JPH0426064A - Manufacture of zinc-alkali battery - Google Patents

Manufacture of zinc-alkali battery

Info

Publication number
JPH0426064A
JPH0426064A JP12848290A JP12848290A JPH0426064A JP H0426064 A JPH0426064 A JP H0426064A JP 12848290 A JP12848290 A JP 12848290A JP 12848290 A JP12848290 A JP 12848290A JP H0426064 A JPH0426064 A JP H0426064A
Authority
JP
Japan
Prior art keywords
zinc
zinc alloy
indium
bismuth
lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12848290A
Other languages
Japanese (ja)
Other versions
JPH07107858B2 (en
Inventor
Yuji Yoshizawa
芳澤 裕司
Akira Miura
三浦 晃
Yoshiaki Nitta
芳明 新田
Sachiko Sugihara
杉原 佐知子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP12848290A priority Critical patent/JPH07107858B2/en
Priority to US07/698,912 priority patent/US5168018A/en
Priority to AU77017/91A priority patent/AU622588B2/en
Priority to CA002042549A priority patent/CA2042549C/en
Priority to KR1019910007939A priority patent/KR940007633B1/en
Priority to DE69111686T priority patent/DE69111686T2/en
Priority to EP91108064A priority patent/EP0457354B1/en
Publication of JPH0426064A publication Critical patent/JPH0426064A/en
Publication of JPH07107858B2 publication Critical patent/JPH07107858B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • Y02E60/12

Landscapes

  • Primary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To improve resistance to electrolyte leakage by adding specified amounts of a zinc alloy having a proper composition and indium hydroxide having specified crystal structure to a gel alkaline electrolyte. CONSTITUTION:A gel negative pole 2 is composed of an active mass of a corrosion-resistant zinc alloy powder prepared by adding proper amounts of indium, lead, bismuth, calcium, and/or aluminum with a proper combination to zinc and a gel alkaline electrolyte containing indium hydroxide with a crystal structure having peaks at 4.71+ or -0.10Angstrom , 3.98+ or -0.02Angstrom , 3.57+ or -0.10Angstrom , and 2.66+ or -0.02Angstrom in an X-ray diffractometry as an inorganic inhibitor. The crystal of the indium hydroxide is effective to corrosion. As a result, resistance to electrolyte leakage is improved.

Description

【発明の詳細な説明】 発明におけるゲル状負極は、インジウム、鉛、ビスマス
、カルシウム、およびアルミニウムの群のうちいずれか
を適正な組合せでかつ適正な量、亜鉛に添加した耐食性
亜鉛合金粉末からなる活物質と、無機系インヒビターと
してX線回折図で、4.71±0,10Å、3.98±
0.02Å、3.57±0.10Å、2.66±0.0
2人においてピークを示す結晶構造を有する水酸化イン
ジウムを適正な濃度で分散させたゲル状アルカリ電解液
により構成される。
[Detailed Description of the Invention] The gelled negative electrode in the invention consists of a corrosion-resistant zinc alloy powder in which a suitable combination and appropriate amount of any one of the group consisting of indium, lead, bismuth, calcium, and aluminum is added to zinc. The active material and the inorganic inhibitor have an X-ray diffraction pattern of 4.71±0.10Å and 3.98±
0.02 Å, 3.57 ± 0.10 Å, 2.66 ± 0.0
It is composed of a gel-like alkaline electrolyte in which indium hydroxide, which has a crystal structure that exhibits two peaks, is dispersed at an appropriate concentration.

上記の耐食性亜鉛合金は、インジウムを0.01〜1w
t%、鉛およびビスマスの一種または二種を合計で0.
005〜0.5wt%含有した亜鉛合金、あるいはイン
ジウムを0.01〜1wt%、鉛およびビスマスの一種
または二種を合計で0.005〜0.5wt%、カルシ
ウムおよびア/l/ ミニラムの一種または二種を合計
で0.005〜0.  2wt%含有した亜鉛合金であ
る。また、上記の水酸化インジウムの添加量は亜鉛合金
に対して0.005〜0.5wt%である。
The above corrosion-resistant zinc alloy contains 0.01 to 1 w of indium.
t%, one or both of lead and bismuth in total of 0.
Zinc alloy containing 0.005 to 0.5 wt%, or 0.01 to 1 wt% of indium, a total of 0.005 to 0.5 wt% of one or both of lead and bismuth, and a type of calcium and a/l/miniram. Or two types in total 0.005 to 0. It is a zinc alloy containing 2 wt%. Further, the amount of indium hydroxide added is 0.005 to 0.5 wt% based on the zinc alloy.

次に、亜鉛合金、無機系インヒビターと有機系インヒビ
ターの複合についての本発明の詳細な説明する。本発明
のゲル状負極は、インジウム、鉛、ビスマス、カルシウ
ム、およびアルミニウムを適正な組合せでかつ適正な量
で添加された耐食性亜鉛合金粉末と、無機系インヒビタ
ーとしてX線回折図で、 471±0.10Å、3.98±0.02Å、357±
0,10Å、2.66±0.02人においてピークを示
す結晶構造を有する水酸化インジウムを適正な濃度で分
散させ、さらにポリエチレンオキサイドを親水部に持ち
、フッ化アルキル基を親油部に持った界面活性剤を適正
量添加したゲル状アルカリ電解液とにより構成される。
Next, the present invention will be described in detail regarding a zinc alloy, a composite of an inorganic inhibitor and an organic inhibitor. The gelled negative electrode of the present invention has a corrosion-resistant zinc alloy powder added with a proper combination of indium, lead, bismuth, calcium, and aluminum in a proper amount, and an inorganic inhibitor that has an X-ray diffraction pattern of 471±0. .10Å, 3.98±0.02Å, 357±
Indium hydroxide having a crystal structure showing a peak at 0.10 Å and 2.66 ± 0.02 is dispersed at an appropriate concentration, and further has polyethylene oxide in the hydrophilic part and a fluorinated alkyl group in the lipophilic part. and a gel-like alkaline electrolyte to which an appropriate amount of surfactant is added.

