JPH04260644A - Hydraulic composition for highly strong concrete and production of highly strong mortar or concrete - Google Patents

Hydraulic composition for highly strong concrete and production of highly strong mortar or concrete

Info

Publication number
JPH04260644A
JPH04260644A JP3018775A JP1877591A JPH04260644A JP H04260644 A JPH04260644 A JP H04260644A JP 3018775 A JP3018775 A JP 3018775A JP 1877591 A JP1877591 A JP 1877591A JP H04260644 A JPH04260644 A JP H04260644A
Authority
JP
Japan
Prior art keywords
concrete
blast furnace
mortar
hydraulic composition
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3018775A
Other languages
Japanese (ja)
Other versions
JP3082861B2 (en
Inventor
Nobuyuki Nakamura
信行 中村
Mikikazu Hara
幹和 原
Nobuhiro Imai
今井 信宏
Kazuyoshi Sato
和義 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP1877591A priority Critical patent/JP3082861B2/en
Publication of JPH04260644A publication Critical patent/JPH04260644A/en
Application granted granted Critical
Publication of JP3082861B2 publication Critical patent/JP3082861B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

PURPOSE:To provide a hydraulic composition giving mortar or concrete having a large initial strength and a large long-term strength by employing blast furnace glassy slag fine powder having a specific particle distribution. CONSTITUTION:A hydraulic composition comprises 20-80wt.% of blast furnace glassy fine powder comprising >=90wt.% of particles passing through a sieve having a size of 10mum, 50-80wt.% of the particles passing through a sieve having a size of 5mum and 10-20wt.% of the particles passing through a sieve having a size of 1mum as shown in the oblique line region of the figure, 80-20wt.% of a cement and, if necessary, gypsum in an amount of <=15 pts.wt. per 100 pts.wt. of the composition. The composition is mixed with water in a water/binder weight ratio of 0.3-0.5, when used as a binder. When the composition is used for the curing of the mortar or concrete, the mortar or concrete is aged under a saturated steam condition of 40-80 deg.C for 2-24hr in order to improve the compression strength of the mortar or concrete.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は建築、土木分野において
使用されるモルタル、コンクリート用等の水硬性組成物
およびそれを用いた高強度モルタル、高強度コンクリー
トの製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydraulic composition for mortar, concrete, etc. used in the fields of architecture and civil engineering, and a method for producing high-strength mortar and high-strength concrete using the same.

【0002】0002

【従来の技術】高炉スラグ微粉末は本来潜在的に水硬性
を有し、従来からセメント、石コウ等と混和して高炉セ
メントとして製造、市販されている。またセメント、高
炉スラグ微粉末、その他混和材、骨材等をそれぞれ別個
にバッチャープラントにて計量、混合、混練し様々の用
途に合わせたコンクリートも製造されている。これらに
使用される高炉スラグ微粉末は、通常ブレーン比表面積
で4,000〜4,500cm2/g程度のものが使わ
れている。さらに最近、スラグ微粉末を分級手段等によ
り微粒化してブレーン比表面積で8,000cm2/g
程度の超微粉末を得て、これを高強度等を得る目的で従
来のスラグ微粉末の代わりに使われる場合がある(「第
8回コンクリート工学年次講演会論文集」、1986、
pp289〜292)。
BACKGROUND OF THE INVENTION Blast furnace slag powder inherently has latent hydraulic properties, and has been mixed with cement, gypsum, etc. to produce blast furnace cement and commercially available. Concrete for various uses is also manufactured by separately measuring, mixing, and kneading cement, pulverized blast furnace slag, other admixtures, and aggregates in a batcher plant. The blast furnace slag powder used in these applications usually has a Blaine specific surface area of about 4,000 to 4,500 cm2/g. Furthermore, recently, fine slag powder has been atomized using classification means to achieve a Blaine specific surface area of 8,000 cm2/g.
This is sometimes used in place of conventional fine slag powder for the purpose of obtaining high strength, etc. (``Proceedings of the 8th Annual Conference on Concrete Engineering'', 1986,
pp289-292).

