方と異なる値をもつよう
にしてもよく、またこの磁気回路の一部にさらに
他の特性を有する磁性材料を挿入して鉄心1,2
の使用量を少なくし、更に小型をはかることも可
能である。
Note that if the magnetic permeability and saturation magnetic flux density of each core are different for the commercial frequency current, the dimensions of one core and coil may be different from those of the other. A magnetic material having other characteristics is further inserted into the cores 1 and 2.
It is also possible to reduce the amount used and make the device even smaller.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の概略図、第2図は
第1図の磁気回路における鉄心の透磁率の周波数
依存性を示す図である。 1,2……鉄心、3,4……コイル、5……端
子。
FIG. 1 is a schematic diagram of an embodiment of the present invention, and FIG. 2 is a diagram showing the frequency dependence of the magnetic permeability of the iron core in the magnetic circuit of FIG. 1, 2... Iron core, 3, 4... Coil, 5... Terminal.

Claims (1)

【特許請求の範囲】[Claims] 1 磁気粘性の異なる二種類の磁性材料により一
つの磁気回路を構成し、夫々の磁性材料の部分に
コイルを設け、これらコイルを直列に減極接続し
てなり、上記一つの磁気回路を構成する二種類の
磁性材料は、商用周波の電流成分に対しては両方
共一定の透磁率を有するが、高周波の電流成分に
対しては一方は一定の透磁率を有するものの、残
りの一方は透磁率を低下せしめるようにして、高
周波電流成分に対してのみ端子間に電圧を生じる
ごとくしたことを特徴とする高周波電流成分検出
装置。
1 One magnetic circuit is constructed by two types of magnetic materials with different magnetorheological viscosity, a coil is provided in each magnetic material part, and these coils are connected in series with depolarization, thereby constructing the above-mentioned one magnetic circuit. Two types of magnetic materials both have a constant magnetic permeability for commercial frequency current components, but one has a constant magnetic permeability for high frequency current components, but the other has a constant magnetic permeability for high frequency current components. 1. A high-frequency current component detection device, characterized in that a voltage is generated between terminals only for high-frequency current components by reducing the voltage.
JP58104603A 1983-06-10 1983-06-10 High frequency component detector Granted JPS59228175A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58104603A JPS59228175A (en) 1983-06-10 1983-06-10 High frequency component detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58104603A JPS59228175A (en) 1983-06-10 1983-06-10 High frequency component detector

Publications (2)

Publication Number Publication Date
JPS59228175A JPS59228175A (en) 1984-12-21
JPH0426068B2 true JPH0426068B2 (en) 1992-05-06

Family

ID=14384992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58104603A Granted JPS59228175A (en) 1983-06-10 1983-06-10 High frequency component detector

Country Status (1)

Country Link
JP (1) JPS59228175A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019164082A (en) * 2018-03-20 2019-09-26 Ntn株式会社 Ct system current sensor

Also Published As

Publication number Publication date
JPS59228175A (en) 1984-12-21

Similar Documents

Publication Publication Date Title
US6414578B1 (en) Method and apparatus for transmitting a signal through a power magnetic structure
US4047138A (en) Power inductor and transformer with low acoustic noise air gap
US5581224A (en) Choke coil for eliminating common mode noise and differential mode noise
US5525951A (en) Choke coil
US2553324A (en) Wide band audio and video transformer
US5223789A (en) AC/DC current detecting method
US3878495A (en) Magnetic core for electrical inductive apparatus
US4009460A (en) Inductor
US2406045A (en) Inductance device
US5506559A (en) Choke coil for eliminating common mode noise and normal mode noise
US5422619A (en) Common mode choke coil
JPS6332906A (en) Power converter
US2463778A (en) Magnetic shielding
JPH0426068B2 (en)
JPH11219832A (en) Choke coil for noise filter
US4724413A (en) Low-noise transformer
JPS5941297B2 (en) power transformer
JP2729848B2 (en) AC reactor
US2735989A (en) Variable inductance
JPH0233390Y2 (en)
JP2004288882A (en) Noise filter
JPH0320057B2 (en)
US2096801A (en) Power transformer
JP2000500929A (en) Current compensated radio disturbance suppression choke with enhanced leakage inductance
JPS5895266A (en) Hybrid current sensor for measuring intensity of alternating current current flowing through electric wire