上記の界面活性剤は亜鉛合金に対して0.001〜0.
1wt%アルカリ電解液中に含有させることで効果があ
る。
The above surfactant is 0.001 to 0.0.
It is effective to include it in the alkaline electrolyte at 1 wt%.

また、耐食性亜鉛合金はインジウムを0.01〜1wt
%、鉛およびビスマスの一種または二種を合計で0.0
05〜0.5wt%含有した亜鉛合金、あるいはインジ
ウムを0,01−〜1wt%、鉛およびビスマスの一種
または二種を合計で0005〜0.5wt%、カルシウ
ムおよびアルミニウムの一種または二種を合計で0.0
05〜0゜2wt%含有した亜鉛合金である。ここでの
水酸化インジウムの好ましい添加量は亜鉛合金に対して
0.005〜0.5wt%である。
In addition, the corrosion-resistant zinc alloy contains 0.01 to 1 wt of indium.
%, one or two types of lead and bismuth in total 0.0
Zinc alloy containing 0.05 to 0.5 wt%, or 0.01 to 1 wt% of indium, a total of 0.005 to 0.5 wt% of one or two of lead and bismuth, and a total of one or two of calcium and aluminum. at 0.0
It is a zinc alloy containing 0.05 to 0.2 wt%. The preferred amount of indium hydroxide added here is 0.005 to 0.5 wt% based on the zinc alloy.

また、界面活性剤は下記の構造式 (X) X −Hあるいは−F Y ニーC0NH−あるいは−3O2NR−(Rはアル
キル基) Z : −CH3、−PO3W2 あるいは一3O3W (Wはアルカリ金属)0 4〜1
0 m:20〜100 または、 (X)−Cn F  20 (CH2CH2)−(C)
12  CH20)m −(Z)X・−■]あるいは−
F Z ニーCH3、−PO:] W2 あるいは−S03 W fWはアルカリ金属)n  4
〜10 m:40〜100 で表されるものが効果的である。
In addition, the surfactant has the following structural formula (X). 4-1
0 m: 20-100 or (X)-CnF20(CH2CH2)-(C)
12 CH20)m -(Z)X・-■] or -
F Z Ni CH3, -PO: ] W2 or -S03 W fW is an alkali metal) n 4
~10 m: 40 to 100 m is effective.

作用 本発明の耐食性亜鉛合金、無機系インヒビター有機系イ
ンヒビターの材料、およびそれらの複合における組合せ
や組成については、それぞれが複合効果を最高に発揮で
きるように鋭意研究した結果、見出したものである。そ
の作用機構の解明は今のところ不明確であるが、以下の
ように推察される。
Function: The materials of the corrosion-resistant zinc alloy, inorganic inhibitor, and organic inhibitor of the present invention, as well as the combination and composition of their composites, were discovered as a result of intensive research to maximize the combined effects of each. Although the elucidation of its mechanism of action is currently unclear, it is inferred as follows.

まず、合金の添加元素、無機系インヒビター有機系イン
ヒビターそれぞれの単独での作用効果は次のようである
First, the effects of each of the additive elements of the alloy, the inorganic inhibitor, and the organic inhibitor are as follows.

合金中の添加元素のうちインジウム、鉛およびビスマス
はこれらの元素自身の水素過電圧が高く、亜鉛に添加さ
れて、その表面の水素過電圧を高める作用がある。これ
らを均一に合金中に添加した場合、粉末のどの深さにも
添加元素が存在するため、上記の作用は放電により新し
い亜鉛表面か現れたとしても保持される。また、アルミ
ニウムやカルシウムは亜鉛粒子を球形化させる作用かあ
り、真の比表面積を少なくさせるため亜鉛粉末の単位重
量当たりの腐食量を低下させる。
Among the additive elements in the alloy, indium, lead, and bismuth have high hydrogen overpotentials themselves, and when added to zinc, they have the effect of increasing the hydrogen overvoltage on the surface. When these are uniformly added to the alloy, the above effect is maintained even if a new zinc surface appears due to discharge, since the added element is present at any depth in the powder. Furthermore, aluminum and calcium have the effect of making zinc particles spherical, reducing the true specific surface area, thereby reducing the amount of corrosion per unit weight of zinc powder.

水酸化インジウムは粉末としてゲル状アルカリ電解液中
に亜鉛合金と共存状態で分散された場合、その一部は置
換メツキの原理で亜鉛合金表面に金属インジウムとして
電析し、その表面の水素過電圧を高める。残りの部分は
電解液中に固体のまま残留し、放電により新しい亜鉛合
金表面か現れたとき、その新しい表面に電析して防食効
果を示す。
When indium hydroxide is dispersed as a powder in a gel-like alkaline electrolyte in coexistence with a zinc alloy, a portion of it is deposited as metallic indium on the surface of the zinc alloy using the principle of displacement plating, and the hydrogen overvoltage on the surface is reduced. enhance The remaining part remains as a solid in the electrolyte, and when a new zinc alloy surface appears due to discharge, it is electrodeposited on the new surface and exhibits a corrosion-preventing effect.