【0003】また、微粒子を含む水硬性組成物の例とし
ては、粒径50Å〜0.5μmの無機固体粒子Aと粒径
0.5μm〜100μmでかつ粒子Aよりも1オーダー
大きい固体粒子Bと表面活性分散剤を含む水硬性複合材
料が知られている(特公昭60−59182号公報)。 固体粒子Aは例えばシリカヒュームであり、固体粒子B
は例えばポルトランドセメントである。
[0003] Further, as an example of a hydraulic composition containing fine particles, inorganic solid particles A have a particle size of 50 Å to 0.5 μm, solid particles B have a particle size of 0.5 μm to 100 μm, and are one order of magnitude larger than the particles A. A hydraulic composite material containing a surface active dispersant is known (Japanese Patent Publication No. 59182/1982). Solid particles A are, for example, silica fume, solid particles B
is, for example, Portland cement.

【0004】0004

【発明が解決しようとする課題】通常のブレーン値4,
500cm2/g程度のスラグ微粉末は、水硬性がある
とはいえ普通ポルトランドセメントに対し初期材令での
強度が低く、さらに高強度も得にくいという欠点があっ
た。さらに、上記の高炉水砕スラグ微粉末を分級して得
られるブレーン値8,000cm2/g程度の微粉末は
高強度は得られるもののやはり3日材令強度での初期強
度は低い。
[Problem to be solved by the invention] Normal Blaine value 4,
Fine slag powder of about 500 cm2/g has the disadvantage that although it has hydraulic properties, its initial strength is lower than that of ordinary Portland cement, and it is also difficult to obtain high strength. Further, although the fine powder having a Blaine value of about 8,000 cm2/g obtained by classifying the above-mentioned granulated blast furnace slag powder has high strength, the initial strength at 3-day age is still low.

【0005】これは最近、研究成果が発表されてきてい
るシリカヒュームを混和材としたコンクリートの一例で
あるが、この場合水/結合材比を0.30以下にしなけ
れば1,000kgf/cm2を越える超高強度は得ら
れず、高性能減水剤を多量添加した粘りのあるワーカビ
リティの悪いコンクリートであることが問題点である。 本発明は、高炉スラグそのものが持つ水硬性を有効に利
用して、従来よりも簡便に高強度が得られる水硬性組成
物を得ることを目的としている。
[0005] This is an example of concrete using silica fume as an admixture, for which research results have been recently announced, but in this case, unless the water/binder ratio is kept below 0.30, The problem is that ultra-high strength cannot be achieved, and the concrete is sticky and has poor workability due to the addition of a large amount of high-performance water reducing agent. The present invention aims to effectively utilize the hydraulic properties of blast furnace slag itself to obtain a hydraulic composition that can obtain high strength more easily than before.

【0006】[0006]

【課題を解決するための手段】上記課題は、粒径の10
μm通過分が高炉スラグ微粉末の90重量%以上である
ガラス質の高炉スラグ微粉末とセメントからなる水硬性
組成物によって解決される。
[Means for solving the problem] The above problem is solved by
This problem is solved by a hydraulic composition consisting of cement and vitreous blast furnace slag powder whose μm passage is 90% by weight or more of the blast furnace slag powder.