次に水酸化インジウムの性状を限定する意味について説
明する。その結晶性はアルカリ電解液に対する溶解性に
直接関係し、結晶性か悪くなると溶解性がよくなる。ま
た結晶性は粉末の粒度にも関係し、結晶性が悪くなると
粒度が細かくなる。
Next, the meaning of limiting the properties of indium hydroxide will be explained. Its crystallinity is directly related to its solubility in an alkaline electrolyte; the worse the crystallinity, the better the solubility. Crystallinity is also related to the particle size of the powder, and the worse the crystallinity, the finer the particle size.

粒度は細かい方がゲル状電解液への分散性か良くなり、
ゲル負極で均一に効果を発揮できる。本発明の水酸化イ
ンジウムの結晶は防食において効果を示す結晶である。
The finer the particle size, the better the dispersibility in the gel electrolyte.
The gel negative electrode can exhibit uniform effects. The indium hydroxide crystal of the present invention is a crystal that is effective in preventing corrosion.

界面活性剤はゲル状アルカリ電解液中に亜鉛合金と共存
すると、金属石けんの原理で亜鉛合金表面に化学吸着し
て疎水性の単分子層を形成し、防食効果を示す。特に、
ポリエチレンオキサイドを親水部に持つ界面活性剤は、
アルカリ電解液に対しミセルとしての溶解性が高く、電
解液に投入させた場合、亜鉛合金表面への移動、吸着が
速やかに起こるため防食効果が高い。さらに、フッ化ア
ルキル基を親油部に持てば、これが亜鉛合金表面に吸着
した場合、電気絶縁性が高いため腐食反応の電子授受を
効果的に疎外し、また耐アルカリ性か強いためその効果
は持続する。
When a surfactant coexists with a zinc alloy in a gel-like alkaline electrolyte, it chemically adsorbs onto the surface of the zinc alloy based on the principle of metal soap, forming a hydrophobic monomolecular layer, which exhibits an anticorrosion effect. especially,
Surfactants with polyethylene oxide in the hydrophilic part are
It has high solubility as a micelle in an alkaline electrolyte, and when added to the electrolyte, it quickly migrates and adsorbs to the surface of the zinc alloy, resulting in a high anticorrosion effect. Furthermore, if the oleophilic moiety has a fluorinated alkyl group, when it is adsorbed onto the surface of the zinc alloy, it has high electrical insulation properties, effectively eliminating electron transfer during corrosion reactions, and has strong alkali resistance, so its effect is negligible. last.

次に界面活性剤の分子構造を限定する意味について説明
する。ポリエチレンオキサイドを親水部に持つ界面活性
剤は、アルカリ電解液に対しミセルとしての溶解性が高
く、電解液に投入させた場合、亜鉛合金表面への移動、
吸着が速やかに起こるため防食効果が高い。また、ポリ
エチレンオキサイドの末端が水酸基つまりアルコールで
あると、アルカリ電解液中で加水分解を受けやすいので
、末端基は耐アルカリ性が強いメチル基、スルホン基、
燐酸基かよい。フッ化アルキル基を親油部に持てば、こ
れが亜鉛合金表面に吸着した場合、電気絶縁性が高いた
め腐食反応の電子授受を効果的に疎外する。親水部と親
油部の間の結合基は撥水性のアルキル基より、親水性の
アミド基、スルホアミド基であれば、この部分での亜鉛
との化学吸着が起こり、防食性が高い。
Next, the meaning of limiting the molecular structure of the surfactant will be explained. Surfactants with polyethylene oxide as their hydrophilic part have high solubility as micelles in alkaline electrolytes, and when added to electrolytes, they migrate to the zinc alloy surface,
It has a high corrosion prevention effect because adsorption occurs quickly. In addition, if the terminal end of polyethylene oxide is a hydroxyl group, that is, an alcohol, it is easily hydrolyzed in an alkaline electrolyte.
Phosphoric acid group is good. If a fluorinated alkyl group is present in the lipophilic moiety, when it is adsorbed on the surface of a zinc alloy, it has high electrical insulation properties and effectively eliminates the transfer of electrons in the corrosion reaction. If the bonding group between the hydrophilic part and the lipophilic part is a hydrophilic amide group or sulfoamide group rather than a water-repellent alkyl group, chemical adsorption with zinc will occur in this part, resulting in higher corrosion resistance.

次に水酸化インジウムと亜鉛合金との複合効果について
説明する。インジウムは亜鉛合金表面に電析して作用す
るので、電析がスムーズにかつ均一に起こる必要がある
。耐食性のない亜鉛合金の表面では著しい水素ガスの発
生が起こっているため、インジウムの電析が疎外され、
電析の状態が不均一となる。しかし、耐食性の良好な亜
鉛合金表面では水素ガスの発生が抑制されており、電析
がスムーズにかつ均一に起こるために複合効果が得られ
る。
Next, the combined effect of indium hydroxide and zinc alloy will be explained. Since indium acts by being electrodeposited on the surface of the zinc alloy, the electrodeposition must occur smoothly and uniformly. Significant hydrogen gas is generated on the surface of the zinc alloy, which has no corrosion resistance, which prevents indium electrodeposition.
The state of electrodeposition becomes non-uniform. However, on the surface of a zinc alloy with good corrosion resistance, the generation of hydrogen gas is suppressed, and electrodeposition occurs smoothly and uniformly, resulting in a composite effect.

次に上記の複合にさらに界面活性剤を添加した場合につ
いて説明する。水酸化インジウムの作用機構は先に記し
たとうりであるか、すべてか初期に反応してしまえば部
分放電後に作用する物がなくなってしまう。界面活性剤
はそれ自身の作用に加え、必要以上のインジウムの電析
を抑え、部分放電後に作用する量を確保する作用を果た
すと考えられる。
Next, a case where a surfactant is further added to the above composite will be explained. The mechanism of action of indium hydroxide is as described above, and if all of it reacts at the initial stage, there will be nothing left to act on after the partial discharge. In addition to its own function, the surfactant is thought to have the function of suppressing the electrodeposition of more indium than necessary and ensuring the amount of indium that is available after partial discharge.

実施例 以下、実施例によって、本発明の詳細ならびに効果を説
明する。
EXAMPLES The details and effects of the present invention will be explained below using examples.

まず、耐食亜鉛合金の作成方法、水酸化インジウムの合
成方法、本発明の製造法の効果を示すため、実施例に用
いたLRe型アルカリマンガン電池の構造、および耐漏
液性の比較評価の方法について説明する。
First, in order to demonstrate the effects of the method of creating a corrosion-resistant zinc alloy, the method of synthesizing indium hydroxide, and the manufacturing method of the present invention, we will discuss the structure of the LRe-type alkaline manganese battery used in the examples and the method of comparative evaluation of leakage resistance. explain.

耐食性亜鉛合金粉末は、純度9997%の亜鉛を融解し
、所定の添加元素を所定量加え、均一溶解させた後、圧
縮空気で噴霧して粉末化するいわゆるアトマイズ法で作
成し、これをふるいで分級して粒度範囲45〜150メ
ツシユに調整した。
Corrosion-resistant zinc alloy powder is created by the so-called atomization method, in which zinc with a purity of 9997% is melted, a predetermined amount of predetermined additive elements are added, the mixture is uniformly dissolved, and then the powder is sprayed with compressed air to form a powder. It was classified and adjusted to a particle size range of 45 to 150 mesh.

水酸化インジウムは所定のインジウム塩をイオン交換水
に飽和量添加し、その水溶液をスクリュウ攪拌機で攪拌
しながらアンモニアガスを中和剤として水溶液のpHが
9になるまで加えて中和した。その後0.5μの目の粗
さをもつフィルター上でイオン交換水で口演のpHが7
.5になるまで水洗し、フィルターの下から真空で引い
て水分の分離を行い、60℃で真空乾燥することにより
合成した。
Indium hydroxide was neutralized by adding a saturated amount of a specified indium salt to ion-exchanged water, and stirring the aqueous solution with a screw stirrer until the pH of the aqueous solution reached 9 using ammonia gas as a neutralizing agent. After that, the pH of the oral performance was adjusted to 7 with ion-exchanged water on a filter with a 0.5 μm coarseness.
.. It was synthesized by washing with water until the temperature reached 5.5, separating water by pulling a vacuum from under the filter, and vacuum drying at 60°C.

比較例の水酸化インジウムは硝酸インジウムを出発物質
とし上記の方法でかなり遅い速度で中和合成した。それ
はX線回折図で、 3.99±0.05Å、2.82±0.05Å、2.5
2±0.05A、2.30±005人2.13±0.0
5Å、1.99±0.05人においてピークを示す。以
下これをα型と記す。
Indium hydroxide in the comparative example was neutralized and synthesized using indium nitrate as a starting material by the above method at a considerably slow rate. It is an X-ray diffraction diagram: 3.99±0.05Å, 2.82±0.05Å, 2.5
2±0.05A, 2.30±005 people 2.13±0.0
Shows a peak at 5 Å, 1.99±0.05. Hereinafter, this will be referred to as α type.

第一の水酸化インジウムは塩化インジウムを出発物質と
し上記の方法で中和を制御しなから合成し、これほのX
線回折図で、 471±0.10Å、3.98±002Å、3.57±
010Å、2.66±0.02人においてピークを示す
。以下これをβ型と記す。
The first indium hydroxide is synthesized by using indium chloride as a starting material and controlling neutralization using the method described above.
Line diffraction diagram: 471±0.10Å, 3.98±002Å, 3.57±
010 Å, showing a peak at 2.66±0.02 people. Hereinafter, this will be referred to as β type.

第二の実施例に用いた水酸化インジウムは硫酸インジウ
ムを出発物質とし上記と同じ方法で合成した。これはX
線回折図で、 4.71±0.10Å、3.98±0.02Å、3.5
7±0.10Å、2’、66±0.02人3.03±0
10Å、2.49±0.10人においてピークを示す。
Indium hydroxide used in the second example was synthesized using indium sulfate as a starting material in the same manner as above. This is X
Line diffraction diagram: 4.71±0.10Å, 3.98±0.02Å, 3.5
7±0.10Å, 2', 66±0.02 people 3.03±0
A peak is shown at 10 Å, 2.49±0.10.

以下これをβ゛型と記す。Hereinafter, this will be referred to as the β type.

なお、比較のため水酸化インジウム(インヒビター)が
無添加のものも用意した。
For comparison, a sample without indium hydroxide (inhibitor) was also prepared.

ゲル状負極は以下のようにして調整した。まず、40重
量%の水酸化カリウム溶液(ZnOを3wt%含む)に
3重量%のポリアクリル酸ソーダと1重量%のカルボキ
シメチルセルロースを加えてゲル化する。ついで、この
ゲル状電解液を攪拌しながら界面活性剤を所定量を投入
、攪拌し、2〜3時間熟成する。つぎに所定量の水酸化
インジウムの粉末を徐々に投入し、2〜3時間熟成する
The gelled negative electrode was prepared as follows. First, 3% by weight of sodium polyacrylate and 1% by weight of carboxymethyl cellulose are added to a 40% by weight potassium hydroxide solution (containing 3% by weight of ZnO) to form a gel. Next, a predetermined amount of surfactant is added to the gel electrolyte while stirring, and the mixture is stirred and aged for 2 to 3 hours. Next, a predetermined amount of indium hydroxide powder is gradually added and aged for 2 to 3 hours.