【0007】本発明の水硬性組成物に使用されるガラス
質の高炉スラグ微粉末は粒径10μm通過分は90重量
%以上であるが、さらに粒径の5μm通過分が高炉スラ
グ微粉末の50重量%以上80重量%以下であり、1μ
m通過分が10重量%以上20重量%以下であることが
好ましい。この好ましい粒度分布の範囲を図1に斜線で
示す。このような微粉末は、高炉水砕スラグ等のガラス
質高炉スラグを公知の粉砕機を用いて微粉砕してもよく
、あるいはセメント用等として既に粉砕された例えばブ
レーン値が4,000〜4,500cm2/g程度のも
のから分級して得てもよい。
[0007] The vitreous blast furnace slag powder used in the hydraulic composition of the present invention has a particle size of 10 μm in the amount of 90% or more by weight, and the particle size of the 5 μm particle in the pulverized blast furnace slag powder is 50% by weight. % by weight or more and 80% by weight or less, and 1μ
It is preferable that the amount passing through m is 10% by weight or more and 20% by weight or less. This preferred range of particle size distribution is indicated by diagonal lines in FIG. Such fine powder may be obtained by pulverizing vitreous blast furnace slag such as granulated blast furnace slag using a known pulverizer, or by pulverizing vitreous blast furnace slag such as granulated blast furnace slag, or by pulverizing it for use in cement, for example, with a Blaine value of 4,000 to 4. , 500 cm2/g or so.

【0008】セメントはそれ自身が水和組織を形成する
とともに、スラグ粉に対するアルカリ刺激作用をするも
のであり、具体的にはポルトランドセメント又は少なく
ともポルトランドセメントを30%以上含む混合セメン
トである。
Cement itself forms a hydrated structure and has an alkali stimulating effect on slag powder. Specifically, it is Portland cement or a mixed cement containing at least 30% of Portland cement.

【0009】ガラス質の高炉スラグ微粉末とセメントと
の割合はスラグ微粉末が20〜80重量%、好ましくは
40〜60重量%、従ってセメントが80〜20重量%
、好ましくは60〜40重量%である。20重量%未満
ではスラグの効果があらわれないし、80重量%を越え
るとスラグの反応刺激材でもあるセメントが少なくなり
すぎる。
The ratio of the vitreous blast furnace slag powder to the cement is 20 to 80% by weight, preferably 40 to 60% by weight, and therefore 80 to 20% by weight of cement.
, preferably 60 to 40% by weight. If it is less than 20% by weight, the effect of slag will not be exhibited, and if it exceeds 80% by weight, there will be too little cement, which is also a reaction stimulant for slag.

【0010】上記、水硬性組成物は通常のポルトランド
セメントに比べSO3量が少ない。そこで、SO3を粉
末石コウの形で添加することにより、より高強度が得ら
れる。この石コウは二水、半水、無水のどれでも使用で
きる。石コウの添加量は高炉スラグ微粉末とセメントの
和で100重量部に対し、粉末石コウをSO3量として
15重量部以下、好ましくは2〜8重量部程度が適当で
ある。SO3量の最大値を15重量部としたのは、それ
以上添加すると硬化体の異常膨張の危険があり、さらに
硬化体中の鋼材を腐食させる恐れもあるためである。
[0010] The above-mentioned hydraulic composition has a lower amount of SO3 than ordinary Portland cement. Therefore, higher strength can be obtained by adding SO3 in the form of powdered gypsum. This stone can be used in dihydrate, semi-hydrate, or anhydrous format. The appropriate amount of gypsum to be added is 15 parts by weight or less, preferably about 2 to 8 parts by weight, based on the amount of SO3, per 100 parts by weight of the sum of ground blast furnace slag powder and cement. The reason why the maximum amount of SO3 is set to 15 parts by weight is that if more than this amount is added, there is a risk of abnormal expansion of the hardened body, and there is also a risk that the steel material in the hardened body may be corroded.