さらにゲル状電解液に対して重量比で2倍の亜鉛合金粉
末を加えて混合した。
Furthermore, twice the weight ratio of zinc alloy powder was added to the gel electrolyte and mixed.

第1図は本実施例で用いたアルカリマンガン電池LR6
の構造断面図である。第1図において、1は正極合剤、
2は本発明で特徴付けられたゲル状負極、3はセパレー
タ、4はゲル負極の集電子である。5は正極端子キャッ
プ、6は金属ケース、7は電池の外装缶、8はケース6
の開口部を閉塞するポリエチレン製樹脂封口体、9は負
極端子をなす底板である。
Figure 1 shows the alkaline manganese battery LR6 used in this example.
FIG. In FIG. 1, 1 is a positive electrode mixture;
2 is a gel negative electrode characterized by the present invention, 3 is a separator, and 4 is a current collector of the gel negative electrode. 5 is the positive terminal cap, 6 is the metal case, 7 is the battery exterior can, 8 is the case 6
A resin sealing body made of polyethylene closes the opening, and 9 is a bottom plate forming a negative electrode terminal.

耐漏液性の比較評価の方法は、第1図で示したアルカリ
マンガン電池を100個ずつ試作し、LR6で最も苛酷
な条件であるIAの定電流で理論容量の深度20%まで
部分放電を行い、60℃で保存後に漏液した電池数を漏
液指数(%)として評価した。この苛酷な条件下におい
て、60℃保存30日で漏液指数が0%であれば実用可
能であるが、耐漏液性などの信頼性に関する性能はでき
るだけ長期に性能を維持できることが望ましい。
The method for comparative evaluation of leakage resistance was to prototype 100 alkaline manganese batteries as shown in Figure 1 and partially discharge them to a depth of 20% of the theoretical capacity at a constant current of IA, which is the most severe condition for LR6. The number of batteries that leaked after storage at 60°C was evaluated as a leakage index (%). Under these harsh conditions, if the leakage index is 0% after 30 days of storage at 60°C, it is practical, but it is desirable to be able to maintain reliability-related performance such as leakage resistance for as long as possible.

実施例1 亜鉛合金と無機系インヒビターの複合添加した場合の本
発明を説明する。
Example 1 The present invention will be described in which a zinc alloy and an inorganic inhibitor are added in combination.

まず、亜鉛合金を事前に種々の添加元素を組成をさまざ
まに変化させて検討した。その結果、インジウムを必須
合金成分とし、これにさらに鉛およびビスマスをそれぞ
れ単独かもしくは複合で含有する亜鉛合金、あるいはイ
ンジウムを必須成分としこれに鉛およびビスマスをそれ
ぞれ単独かまたは複合で、さらにカルシウム、およびア
ルミニウムを単独または複合で含有する亜鉛合金系が単
独では良好であることがわかった。
First, we investigated zinc alloys by adding various additive elements and varying the composition. As a result, zinc alloys containing indium as an essential alloy component and lead and bismuth, either singly or in combination, or zinc alloys containing indium as an essential alloy, lead and bismuth, either singly or in combination, and calcium, It was found that a zinc alloy system containing aluminum alone or in combination is good when used alone.

表1に耐食性のよいの各種亜鉛合金に対し結晶状態の異
なる3種の水酸化インジウムの添加量を0.1wt%に
固定して作成した電池の60℃45日保存後の漏液試験
結果を示す。
Table 1 shows the leakage test results after storage at 60°C for 45 days for batteries made by fixing the addition amount of three types of indium hydroxide with different crystal states to 0.1 wt% for various zinc alloys with good corrosion resistance. show.

表1より耐食性の優れた亜鉛合金でもそれ単独ではとて
も実用的な耐漏液性は確保できない。しかしβ型もしく
β“型結晶の水酸化インジウムを一定量加えることによ
り、耐漏液性は60℃45日でも確保できることがわか
る。ここで、β型はβ°型の結晶状態が乱れたもので基
本的には同一の結晶系と思われる。しかし、結晶状態が
乱れたものはうか防食効果が高く、60℃60日目でも
漏液をしない場合がある。合成条件によってはa型、β
型の混合したような水酸化インジウムができるかβ型の
ビ〜りが定量的に高ければ十分な効果がある。
As shown in Table 1, even zinc alloys with excellent corrosion resistance cannot ensure practical leakage resistance by themselves. However, it can be seen that by adding a certain amount of indium hydroxide in the form of β-type or β“-type crystals, leakage resistance can be ensured even at 60°C for 45 days. It seems that they are basically the same crystal system. However, those with a disordered crystal state have a much higher anti-corrosion effect and may not leak even after 60 days at 60°C. Depending on the synthesis conditions, it may be a type, β type
If indium hydroxide containing a mixture of types is produced, or if the β-type bisity is quantitatively high, a sufficient effect will be achieved.

表2に耐食性の良好な各種亜鉛合金に対し、β型結晶の
水酸化インジウムの添加量を変化させて作成した電池の
60℃45日保存後の漏液試験結果を示す。
Table 2 shows the leakage test results after storage at 60° C. for 45 days for batteries made by varying the amount of β-type crystal indium hydroxide added to various zinc alloys with good corrosion resistance.

表2より結晶状態の適当な水酸化インジウムを適切な量
加えることにより、耐漏液性は確保できることがわかる
。種々の亜鉛合金に対し水酸化インジウムの添加量は0
.005〜0.5wt%の範囲が良好である。
Table 2 shows that leakage resistance can be ensured by adding an appropriate amount of indium hydroxide in a crystalline state. The amount of indium hydroxide added to various zinc alloys is 0.
.. A good range is 0.005 to 0.5 wt%.