【0011】本発明の水硬性組成物をコンクリート、モ
ルタルの結合材として使用して高強度を得るには、水/
結合材比を重量比で0.5〜0.3程度とする必要があ
る。0.5より大きくては硬化体の緻密性が劣り、0.
3より小さくするとシリカヒュームを混和したコンクリ
ートのように粘性の大きいワーカビリティの悪いコンク
リートとなり、スラグの反応面から水が少なくなりすぎ
るためである。生コンクリート及び生モルタルには骨材
として砂、砂利等を配合することはいうまでもないが、
その配合量は従来のセメントを結合材に用いる場合と同
様でよい。
[0011] In order to obtain high strength by using the hydraulic composition of the present invention as a binder for concrete and mortar, water/
The binder ratio needs to be about 0.5 to 0.3 in terms of weight ratio. If it is larger than 0.5, the density of the cured product will be poor;
If it is smaller than 3, the result will be concrete with high viscosity and poor workability, such as concrete mixed with silica fume, and water will be too small from the reaction surface of the slag. It goes without saying that sand, gravel, etc. are mixed into ready-mixed concrete and ready-mixed mortar as aggregate.
The blending amount may be the same as when conventional cement is used as a binder.

【0012】生モルタル及び生コンクリートを硬化させ
る養生は常温で行なってもよいが、40℃〜80℃の水
蒸気養生を行うことにより、短期間での強度発現が得ら
れる。この水蒸気養生は、飽和水蒸気の存在下で前記の
温度で行なうものであり、具体的には飽和水蒸気を保つ
ために成型された含水組成物を密室内に置くとかビニー
ルで包むなどして飽和水蒸気状態を養生中維持させる。 養生時間は2時間〜24時間が適当で、最適には4〜1
2時間程度が強度面、経済的な面から考えて適する。
[0012] Although the curing to harden the fresh mortar and fresh concrete may be carried out at room temperature, strength can be developed in a short period of time by carrying out steam curing at 40°C to 80°C. This steam curing is carried out at the above temperature in the presence of saturated steam, and specifically, in order to maintain saturated steam, the molded water-containing composition is placed in a closed room or wrapped in vinyl, and then exposed to saturated steam. Maintain the condition during curing. The appropriate curing time is 2 hours to 24 hours, and optimally 4 to 1 hour.
Approximately 2 hours is suitable from the viewpoint of strength and economy.

【0013】[0013]

【作用】ガラス質の高炉スラグは結晶化してないため、
粉砕しても粒子の大きさによる組成の変化はない。その
ため、スラグを微粒化していくことは単位重量あたりの
表面積が増大し、スラグの初期材令での反応性が増す。 そこで初期材令(特に3日〜7日程度)での強度を増す
ためには反応性の高い微粒分を確保する必要がある。本
発明の水硬性組成物においては、高炉スラグ微粉末を極
微粉化してこれをセメントに組合せることによって初期
材令での強度ばかりでなく、硬化体の最終強度も高めて
いる。
[Effect] Glassy blast furnace slag is not crystallized, so
Even when pulverized, the composition does not change depending on the particle size. Therefore, atomizing the slag increases the surface area per unit weight and increases the reactivity of the slag at its initial stage. Therefore, in order to increase the strength at the initial age (especially about 3 to 7 days), it is necessary to ensure a highly reactive fine particle content. In the hydraulic composition of the present invention, not only the initial strength but also the final strength of the hardened product is enhanced by pulverizing the blast furnace slag into ultra-fine powder and combining it with cement.

【0014】ところで、粒子が全て1μm以下の極微粒
分で構成されると長期的に反応するものがなくなり、長
期強度の伸びが悪くなる。そこで、ガラス質高炉スラグ
微粉末の極微粒分である1μm以下の粒子を10〜20
重量%にし、長期強度に寄与する1〜5μmの粒子及び
5〜10μmの粒子をそれぞれ前記割合に調整すること
により初期強度の向上、長期強度の伸びの両方を満足さ
せることができる。
By the way, if the particles are all composed of ultrafine particles of 1 μm or less, there will be nothing to react with over a long period of time, resulting in poor long-term strength growth. Therefore, we added 10 to 20 particles of 1 μm or less, which are ultrafine particles of vitreous blast furnace slag powder.
By adjusting the weight percent of particles of 1 to 5 μm and particles of 5 to 10 μm, which contribute to long-term strength, to the above ratios, it is possible to satisfy both the improvement in initial strength and the elongation of long-term strength.

【0015】[0015]

【実施例】実施例1 本発明の粒度範囲の高炉水砕スラグ微粉末を以下の手順
により作成した。平均粒径1.2mmの原料の水砕スラ
グをボールミルにて平均粒径13.5μmとした粉末を
分級することにより、平均粒径3μm程度とし、バグフ
ィルター部に捕集した微粒分も加え図1に実線で示され
るガラス質の高炉スラグ微粉末を得た。そのブレーン比
表面積は12,300cm2/gであった。比較として
、ブレーン比表面積が4,500cm2/gの高炉水砕
スラグ粉末の粒度分布を同図に1点鎖線で、そしてブレ
ーン比表面積が8,000cm2/gの高炉水砕スラグ
粉末の粒度分布を同図に破線でそれぞれ示す。
[Examples] Example 1 Granulated blast furnace slag powder having a particle size within the range of the present invention was prepared by the following procedure. Granulated slag, which is a raw material with an average particle size of 1.2 mm, was made into an average particle size of 13.5 μm using a ball mill, and the powder was classified to have an average particle size of about 3 μm. A vitreous blast furnace slag powder indicated by the solid line in Figure 1 was obtained. Its Blaine specific surface area was 12,300 cm2/g. For comparison, the particle size distribution of granulated blast furnace slag powder with a Blaine specific surface area of 4,500 cm2/g is shown in the same figure with a dashed line, and the particle size distribution of granulated blast furnace slag powder with a Blaine specific surface area of 8,000 cm2/g is shown in the same figure. Each is indicated by a broken line in the figure.

【0016】上記の高炉スラグ微粉末200kgに対し
、普通ポルトランドセメント(第一セメント(株)製品
)200kgを混合して水硬性組成物を得た。
A hydraulic composition was obtained by mixing 200 kg of the above pulverized blast furnace slag with 200 kg of ordinary Portland cement (manufactured by Daiichi Cement Co., Ltd.).

【0017】この水硬性組成物に水 160kg、砂利
(硬質砂岩)1026kg、砂(川砂) 807kg及
び高性能減水剤(レオピルド8N、ボゾリス物産)6.
00kgを混合して生コンクリートを作製した。比較の
ために上記の高炉スラグ微粉末の代わりに200kg(
合計400kg)の同じ普通ポルトランドセメント(比
較例1)、ブレーン比表面積4,500cm2/gの高
炉水砕スラグ粉末(比較例2)又はブレーン比表面積8
,000cm2/gの高炉水砕スラグ粉末(比較例3)
を用いて比較例の生コンクリートを作製した。セメント
、水、砂利及び砂は実施例と同一にしたが高性能減水剤
はセメント及びスラグの吸着能の相違等に合わせて比較
例1のものは4.96kgとし、比較例2及び3のもの
は各4.40kgとした。また、スラグを用いなかった
比較例1においてセメントを400kgから533kg
に増量し、砂利を1026kgから1020kgへ、そ
して砂を807kgから719kgへ減量し、高性能減
水剤を9.38kgに増量した生コンクリートを作製し
、これを比較例4とした。実施例2は比較例4のセメン
トの半分を本発明品として、砂、砂利、減水剤を比較例
4とほぼ同程度のスランプが得られるように調整したも
のである。各生コンクリートの配合割合を表1に示す。 各生コンクリートをそれぞれ10cmφ×20cmの型
枠に注入し、20℃、80%RHの養生室にて1日間硬
化させた後、脱型し以後20℃水中で硬化養生して圧縮
強度の経時変化を測定した結果を表2に示す。
This hydraulic composition contains 160 kg of water, 1026 kg of gravel (hard sandstone), 807 kg of sand (river sand), and a high performance water reducer (Leopild 8N, Bozoris Bussan)6.
00 kg were mixed to prepare fresh concrete. For comparison, 200 kg (
400 kg in total) of the same ordinary Portland cement (Comparative Example 1), granulated blast furnace slag powder with a Blaine specific surface area of 4,500 cm2/g (Comparative Example 2), or Blaine specific surface area of 8
,000cm2/g of granulated blast furnace slag powder (Comparative Example 3)
A comparative example of ready-mixed concrete was prepared using the following method. Cement, water, gravel, and sand were the same as in Examples, but the high-performance water reducing agent was 4.96 kg in Comparative Example 1, and 4.96 kg in Comparative Examples 2 and 3, in accordance with the difference in adsorption capacity of cement and slag. was set at 4.40 kg each. In addition, in Comparative Example 1 where no slag was used, cement was added from 400 kg to 533 kg.
Comparative Example 4 was prepared by increasing the amount of gravel from 1,026 kg to 1,020 kg, reducing the amount of sand from 807 kg to 719 kg, and increasing the amount of high performance water reducing agent to 9.38 kg. In Example 2, half of the cement in Comparative Example 4 was made from the product of the present invention, and sand, gravel, and water reducing agent were adjusted so as to obtain approximately the same level of slump as in Comparative Example 4. Table 1 shows the mixing ratio of each fresh concrete. Each fresh concrete was poured into a 10cmφ x 20cm formwork, cured for 1 day in a curing room at 20℃ and 80% RH, removed from the mold, and cured in water at 20℃ to change compressive strength over time. The results of the measurements are shown in Table 2.