表3に水酸化インジウムの添加量を0.1wt%に固定
し、合金成分元素の添加量を変化させて作成した電池の
60℃45日保存後の漏液試験結果を示す。
Table 3 shows the leakage test results after storage at 60° C. for 45 days for batteries prepared by fixing the amount of indium hydroxide added at 0.1 wt% and varying the amount of alloy component elements added.

表3より亜鉛合金へのインジウムの添加量は、0.01
〜1wt%、鉛およびビスマスはそれぞれ単独かもしく
は合計で0005〜05wt%、カルシウムおよびアル
ミニウムはそれぞれ単独かもしくは合計で0.005〜
0.2wt%か適当であることがわかる。
From Table 3, the amount of indium added to the zinc alloy is 0.01
~1wt%, lead and bismuth each individually or in total 0005~05wt%, calcium and aluminum each individually or in total 0.005~05wt%
It can be seen that 0.2 wt% is appropriate.

実施例2 亜鉛合金に無機系インヒビターおよび有機系インヒビタ
ーを複合添加した場合についての実施例を説明する。
Example 2 An example will be described in which an inorganic inhibitor and an organic inhibitor are added in combination to a zinc alloy.

表4に各亜鉛合金に対し、水酸化インジウムの添加量を
最適の0.1wt%に固定し、有機系インヒビターであ
る界面活性剤の添加量を変化させて作成した電池の60
℃60日保存後の漏液試験結果を示す。
Table 4 shows 60% of batteries created by fixing the amount of indium hydroxide added to the optimal 0.1 wt% and varying the amount of surfactant, which is an organic inhibitor, for each zinc alloy.
The results of a leakage test after storage at ℃ for 60 days are shown.

これより界面活性剤の添加量は各亜鉛合金に対し0.0
01〜0.1wt%が適当であることがわかる。なお、
表4中の本発明の処方を用いた電池の漏液指数は60℃
45日目まではすべて0%であった。
From this, the amount of surfactant added is 0.0 for each zinc alloy.
It can be seen that 0.01 to 0.1 wt% is appropriate. In addition,
The leakage index of the battery using the formulation of the present invention in Table 4 is 60°C
All values were 0% until the 45th day.

有機系インヒビターを添加した場合でも、亜鉛合金と無
機系インヒビターを複合添加した場合き同様に、亜鉛合
金の組成はインジウムか、0.01〜l w t%、鉛
およびビスマスがそれぞれ単独かもしくは合計で0.0
05〜0.5wt%、カルシウムおよびアルミニウムが
それぞれ単独かもしくは合計で0.005〜0.2wt
%か適当であった。
Even when an organic inhibitor is added, the composition of the zinc alloy is indium, 0.01 to 1 wt%, and lead and bismuth, either alone or in combination, in the same way as when a zinc alloy and an inorganic inhibitor are added in combination. at 0.0
05-0.5wt%, calcium and aluminum each individually or in total 0.005-0.2wt%
% was appropriate.

実施例2で用いた界面活性剤は下記の構造式(X) : :60 であるものを用いた。The surfactant used in Example 2 has the following structural formula (X) : :60 I used something that is.

下記の構造式 (X) −Hあるいは−F −CONH−あるいは−so:qNR (Rはアルキル基) −CH3、−PO3W2 あるいは−5O3W(Wはアルカリ金属)4〜10 20〜100 または、 (X)−C2F  2 n ((、H2CH2)−(C
lイ2  CH20) Ill −(Z)X : −H
あるいは−F Z・−CF(3、−pQ+ W2 あるいは一5O3W (Wはアルカリ金属)n  4〜
10 m:40〜100 である界面活性剤であれば同様あるいはそれ以上の効果
が得られる。なお、上記の界面活性剤のうち、燐酸系の
ものは一級、二級燐酸塩の混合物でもかまわない。
The following structural formula (X) -H or -F -CONH- or -so:qNR (R is an alkyl group) -CH3, -PO3W2 or -5O3W (W is an alkali metal) 4-10 20-100 or (X )-C2F2n ((,H2CH2)-(C
Ill 2 CH20) Ill -(Z)X: -H
Or -FZ・-CF(3,-pQ+ W2 or -5O3W (W is an alkali metal) n 4~
A surfactant having a ratio of 10 m:40 to 100 can provide similar or better effects. Note that among the above-mentioned surfactants, the phosphoric acid type surfactants may be a mixture of primary and secondary phosphates.

前記の実施例に示したと同様な出発物質で、同し性状を
持った水酸化インジウムであれば充分あるいはそれ以上
の耐漏液性が得られることは確認している。
It has been confirmed that sufficient or better leakage resistance can be obtained using the same starting material and indium hydroxide having the same properties as shown in the above examples.

ところで、全実施例では本発明の効果を無汞化亜鉛合金
で説明したが、水銀添加量が数PPM〜数十PPMの極
低汞化の場合でも効果は充分である。
Incidentally, in all the examples, the effects of the present invention have been explained using a non-viscous zinc alloy, but the effects are sufficient even when the mercury content is extremely low, ranging from several PPM to several tens of PPM.