【0018】[0018]

【表1】[Table 1]

【0019】[0019]

【表2】[Table 2]

【0020】本発明品は、3日材令でほぼスラグの入っ
ていない比較例1とほぼ同程度の強度となり、7日以降
急激に比較例を大きく上回る強度が得られ、28日で1
,000kgf/cm2を越える。一方、比較例2は通
常のスラグ微粉末を使用した例であるが、比較例1と比
較して91日材令でも比較例1の強度を上回ることがで
きない。比較例3はブレーン比表面積8,000cm2
/gのスラグであるが28日以降に比較例1の強度を追
いこす従来の知見通りの結果を得たが、本発明品はそれ
をも大きく上回る強度が得られた。なお、比較例4は現
状の実用レベルの限界と思われる水セメント比0.30
のスラグの入っていない配合で、91日材令でも1,0
00kgf/cm2に届かず、本発明品の優位性が明ら
かとなった。実施例2は、水セメント比(この場合のセ
メントは本発明品)0.30の結果であるが、初期強度
は大きく91日材令では実施例1と同等ではあるが比較
例4に比べ本発明品の優位性が明らかである。
The product of the present invention has almost the same strength as Comparative Example 1, which does not contain slag, after 3 days of wood age, and after 7 days, it suddenly has a strength that greatly exceeds that of Comparative Example, and after 28 days, it has reached the same level of strength as Comparative Example 1, which does not contain slag.
,000kgf/cm2. On the other hand, Comparative Example 2 uses normal fine slag powder, but compared to Comparative Example 1, it cannot exceed the strength of Comparative Example 1 even after 91 days of age. Comparative example 3 has a Blaine specific surface area of 8,000 cm2
/g of slag, but after 28 days, results were obtained in line with conventional knowledge, which surpassed the strength of Comparative Example 1, but the product of the present invention obtained a strength that greatly exceeded that. In addition, Comparative Example 4 has a water-cement ratio of 0.30, which is considered to be the limit of the current practical level.
1.0 slag-free formulation even after 91 days
00 kgf/cm2, demonstrating the superiority of the product of the present invention. Example 2 has a water-cement ratio of 0.30 (cement in this case is the product of the present invention), but the initial strength is large and at 91 days old, it is equivalent to Example 1, but compared to Comparative Example 4. The superiority of the invention is clear.

【0021】実施例2 実施例1の品にSO3量で7%の無水石コウを添加した
配合で生コンクリートを作製し、その強度発現性を調べ
た。
Example 2 Fresh concrete was prepared by adding 7% SO3 anhydrite to the product of Example 1, and its strength development was investigated.