発明の効果 以上のように、本発明によれば、亜鉛アルカリ電池にお
いて、ゲル状アルカリ電解液中に適正な組成を有する亜
鉛合金と、適正な合成方法により適当な結晶型もつよう
にした水酸化インジウムを加えることで無水銀でも亜鉛
の腐食による電池内圧の上昇を抑制して電池の耐漏液性
を向上させる1、とができる。そして適切な構造式を有
する有機2インヒビターを適正量これに加えることでさ
らに貯蔵性の良好な、無公害の亜鉛アルカリ電池を提供
することができる。
Effects of the Invention As described above, according to the present invention, in a zinc alkaline battery, a zinc alloy having an appropriate composition in a gel-like alkaline electrolyte and a hydroxide having an appropriate crystal type by an appropriate synthesis method are used. By adding indium, even without mercury, it is possible to suppress the increase in battery internal pressure due to corrosion of zinc and improve the leakage resistance of the battery. By adding an appropriate amount of an organic 2-inhibitor having an appropriate structural formula to this, a pollution-free zinc-alkaline battery with even better storage stability can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例におけるアルカリマンガン電池
の断面図である。 1・・・正極合剤、2・・・ゲル状負極、3・・・セパ
レータ 代理人の氏名 弁理士 粟野重孝 ほか1名
FIG. 1 is a sectional view of an alkaline manganese battery in an embodiment of the present invention. 1... Positive electrode mixture, 2... Gel-like negative electrode, 3... Name of separator agent Patent attorney Shigetaka Awano and 1 other person

Claims (1)

【特許請求の範囲】 (1)亜鉛合金粉末をゲル状アルカリ電解液に混合分散
したゲル状負極の調整において、インジウム、鉛、ビス
マス、カルシウムおよびアルミニウムの群のうち少なく
とも1種以上を含む亜鉛合金を活物質に用い、前記アル
カリ電解液中に、X線回折図で、 4.71±0.10Å、3.98±0.02Å、3.5
7±0.10Å、2.66±0.02Åにおいてピーク
を示す水酸化インジウムを前記亜鉛合金に対して0.0
05〜0.5wt%含有させることを特徴とする亜鉛ア
ルカリ電池の製造法。 (2)インジウムを0.01〜1wt%、鉛およびビス
マスの一種または二種を合計で0.005〜0.5wt
%含有する亜鉛合金を負極活物質に用いたことを特徴と
する特許請求の範囲第1項記載の亜鉛アルカリ電池の製
造法。 (3)インジウムを0.01〜1wt%、鉛およびビス
マスの一種または二種を合計で0.005〜0.5wt
%、カルシウムおよびアルミニウムの一種または二種を
合計で0.005〜0.2wt%含有する亜鉛合金を負
極活物質に用いたことを特徴とする特許請求の範囲第1
項記載の亜鉛アルカリ電池の製造法。 (4)亜鉛合金粉末をゲル状アルカリ電解液に混合分散
したゲル状負極の調整において、インジウム、鉛、ビス
マス、カルシウムおよびアルミニウムの群のうち少なく
とも1種以上を含む亜鉛合金を活物質に用い、前記アル
カリ電解液中に、X線回折図で、 4.71±0.10Å、3.98±0.02Å、3.5
7±0.10Å、2.66±0.02Åにおいてピーク
を示す水酸化インジウムを前記亜鉛合金に対して0.0
05〜0.5wt%含有させ、さらに、ポリエチレンオ
キサイドを親水部に持つ界面活性剤を前記亜鉛合金に対
して0.001〜0.1wt%含有させることを特徴と
する亜鉛アルカリ電池の製造法。 (5)インジウムを0.01〜1wt%、鉛およびビス
マスの一種または二種を合計で0.005〜0.5wt
%含有する亜鉛合金を負極活物質に用いたことを特徴と
する特許請求の範囲第4項記載の亜鉛アルカリ電池の製
造法。 (6)インジウムを0.01〜1wt%、鉛およびビス
マスの一種または二種を合計で0.005〜0.5wt
%、カルシウムおよびアルミニウムの一種または二種を
合計で0.005〜0.2wt%含有する亜鉛合金を負
極活物質に用いたことを特徴とする特許請求の範囲第4
項記載の亜鉛アルカリ電池の製造法。 (7)ポリエチレンオキサイドを親水部に持つ界面活性
剤が下記の構造式 (X)−C_nF_2_n−(Y)−(CH_2CH_
2O)_m−(Z)X:−Hあるいは−F Y:−CONH−あるいは−SO_2NR−{Rはアル
キル基} Z:−CH_3、−PO_3W_2 あるいは−SO_3W{Wはアルカリ金属}n:4〜1
0 m:20〜100 で表される特許請求の範囲第4項記載の亜鉛アルカリ電
池の製造法。 (8)ポリエチレンオキサイドを親水部に持つ界面活性
剤が下記の構造式 (X)−C_nF_2_n−(CH_2CH_2)−(
CH_2CH_2O)_m−(Z)X:−Hあるいは−
F Z:−CH_3、−PO_3W_2 あるいは−SO_3W{Wはアルカリ金属}n:4〜1
0 m:40〜100 で表される特許請求の範囲第4項記載の亜鉛アルカリ電
池の製造法。
[Scope of Claims] (1) In the preparation of a gelled negative electrode in which zinc alloy powder is mixed and dispersed in a gelled alkaline electrolyte, a zinc alloy containing at least one member from the group consisting of indium, lead, bismuth, calcium, and aluminum. was used as the active material, and in the alkaline electrolyte, the following properties were observed in the X-ray diffraction diagram: 4.71±0.10 Å, 3.98±0.02 Å, 3.5
Indium hydroxide showing peaks at 7±0.10 Å and 2.66±0.02 Å was added to the zinc alloy at 0.0
A method for producing a zinc-alkaline battery, characterized in that the zinc-alkaline battery contains 0.05 to 0.5 wt%. (2) 0.01 to 1 wt% of indium and 0.005 to 0.5 wt of one or both of lead and bismuth in total
% of zinc alloy is used as a negative electrode active material. (3) 0.01 to 1 wt% of indium and 0.005 to 0.5 wt of one or both of lead and bismuth in total
Claim 1, characterized in that a zinc alloy containing a total of 0.005 to 0.2 wt% of one or both of calcium and aluminum is used as the negative electrode active material.
A method for producing a zinc-alkaline battery as described in Section 1. (4) In preparing a gel-like negative electrode in which zinc alloy powder is mixed and dispersed in a gel-like alkaline electrolyte, a zinc alloy containing at least one member from the group of indium, lead, bismuth, calcium, and aluminum is used as an active material, In the alkaline electrolyte, in the X-ray diffraction diagram, 4.71±0.10 Å, 3.98±0.02 Å, 3.5
Indium hydroxide showing peaks at 7±0.10 Å and 2.66±0.02 Å was added to the zinc alloy at 0.0
05 to 0.5 wt % of the zinc alloy, and further containing 0.001 to 0.1 wt % of a surfactant having polyethylene oxide in its hydrophilic part based on the zinc alloy. (5) 0.01 to 1 wt% of indium and 0.005 to 0.5 wt of one or both of lead and bismuth in total
5. The method for manufacturing a zinc-alkaline battery according to claim 4, characterized in that a zinc alloy containing % of zinc is used as a negative electrode active material. (6) 0.01 to 1 wt% of indium and 0.005 to 0.5 wt of one or both of lead and bismuth in total
Claim 4, characterized in that a zinc alloy containing a total of 0.005 to 0.2 wt% of one or both of calcium and aluminum is used as the negative electrode active material.
A method for producing a zinc-alkaline battery as described in Section 1. (7) A surfactant having polyethylene oxide in its hydrophilic part has the following structural formula (X)-C_nF_2_n-(Y)-(CH_2CH_
2O)_m-(Z)
0 m: 20 to 100. The method for producing a zinc-alkaline battery according to claim 4. (8) A surfactant having polyethylene oxide in its hydrophilic part has the following structural formula (X)-C_nF_2_n-(CH_2CH_2)-(
CH_2CH_2O)_m-(Z)X:-H or-
F Z: -CH_3, -PO_3W_2 or -SO_3W {W is an alkali metal} n: 4 to 1
0 m: 40-100 The method for manufacturing a zinc-alkaline battery according to claim 4.
JP12848290A 1990-05-17 1990-05-17 Zinc alkaline battery Expired - Lifetime JPH07107858B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP12848290A JPH07107858B2 (en) 1990-05-17 1990-05-17 Zinc alkaline battery
US07/698,912 US5168018A (en) 1990-05-17 1991-05-13 Method of manufacturing zinc-alkaline batteries
AU77017/91A AU622588B2 (en) 1990-05-17 1991-05-14 Method of manufacturing zinc-alkaline batteries
CA002042549A CA2042549C (en) 1990-05-17 1991-05-14 Method of manufacturing zinc-alkaline batteries
KR1019910007939A KR940007633B1 (en) 1990-05-17 1991-05-16 Method of manufacturing zinc-alkali bettery
DE69111686T DE69111686T2 (en) 1990-05-17 1991-05-17 Process for the production of alkaline zinc batteries.
EP91108064A EP0457354B1 (en) 1990-05-17 1991-05-17 Method of manufacturing zinc-alkaline batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12848290A JPH07107858B2 (en) 1990-05-17 1990-05-17 Zinc alkaline battery

Publications (2)

Publication Number Publication Date
JPH0426064A true JPH0426064A (en) 1992-01-29
JPH07107858B2 JPH07107858B2 (en) 1995-11-15

Family

ID=14985836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12848290A Expired - Lifetime JPH07107858B2 (en) 1990-05-17 1990-05-17 Zinc alkaline battery

Country Status (1)

Country Link
JP (1) JPH07107858B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6602629B1 (en) 2000-05-24 2003-08-05 Eveready Battery Company, Inc. Zero mercury air cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6602629B1 (en) 2000-05-24 2003-08-05 Eveready Battery Company, Inc. Zero mercury air cell

Also Published As

Publication number Publication date
JPH07107858B2 (en) 1995-11-15

Similar Documents

Publication Publication Date Title
KR940007633B1 (en) Method of manufacturing zinc-alkali bettery
JPH0738306B2 (en) Zinc alkaline battery
KR0137191B1 (en) Method of manufacturing zinc alkaline batteries
JP3018715B2 (en) Manufacturing method of zinc alkaline battery
JPH0426064A (en) Manufacture of zinc-alkali battery
JP2808822B2 (en) Manufacturing method of zinc alkaline battery
JP3006269B2 (en) Zinc alkaline battery
JP2754865B2 (en) Manufacturing method of zinc alkaline battery
JPH0426061A (en) Manufacture of zinc-alkali battery
JPH0426065A (en) Manufacture of zinc-alkali battery
JPH04138667A (en) Manufacture of zinc alkaline battery
JP3877179B2 (en) Nickel positive electrode for alkaline storage battery
JPH0426066A (en) Manufacture of zinc-alkali battery
JP2808823B2 (en) Manufacturing method of zinc alkaline battery
JP7304564B2 (en) alkaline battery
JP3031037B2 (en) Manufacturing method of zinc alkaline battery
JPH05211060A (en) Manufacture of zinc alkaline battery
JPH0521056A (en) Manufacture of zinc alkaline battery
JP2805486B2 (en) Alkaline battery and its negative electrode active material
JP2805488B2 (en) Alkaline battery and its negative electrode active material
JPH10172559A (en) Nickel active material for alkaline storage battery and manufacture thereof
JP2805489B2 (en) Alkaline battery and its negative electrode active material
JPH03280356A (en) Manufacture of gel state negative electrode for alkaline dry cell
JPH0628155B2 (en) Zinc electrode for alkaline storage battery
JPS6178062A (en) Zinc alkaline battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071115

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081115

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091115

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091115

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101115

Year of fee payment: 15

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101115

Year of fee payment: 15