【0022】[0022]

【表3】 以上のように初期材令での強度発現効果が大きい。[Table 3] As mentioned above, the effect of developing strength at the initial wood age is large.

【0023】実施例3 実施例1の品を打設し、20℃の空気中で2時間放置し
た後、60℃蒸気養生を8時間行なった。放冷し、材令
7日で強度試験を行った。その結果、1,070kgf
/cm2の強度が得られ、蒸気養生の結果が認められた
Example 3 The product of Example 1 was cast, left in air at 20°C for 2 hours, and then steam-cured at 60°C for 8 hours. The material was left to cool and a strength test was conducted when the material was 7 days old. As a result, 1,070kgf
/cm2 strength was obtained, and the result of steam curing was recognized.

【0024】[0024]

【発明の効果】以上のように、この発明によれば高炉水
砕スラグ微粉末を粘度調整することにより水硬性組成物
の初期強度が大きく、長期強度も大きくなる効果が得ら
れた。セメントの占める割合を限定することにより、効
果的にスラグの反応性を生かすことができた。石コウ添
加により初期強度の向上が認められた。例えば、水/結
合材比0.4のコンクリートで28日材令で1,000
kgf/cm2を越えるコンクリートが得られたように
、本発明の水硬性組成物は高強度コンクリート、モルタ
ル用の水硬性組成物として効果がある。また、水蒸気養
生はスラグの反応性を高めるため7日材令で28日強度
が得られ、経済的に有効なコンクリート製造方法である
As described above, according to the present invention, by adjusting the viscosity of the granulated blast furnace slag powder, the initial strength of the hydraulic composition is increased, and the long-term strength is also increased. By limiting the proportion of cement, we were able to effectively utilize the reactivity of slag. An improvement in initial strength was observed with the addition of gypsum. For example, concrete with a water/binder ratio of 0.4 has a 28-day wood age of 1,000
The hydraulic composition of the present invention is effective as a hydraulic composition for high-strength concrete and mortar, as concrete with a strength exceeding kgf/cm2 was obtained. In addition, steam curing increases the reactivity of slag, so it is possible to obtain 28-day strength after 7-day aging, and is an economically effective concrete manufacturing method.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の水硬性組成物で使用される高炉スラグ
微粉末の粒度分布を示すグラフである。
FIG. 1 is a graph showing the particle size distribution of fine blast furnace slag powder used in the hydraulic composition of the present invention.

【符号の説明】[Explanation of symbols]

1…実施例で用いたスラグ粉末 1...Slag powder used in Examples

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】  粒径の10μm通過分が高炉スラグ微
粉末の90重量%以上であるガラス質の高炉スラグ微粉
末とセメントからなる水硬性組成物
Claim 1: A hydraulic composition comprising cement and vitreous blast furnace slag powder whose particle size passing through 10 μm is 90% by weight or more of the blast furnace slag powder.
【請求項2】  粒径の5μm通過分が高炉スラグ微粉
末の50重量%以上80重量%以下であり、1μm通過
分が10重量%以上20重量%以下である請求項1に記
載の水硬性組成物
2. Hydraulic properties according to claim 1, wherein the particle size passing through 5 μm is 50% to 80% by weight of the pulverized blast furnace slag powder, and the particle size passing through 1 μm is 10% to 20% by weight. Composition
【請求項3】  高炉スラグ微粉末が水硬性組成物の2
0〜80重量%で残部がセメントである請求項1に記載
の水硬性組成物
Claim 3: The powdered blast furnace slag is used as a hydraulic composition.
The hydraulic composition according to claim 1, wherein the proportion is 0 to 80% by weight and the remainder is cement.
【請求項4】  請求項3に記載の水硬性組成物100
重量部に対し、粉末石コウをSO3量として15重量部
以下配合してなる水硬性組成物
4. Hydraulic composition 100 according to claim 3.
Hydraulic composition comprising 15 parts by weight or less of powdered gypsum as an amount of SO3 based on parts by weight
【請求項5】  請求項1、2、3又は4に記載の水硬
性組成物を結合材として水/結合材比を重量比で0.3
〜0.5とした生モルタル又は生コンクリート
5. Using the hydraulic composition according to claim 1, 2, 3, or 4 as a binder, the water/binder ratio is 0.3 by weight.
Fresh mortar or fresh concrete with ~0.5
【請求項6】  請求項5に記載の生モルタル又は生コ
ンクリートを40〜80℃において飽和水蒸気下で硬化
養生を行なうモルタル又はコンクリートの製造方法
6. A method for producing mortar or concrete, comprising curing the fresh mortar or fresh concrete according to claim 5 under saturated steam at 40 to 80°C.
JP1877591A 1991-02-12 1991-02-12 Hydraulic composition for high-strength concrete and method for producing high-strength mortar or concrete Expired - Fee Related JP3082861B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1877591A JP3082861B2 (en) 1991-02-12 1991-02-12 Hydraulic composition for high-strength concrete and method for producing high-strength mortar or concrete

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1877591A JP3082861B2 (en) 1991-02-12 1991-02-12 Hydraulic composition for high-strength concrete and method for producing high-strength mortar or concrete

Publications (2)

Publication Number Publication Date
JPH04260644A true JPH04260644A (en) 1992-09-16
JP3082861B2 JP3082861B2 (en) 2000-08-28

Family

ID=11981010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1877591A Expired - Fee Related JP3082861B2 (en) 1991-02-12 1991-02-12 Hydraulic composition for high-strength concrete and method for producing high-strength mortar or concrete

Country Status (1)

Country Link
JP (1) JP3082861B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002087866A (en) * 2000-09-14 2002-03-27 Sumitomo Osaka Cement Co Ltd Method of improving strength of concrete
EP1702899A3 (en) * 2005-03-17 2006-12-27 Lukas, Walter, Prof. Dr. Inorganic hydraulic binder

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002087866A (en) * 2000-09-14 2002-03-27 Sumitomo Osaka Cement Co Ltd Method of improving strength of concrete
EP1702899A3 (en) * 2005-03-17 2006-12-27 Lukas, Walter, Prof. Dr. Inorganic hydraulic binder

Also Published As

Publication number Publication date
JP3082861B2 (en) 2000-08-28

Similar Documents

Publication Publication Date Title
US4997484A (en) Hydraulic cement and composition employing the same
US2564690A (en) Hydrated lime-fly ash-fine aggregate cement
EP0346416B1 (en) Hydraulic cement and composition employing the same
JP3385884B2 (en) High fluidity cement composition
JPH0680456A (en) Fluid hydraulic composition
JP2001130942A (en) Concrete composition
RU2029749C1 (en) Method to produce binder of low water consumption
JP3108782B2 (en) Ultra-high strength cement composition
JPH0952744A (en) Mortar and concrete composition
JP2001220197A (en) Cement composition
JPH04260644A (en) Hydraulic composition for highly strong concrete and production of highly strong mortar or concrete
JPH0832575B2 (en) Portland cement with controlled particle size
JP3628064B2 (en) Concrete composition
JPH01242445A (en) Hydraulic cement composition
JPH06199549A (en) Cement composition for high strength concrete
KR0120942B1 (en) Process for the preparation of concrete
JPH01275456A (en) Quick hardening cement composition
JPH03170354A (en) Ultrahigh early strength cement composition
JPH04260645A (en) Production of hydraulic composition and cured product
JPH01208354A (en) Low-alkali cement composition
JP3087940B2 (en) High-strength wet spray concrete
JPH0154297B2 (en)
JP2001278653A (en) Ultrahigh strength concrete
JP3091106B2 (en) Cement for steam curing products
JP2003176164A (en) High performance concrete

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees