JPH04260486A - Treatment of waste refuse containing liquid crystal substance - Google Patents

Treatment of waste refuse containing liquid crystal substance

Info

Publication number
JPH04260486A
JPH04260486A JP3019958A JP1995891A JPH04260486A JP H04260486 A JPH04260486 A JP H04260486A JP 3019958 A JP3019958 A JP 3019958A JP 1995891 A JP1995891 A JP 1995891A JP H04260486 A JPH04260486 A JP H04260486A
Authority
JP
Japan
Prior art keywords
liquid crystal
catalyst
crystal substance
decomposition
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3019958A
Other languages
Japanese (ja)
Inventor
Terunobu Hayata
早田 輝信
Isao Ito
功 伊藤
Takashi Anami
阿波 傑士
Kazuo Suzuki
一雄 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP3019958A priority Critical patent/JPH04260486A/en
Publication of JPH04260486A publication Critical patent/JPH04260486A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/82Recycling of waste of electrical or electronic equipment [WEEE]

Abstract

PURPOSE:To separate a liquid crystal substance from a substrate to make the same harmless by decomposition. CONSTITUTION:Waste refuse containing a liquid crystal substance is put in an extraction tank 11 and heated in the presence of moisture in a hermetically closed state. The water containing the separated liquid crystal substance is bubbled to send the gas containing the liquid crystal substance to a preheating tank 13 and this gas is adjusted to decomposition reaction temp. to be sent to a catalyst tank 14 to decompose the liquid crystal substance by a catalyst. The decomposing catalyst contains a noble metal catalyst component and a base metal catalyst component. By heating the waste refuse in the presence of moisture, the liquid crystal substance is easily separated from the waste refuse and efficiently decomposed using said catalyst.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】[発明の目的][Object of the invention]

【0002】0002

【産業上の利用分野】本発明は、画像表示装置等に使用
される液晶表示器などの液晶物質を含む廃棄物の処理方
法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for treating waste containing liquid crystal materials such as liquid crystal displays used in image display devices and the like.

【0003】0003

【従来の技術】近来、ワードプロセッサー、液晶テレビ
等の急速な普及と共に、液晶表示器等の液晶を含む廃棄
物の量が急増しつつある。この液晶表示器等の廃棄物は
、現在のところ、他の廃棄物と一緒に埋め立て処理や焼
却処理がなされており、これに伴い、表示器中の液晶物
質である有機化合物が、環境中に放出・蓄積され始めて
いる。
2. Description of the Related Art In recent years, with the rapid spread of word processors, liquid crystal televisions, etc., the amount of waste containing liquid crystals such as liquid crystal displays is rapidly increasing. Currently, waste such as liquid crystal displays is disposed of in landfills or incinerated along with other waste, and as a result, organic compounds, which are the liquid crystal substances in displays, are being released into the environment. It is starting to be released and accumulated.

【0004】液晶表示器は、ガラス等の基板の間に液晶
材料が挟持されたものであり、該液晶材料は、一般に、
下記の化学式(式中、Rはハロゲン、アルキル基又はハ
ロゲン化アルキル基を示し、ハロゲンはフッ素又は塩素
である)で表されるような構造を有する有機ハロゲン化
合物、有機ニトリル化合物等の液晶物質により構成され
ている。従って、液晶表示器等を廃棄することによって
これらの有機化合物が環境中に放出される。
[0004] A liquid crystal display has a liquid crystal material sandwiched between substrates such as glass, and the liquid crystal material generally consists of:
By liquid crystal substances such as organic halogen compounds and organic nitrile compounds having a structure represented by the following chemical formula (wherein R represents a halogen, an alkyl group, or a halogenated alkyl group, and the halogen is fluorine or chlorine) It is configured. Therefore, when liquid crystal displays and the like are disposed of, these organic compounds are released into the environment.

【0005】[0005]

【化1】[Chemical formula 1]

【0006】上記有機化合物の毒性は、PCBやトリク
レンなどに比べると大きくはないが、人体への蓄積性が
認められている。このため、近い将来において、液晶物
質の廃棄量増加に従って、生物に対する危険性は、一段
と高まるものと思われる。また、液晶化合物の構成元素
であるフッ素は、オゾン層を破壊して地球環境を悪化さ
せることが近年明らかになってきた。このため、液晶物
質の分解、無害化の方法が種々検討されている。
[0006] Although the toxicity of the above-mentioned organic compounds is not as great as that of PCB or trichlene, it is recognized that they accumulate in the human body. Therefore, in the near future, as the amount of discarded liquid crystal materials increases, the danger to living things is expected to further increase. Furthermore, it has recently become clear that fluorine, which is a constituent element of liquid crystal compounds, destroys the ozone layer and worsens the global environment. For this reason, various methods of decomposing and rendering harmless liquid crystal substances have been studied.

【0007】現在知られている有機ハロゲン化合物の分
解方法としては、PCBやトリクレン等の分解方法とし
て開発が進められている高温燃焼法、触媒燃焼法、水素
化分解法、電子線分解法、ナトリウム分解法、光触媒分
解法等が挙げられる。
Currently known methods for decomposing organic halogen compounds include the high-temperature combustion method, catalytic combustion method, hydrogenolysis method, electron beam decomposition method, which is currently being developed as a method for decomposing PCBs and trichlene, etc. Examples include decomposition methods, photocatalytic decomposition methods, and the like.

【0008】しかし、これらの分解方法にはそれぞれ実
用化を妨げる欠点がある。例えば、高温燃焼法において
は、分解効率が低く、多大なエネルギーの供給を必要と
するため、装置が大きくなり、運転コストも高くなる。 触媒燃焼法では、高温燃焼法に比べると分解効率が高く
、必要とされるエネルギーも少なくてすむため、経済性
は高いが、分解反応時に発生するハロゲン化物により、
触媒が急速に劣化するという問題点がある。水素化分解
法では、高温燃焼法と同様、分解効率が低く、必要とす
るエネルギーも大きい。また、発生するハロゲン化物に
より装置が腐食する危険性が、他の方法より大きい。電
子線分解法は、分解効率が最も低い方法であり、この方
法だけでは完全に分解することは困難である。ナトリウ
ム分解法においては、分解効率は高いが、ナトリウムの
取扱上の安全対策のために装置が大型化する欠点がある
However, each of these decomposition methods has drawbacks that hinder their practical application. For example, in the high-temperature combustion method, the decomposition efficiency is low and a large amount of energy needs to be supplied, resulting in large equipment and high operating costs. The catalytic combustion method has higher decomposition efficiency and requires less energy than the high-temperature combustion method, so it is highly economical, but due to the halides generated during the decomposition reaction,
There is a problem that the catalyst deteriorates rapidly. Like the high-temperature combustion method, the hydrocracking method has low cracking efficiency and requires a large amount of energy. In addition, the risk of corrosion of the equipment due to generated halides is greater than with other methods. Electron beam decomposition is the method with the lowest decomposition efficiency, and it is difficult to completely decompose with this method alone. Although the sodium decomposition method has high decomposition efficiency, it has the disadvantage that the equipment becomes large due to safety measures in handling sodium.

【0009】従って、液晶物質を含む廃棄物の処理に使
用可能な有機ハロゲン化合物の分解方法は未だなく、液
晶物質を含む廃棄物を分解・無害化するための実用化可
能な方法は完成されていない。
[0009] Therefore, there is still no method for decomposing organic halogen compounds that can be used to treat wastes containing liquid crystal substances, and a practical method for decomposing and rendering harmless wastes containing liquid crystal substances has not yet been completed. do not have.

【0010】0010

【発明が解決しようとする課題】上述したように、経済
性及び安全性を十分に満足させることができるような液
晶物質を含む廃棄物の処理方法はまだ完成されていない
SUMMARY OF THE INVENTION As mentioned above, a method for treating waste containing liquid crystal materials that satisfies economic efficiency and safety has not yet been completed.

【0011】本発明は、経済性、安全性に優れ、実用化
に充分対応できる液晶物質を含む廃棄物の処理方法を提
供することを目的とするものである。
[0011] An object of the present invention is to provide a method for treating waste containing liquid crystal substances that is excellent in economy and safety and can be put to practical use.

【0012】[発明の構成][Configuration of the invention]

【0013】[0013]

【課題を解決するための手段及び作用】上記目的を達成
するために、本発明者らは鋭意研究を重ねた結果、液晶
物質を含む廃棄物を水分の存在下で加熱すると廃棄物か
ら液晶物質が容易に分離されること、そして、貴金属触
媒成分及び卑金属触媒成分を含む触媒を用いると、分離
された液晶物質を効率よく分解できることを見いだし、
本発明を完成するに至った。
[Means and Effects for Solving the Problems] In order to achieve the above object, the present inventors have conducted intensive research and found that when waste containing liquid crystal material is heated in the presence of moisture, liquid crystal material is removed from the waste. have found that the separated liquid crystal substance can be easily separated, and that the separated liquid crystal substance can be efficiently decomposed by using a catalyst containing a noble metal catalyst component and a base metal catalyst component,
The present invention has now been completed.

【0014】本発明の液晶物質を含む廃棄物の処理方法
は、液晶物質を含む廃棄物を水分存在下で加熱して液晶
物質を廃棄物から分離する第1工程と、貴金属触媒成分
及び卑金属触媒成分を有する触媒を用いて分離した液晶
物質を加熱分解する第2工程とを備えている。
The method for treating waste containing a liquid crystal substance according to the present invention includes a first step of heating waste containing a liquid crystal substance in the presence of water to separate the liquid crystal substance from the waste, and a noble metal catalyst component and a base metal catalyst. and a second step of thermally decomposing the separated liquid crystal material using a catalyst having the components.

【0015】以下、本発明をさらに詳細に説明する。The present invention will be explained in more detail below.

【0016】液晶物質を含む廃棄物は、廃棄物から液晶
物質を分離する第1工程を経て、分離された液晶物質を
第2工程において触媒を用いて分解する。
The waste containing the liquid crystal material passes through a first step of separating the liquid crystal material from the waste, and the separated liquid crystal material is decomposed using a catalyst in the second step.

【0017】第1工程では、液晶物質を含む廃棄物に水
分を加えて加熱することにより、液晶物質が廃棄物から
容易に分離・抽出される。液晶材料は粘稠状態で基板に
付着しているが、廃棄物に水分を加えて加熱すると、液
晶物質が部分的に分解し、基板から分離され易くなる。 水分は、水蒸気を含む雰囲気、液体状態の水、あるいは
酸、アルカリ成分を含む水溶液のいずれの形で加えても
良い。アミン化合物などのアルカリ成分を溶解した水溶
液を用いると液晶物質の分解が促進されるので、より好
ましい。液晶物質は、200℃以上に加熱すると効果的
に廃棄物から分離する。200℃以下でも分離は起こる
が、加熱温度は高い方が好ましい。但し、基板等の液晶
物質以外のものからの分離性を考慮すると、基板材料等
の融点以下の温度であることが好ましい。従って、基板
材料として通常よく使用されるガラスの融点以下の温度
で液晶の分離を行う方が良い。なお、液晶物質の分離後
に基板に残存する液晶物質の量は微量であるので、液晶
分離後の基板は比較的安全に焼却処理などを行うことが
できると考えられる。
In the first step, the liquid crystal material is easily separated and extracted from the waste material by adding moisture to the waste material and heating it. The liquid crystal material adheres to the substrate in a viscous state, but when moisture is added to the waste and heated, the liquid crystal material partially decomposes and becomes easily separated from the substrate. Moisture may be added in the form of an atmosphere containing water vapor, liquid water, or an aqueous solution containing acid or alkali components. It is more preferable to use an aqueous solution in which an alkaline component such as an amine compound is dissolved, since this accelerates the decomposition of the liquid crystal substance. Liquid crystal materials are effectively separated from waste when heated above 200°C. Separation occurs even at temperatures below 200°C, but higher heating temperatures are preferred. However, in consideration of separation from things other than the liquid crystal material such as the substrate, the temperature is preferably below the melting point of the substrate material. Therefore, it is better to separate the liquid crystal at a temperature below the melting point of glass, which is commonly used as a substrate material. Note that since the amount of liquid crystal material remaining on the substrate after separation of the liquid crystal material is very small, it is considered that the substrate after liquid crystal separation can be relatively safely subjected to incineration treatment.

【0018】第2工程では、第1工程で分離された液晶
物質を触媒を用いて加熱分解・無害化する。この工程に
おける分解用触媒としては、貴金属触媒成分及び卑金属
触媒成分を多孔質担体層に担持した触媒が用いられる。 貴金属触媒成分としては、金、銀及び白金族元素が挙げ
られるが、このうち、白金、パラジウムが特に好ましく
、これらのうちの1つあるいはそれ以上が用いられる。 卑金属触媒成分としては、ニッケル、コバルト、希土類
元素、アルカリ土類元素、マグネシウム、シリコン、及
びこれらの酸化物が挙げられ、これらのうちの1つある
いはそれ以上が使用される。
In the second step, the liquid crystal substance separated in the first step is thermally decomposed and rendered harmless using a catalyst. As the decomposition catalyst in this step, a catalyst in which a noble metal catalyst component and a base metal catalyst component are supported on a porous carrier layer is used. Examples of the noble metal catalyst component include gold, silver, and platinum group elements, and among these, platinum and palladium are particularly preferred, and one or more of these are used. Base metal catalyst components include nickel, cobalt, rare earth elements, alkaline earth elements, magnesium, silicon, and oxides thereof, and one or more of these may be used.

【0019】分解用触媒において、貴金属触媒成分は主
に酸化触媒として分解反応を担当し、卑金属触媒成分は
水素化触媒として作用すると考えられる。従って、両触
媒成分を組み合わせることにより、酸化及び水素化の両
反応が行われ、更に、卑金属触媒は貴金属触媒成分のハ
ロゲン化物に対する耐被毒性を向上させ反応をサポート
すると考えられる。貴金属触媒成分及び卑金属触媒成分
はそれぞれ個別に担持させたものを合わせて用いても良
く、両成分が混在するような状態が好ましい。貴金属触
媒成分及び卑金属触媒成分を、チタニア及びジルコニア
などの酸化物粒子上に、同一粒子上に両触媒成分が存在
するように担持した触媒(以後、これらの担持触媒を複
合粒子触媒と記載する)では更に性能が向上する。これ
らにおいて、触媒の性能は、複合粒子触媒中の貴金属触
媒成分と卑金属触媒成分の担持位置関係によって異なる
と考えられる。
In the decomposition catalyst, the noble metal catalyst component is considered to be mainly responsible for the decomposition reaction as an oxidation catalyst, and the base metal catalyst component is considered to act as a hydrogenation catalyst. Therefore, by combining both catalyst components, both oxidation and hydrogenation reactions are carried out, and furthermore, the base metal catalyst is considered to improve the poisoning resistance of the noble metal catalyst component to halides and support the reaction. The noble metal catalyst component and the base metal catalyst component may be supported individually and used in combination, and a state where both components are mixed is preferable. A catalyst in which a noble metal catalyst component and a base metal catalyst component are supported on oxide particles such as titania and zirconia so that both catalyst components are present on the same particle (hereinafter, these supported catalysts are referred to as composite particle catalysts). This will further improve performance. In these cases, the performance of the catalyst is thought to vary depending on the supported positional relationship between the noble metal catalyst component and the base metal catalyst component in the composite particle catalyst.

【0020】上記の貴金属触媒成分と卑金属触媒成分と
の組成比は、0.1〜10であることが望ましい。この
理由は明らかではないが、この範囲においては両成分の
相乗効果が期待できるものと考えられる。
[0020] The composition ratio of the above-mentioned noble metal catalyst component and base metal catalyst component is preferably 0.1 to 10. Although the reason for this is not clear, it is thought that a synergistic effect between the two components can be expected within this range.

【0021】分解用触媒は、100℃以上、より好まし
くは200℃以上の温度において液晶物質を効率よく分
解する。
[0021] The decomposition catalyst efficiently decomposes the liquid crystal substance at a temperature of 100°C or higher, more preferably 200°C or higher.

【0022】第2工程において、水分の存在により、触
媒の分解効率が向上する。分解反応の際に供給される水
分の量は、液晶物質の種類や処理温度などによって異な
るが、気相状態では、液晶物質を完全に水素化分解して
メタン等にするのに必要とされる水素量に相当する水分
量の0.1〜1倍が好ましい。より好ましくは0.2〜
0.7倍量であり、約0.6倍量が最も好適である。水
分源としては、水分を含むものであれば種類を問わない
が、できる限り不純物の少ないものが好ましい。水分の
供給方法としては、キャリアガスで水分を搬送する方法
が一般的であるが、本発明においては、第1工程におい
て水分が供給されるので、あらためて供給する必要はな
い。水分量が制御可能であると、触媒活性を制御する上
で好ましい。また、第1工程における分離した液晶物質
を含んだ水に触媒を加えて液相で反応を行うことも可能
である。
In the second step, the presence of water improves the decomposition efficiency of the catalyst. The amount of water supplied during the decomposition reaction varies depending on the type of liquid crystal material and processing temperature, but in the gas phase, it is necessary to completely hydrogenoly decompose the liquid crystal material into methane, etc. The amount of water is preferably 0.1 to 1 times the amount of water corresponding to the amount of hydrogen. More preferably 0.2~
The amount is 0.7 times, and about 0.6 times the amount is most preferred. The moisture source may be of any type as long as it contains moisture, but one with as few impurities as possible is preferred. A common method for supplying moisture is to transport moisture using a carrier gas, but in the present invention, since moisture is supplied in the first step, there is no need to supply it again. It is preferable that the amount of water can be controlled in order to control the catalyst activity. It is also possible to add a catalyst to the water containing the liquid crystal substance separated in the first step to carry out the reaction in a liquid phase.

【0023】第2工程において、触媒を効率よく作用さ
せるためには酸素が存在することが好ましい。この酸素
の量は、液晶物質の種類や処理温度などにより異なるが
、液晶物質を完全に酸化するのに必要とされる量の0.
2〜0.7倍程度が好ましい。酸素源としては、酸素を
含む気体が好ましく、実用的には空気が使用される。触
媒活性を制御するために酸素量を制御する必要がある場
合は、高濃度の酸素を含む気体を使用することが望まし
い。
In the second step, it is preferable that oxygen be present in order for the catalyst to function efficiently. The amount of oxygen varies depending on the type of liquid crystal material, processing temperature, etc., but the amount of oxygen is 0.95% of the amount required to completely oxidize the liquid crystal material.
It is preferably about 2 to 0.7 times. As the oxygen source, a gas containing oxygen is preferred, and air is practically used. If it is necessary to control the amount of oxygen to control the catalyst activity, it is desirable to use a gas containing a high concentration of oxygen.

【0024】上記分解用触媒は、水分の存在下で液晶物
質を効率よく分解し、ハロゲン化物に対する耐被毒性も
良い。触媒による分解によって二酸化炭素、水等の無害
な酸化物や比較的処理が容易なハロゲン化水素、二酸化
窒素等が小量生じる。
The decomposition catalyst described above decomposes liquid crystal substances efficiently in the presence of moisture and has good poisoning resistance to halides. The catalytic decomposition produces small amounts of harmless oxides such as carbon dioxide and water, as well as hydrogen halides and nitrogen dioxide, which are relatively easy to treat.

【0025】[0025]

【実施例】以下、本発明の液晶物質を含む廃棄物の処理
方法を具現化する装置を用いて行った実施例及び比較例
により、本発明をさらに詳細に説明する。
EXAMPLES The present invention will be explained in more detail below with reference to Examples and Comparative Examples conducted using an apparatus embodying the method for treating waste containing a liquid crystal substance of the present invention.

【0026】図1は、本発明の処理方法によって液晶物
質を含む廃棄物を処理するための装置10を模式的に示
したものである。この処理装置10は、抽出槽11、ガ
ス流路12、予熱槽13及び触媒槽14を備えている。 液晶物質を含む廃棄物は抽出槽11に入れられ、水分の
存在下、密閉状態で加熱され、液晶物質が基板等から分
離される。分離された液晶物質を含む水をバブリングす
ることにより、液晶物質を含んだガスが、ガス流路12
を通り、予熱槽13で分解反応温度に調整されて触媒槽
14へ送られる。ガス中の液晶物質は、触媒槽14内で
分解され、液晶濃度の測定を経たガスは、安全のために
設けられている活性炭吸着塔15を通って煙突16より
排出される。
FIG. 1 schematically shows an apparatus 10 for treating waste containing liquid crystal materials according to the treatment method of the present invention. This processing device 10 includes an extraction tank 11, a gas flow path 12, a preheating tank 13, and a catalyst tank 14. The waste containing the liquid crystal material is placed in an extraction tank 11 and heated in a closed state in the presence of moisture to separate the liquid crystal material from the substrates and the like. By bubbling the water containing the separated liquid crystal substance, the gas containing the liquid crystal substance flows into the gas flow path 12.
The gas is adjusted to the decomposition reaction temperature in a preheating tank 13 and sent to a catalyst tank 14. The liquid crystal substance in the gas is decomposed in the catalyst tank 14, and the gas whose liquid crystal concentration has been measured is discharged from the chimney 16 through an activated carbon adsorption tower 15 provided for safety.

【0027】図2は、本発明の他の処理方法によって廃
棄物を処理する装置20を示したものである。この処理
装置20においては、処理装置10と同様に液晶物質を
含む廃棄物と水を抽出槽21に入れて密閉状態で加熱し
て液晶物質を分離した後に、得られた液晶物質を含んだ
水に対して分解処理が施される。即ち、液晶物質を含ん
だ水は、液流路22を通して分解用触媒が備えられた分
解槽24へ送られて、分解槽24において閉鎖系で分解
反応が行われる。
FIG. 2 shows an apparatus 20 for treating waste according to another treatment method of the present invention. In this processing device 20, similarly to the processing device 10, waste containing a liquid crystal substance and water are placed in an extraction tank 21 and heated in a sealed state to separate the liquid crystal substance, and then the obtained liquid crystal substance-containing water is Decomposition processing is performed on. That is, the water containing the liquid crystal substance is sent through the liquid channel 22 to a decomposition tank 24 equipped with a decomposition catalyst, and a decomposition reaction is performed in the decomposition tank 24 in a closed system.

【0028】上記の装置を用いて、以下のように液晶表
示器の処理試験を行った。尚、試験に用いた液晶表示器
は、A(ZLI−1132、MERCK社製)、B(Z
LI−1370、MERCK社製)、C(ZLI−17
38、MERCK社製)、D(DOX−1083、RO
DIK社製)、E(DOX−1082、RODIK社製
)、F(E−90、BDH社製)、G(E−100、B
DH社製)及びH(E−110、BDH社製)である。
Using the above apparatus, a liquid crystal display processing test was conducted as follows. The liquid crystal displays used in the test were A (ZLI-1132, manufactured by MERCK) and B (ZLI-1132, manufactured by MERCK).
LI-1370, manufactured by MERCK), C (ZLI-17
38, MERCK), D (DOX-1083, RO
DIK), E (DOX-1082, RODIK), F (E-90, BDH), G (E-100, B
(manufactured by DH) and H (E-110, manufactured by BDH).

【0029】実施例1 図1の処理装置を用いて、以下の実験を行った。Example 1 The following experiment was conducted using the processing apparatus shown in FIG.

【0030】液晶物質を含む廃棄物として、ワードプロ
フェッサーから取り出した液晶表示器A10枚を、水2
0g(液晶物質に対して30wt%)と共に抽出槽1に
入れ、密閉状態で200℃に1時間加熱した。その後、
キャリア用空気で液晶物質を溶解した水をバブリングし
て、液晶物質を含むガスを得た。このガス(流量6l/
min.,液晶物質濃度1.0%)を、予熱槽3で50
0℃に加熱し、触媒槽4に供給した。触媒槽4中には、
パラジウム触媒及び酸化ニッケル触媒(組成比1:1)
を充填した。触媒槽のサイズは、直径3cm、長さ5c
mである。 触媒槽4から排出されたガス中の液晶物質濃度を測定し
、活性炭吸着塔5を通して煙突6から外気に排出した。
As waste containing liquid crystal substances, 10 pieces of liquid crystal display A taken out from a word processor were soaked in 2 parts of water.
0 g (30 wt% based on the liquid crystal material) was placed in the extraction tank 1 and heated at 200° C. for 1 hour in a closed state. after that,
A gas containing a liquid crystal substance was obtained by bubbling water in which a liquid crystal substance was dissolved with carrier air. This gas (flow rate 6l/
min. , liquid crystal material concentration 1.0%) in preheating tank 3.
It was heated to 0°C and supplied to the catalyst tank 4. In the catalyst tank 4,
Palladium catalyst and nickel oxide catalyst (composition ratio 1:1)
filled with. The size of the catalyst tank is 3 cm in diameter and 5 cm in length.
It is m. The concentration of liquid crystal substance in the gas discharged from the catalyst tank 4 was measured, and the gas was discharged to the outside air from the chimney 6 through the activated carbon adsorption tower 5.

【0031】抽出槽1内の処理済み基板残査中の残存液
晶物質の量(重量比)を測定した。この結果を表1に示
す。
The amount (weight ratio) of the remaining liquid crystal substance in the treated substrate residue in the extraction tank 1 was measured. The results are shown in Table 1.

【0032】実施例2〜22 実施例1と同じ装置を用いて、液晶試料の種類、第1工
程で供給される水分の量及び性質、第2工程における水
分量、触媒の種類を変えて、実施例1と同様の試験を行
い、処理済み残査中の液晶物質の量及び触媒槽から排出
されるガス中の液晶物質濃度を測定した。実施例中、複
合粒子触媒は、パラジウム及び酸化ニッケル(組成比1
:1)を通常用いられる方法によりチタニア粒子に担持
させたものを使用した。これらの結果を表1に示す。
Examples 2 to 22 Using the same apparatus as in Example 1, the type of liquid crystal sample, the amount and nature of the water supplied in the first step, the amount of water in the second step, and the type of catalyst were changed. The same test as in Example 1 was conducted to measure the amount of liquid crystal material in the treated residue and the concentration of liquid crystal material in the gas discharged from the catalyst tank. In the examples, the composite particle catalyst contained palladium and nickel oxide (composition ratio 1
:1) was supported on titania particles by a commonly used method. These results are shown in Table 1.

【0033】表1において、第1工程で水分存在下で液
晶物質を分離させた後の残査中の残存液晶物質の量は、
重量比にして0.3ppm 以下であった。又、第2工
程において、水分の存在下で貴金属触媒成分と非金属触
媒成分を組合せた触媒を使用した時の排ガス中の液晶物
質濃度は、0.3ppm 以下であった。
In Table 1, the amount of remaining liquid crystal material in the residue after separating the liquid crystal material in the presence of water in the first step is:
The weight ratio was 0.3 ppm or less. Further, in the second step, when a catalyst containing a combination of a noble metal catalyst component and a non-metal catalyst component was used in the presence of moisture, the concentration of liquid crystal substance in the exhaust gas was 0.3 ppm or less.

【0034】[0034]

【表1】[Table 1]

【0035】実施例23 図2に示される処理装置を用いて、以下の実験を行った
Example 23 The following experiment was conducted using the processing apparatus shown in FIG.

【0036】液晶物質を含む廃棄物として液晶表示器A
10枚を、水20gと共に抽出槽1に入れ、密閉状態で
200℃に1時間加熱して、液晶物質を含む水を得た。 液晶物質を含む水(水量10 l,液晶物質濃度2.0
wt%)を、触媒を入れた分解槽24に入れ、閉鎖系で
200℃に30分間加熱した。触媒は、パラジウム及び
酸化ニッケル(組成比1:1)を常法によりチタニア粒
子に担持した複合粒子触媒(50g)を用いた。
Liquid crystal display A as waste containing liquid crystal material
The 10 sheets were placed in an extraction tank 1 together with 20 g of water and heated at 200° C. for 1 hour in a closed state to obtain water containing a liquid crystal substance. Water containing liquid crystal substance (water volume 10 l, liquid crystal substance concentration 2.0
wt%) was placed in a decomposition tank 24 containing a catalyst and heated to 200° C. for 30 minutes in a closed system. The catalyst used was a composite particle catalyst (50 g) in which palladium and nickel oxide (composition ratio 1:1) were supported on titania particles by a conventional method.

【0037】抽出槽1内の処理済み残査中の残存液晶物
質の量(重量比)及び分解槽24内の水溶液の液晶物質
濃度を測定した。この結果を表2に示す。
The amount (weight ratio) of the remaining liquid crystal substance in the treated residue in the extraction tank 1 and the concentration of the liquid crystal substance in the aqueous solution in the decomposition tank 24 were measured. The results are shown in Table 2.

【0038】実施例24〜35実施例23と同じ装置を
用いて、液晶試料の種類、第1工程における水溶液の性
質、第2工程における反応温度、触媒の種類を変えて、
実施例23と同様の試験を行い、処理済み残査中の液晶
物質の量及び分解槽24内の水溶液の液晶物質濃度を測
定した。この結果を表2に示す。
Examples 24 to 35 Using the same apparatus as in Example 23, the type of liquid crystal sample, the nature of the aqueous solution in the first step, the reaction temperature in the second step, and the type of catalyst were changed.
A test similar to that in Example 23 was conducted, and the amount of liquid crystal material in the treated residue and the concentration of liquid crystal material in the aqueous solution in the decomposition tank 24 were measured. The results are shown in Table 2.

【0039】表2において、液晶物質を含む水溶液を分
解用触媒を用いて加熱処理した後の水溶液中の液晶濃度
は0.1ppm 以下であった。
In Table 2, the concentration of liquid crystal in the aqueous solution after heat-treating the aqueous solution containing the liquid crystal substance using a decomposition catalyst was 0.1 ppm or less.

【0040】[0040]

【表2】[Table 2]

【0041】比較例1〜20 実施例1と同じ装置を用いて、触媒の種類を変えた場合
及び触媒を用いない場合、第1工程又は第2工程におい
て水分を用いない場合について、実施例1〜22と同様
の方法で試験を行った。抽出槽1内の処理済み残査中の
残存液晶物質の量(重量比)及び触媒槽4から排出され
るガス中の液晶物質濃度を測定した。この結果を表3に
示す。
Comparative Examples 1 to 20 Using the same equipment as in Example 1, Example 1 was prepared with different types of catalyst, no catalyst, and no water in the first or second step. The test was conducted in the same manner as in 22. The amount (weight ratio) of the remaining liquid crystal substance in the treated residue in the extraction tank 1 and the concentration of the liquid crystal substance in the gas discharged from the catalyst tank 4 were measured. The results are shown in Table 3.

【0042】表3において、第1工程で水分を用いない
場合、処理済み残査中の残存液晶物質の量は2000p
pm であった。又、第2工程において、水分を用いな
い場合、及び、貴金属触媒あるいは卑金属触媒を単独で
使用した場合の各々において、触媒槽からの排出ガス中
の液晶物質濃度は10ppm を越えていた。
In Table 3, when no water is used in the first step, the amount of residual liquid crystal material in the treated residue is 2000p.
It was pm. In addition, in the second step, the concentration of liquid crystal substance in the exhaust gas from the catalyst tank exceeded 10 ppm in each case where no moisture was used and when a noble metal catalyst or a base metal catalyst was used alone.

【0043】[0043]

【表3】[Table 3]

【0044】比較例21〜30 実施例23と同じ装置を用いて、触媒の種類を変えた場
合及び触媒を用いない場合について、第1工程における
水溶液の性質及び第2工程における反応温度を変えて、
同様の試験を行った。抽出槽1内の処理済み残査中の残
存液晶物質量及び分解槽24内の水溶液の液晶物質濃度
を測定した。この結果を表4に示す。
Comparative Examples 21 to 30 Using the same equipment as in Example 23, the nature of the aqueous solution in the first step and the reaction temperature in the second step were changed for cases where the type of catalyst was changed or when no catalyst was used. ,
A similar test was conducted. The amount of remaining liquid crystal substance in the treated residue in extraction tank 1 and the concentration of liquid crystal substance in the aqueous solution in decomposition tank 24 were measured. The results are shown in Table 4.

【0045】表4において、貴金属触媒あるいは卑金属
触媒を単独で使用した場合、処理後の水溶液中の液晶物
質濃度は50ppm 以上であった。触媒を用いない場
合においては、300ppm 以上であった。
In Table 4, when a noble metal catalyst or a base metal catalyst was used alone, the concentration of the liquid crystal substance in the aqueous solution after treatment was 50 ppm or more. When no catalyst was used, it was 300 ppm or more.

【0046】[0046]

【表4】[Table 4]

【0047】[0047]

【発明の効果】以上の説明で明らかなように、本発明の
液晶物質を含む廃棄物の処理方法によって、液晶物質は
容易に分離・抽出され、効率良く分解することができる
ので、経済性に優れ、その工業的価値は極めて大である
[Effects of the Invention] As is clear from the above explanation, the method for treating waste containing liquid crystal substances of the present invention allows liquid crystal substances to be easily separated and extracted and efficiently decomposed, resulting in economic efficiency. It is excellent and its industrial value is extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の処理方法を実施するための装置の一例
を示す模式図である。
FIG. 1 is a schematic diagram showing an example of an apparatus for carrying out the processing method of the present invention.

【図2】本発明の他の処理方法を実施するための装置を
示す模式図である。
FIG. 2 is a schematic diagram showing an apparatus for carrying out another treatment method of the present invention.

【符号の説明】[Explanation of symbols]

10  処理装置 11  抽出槽 12  ガス流路 13  予熱槽 14  触媒槽 15  活性炭吸着塔 16  煙突 20  処理装置 21  抽出槽 22  液流路 24  分解槽 10 Processing equipment 11 Extraction tank 12 Gas flow path 13 Preheating tank 14 Catalyst tank 15 Activated carbon adsorption tower 16 Chimney 20 Processing equipment 21 Extraction tank 22 Liquid flow path 24 Decomposition tank

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  液晶物質を含む廃棄物を水分存在下で
加熱して液晶物質を廃棄物から分離する第1工程と、貴
金属触媒成分及び卑金属触媒成分を有する触媒を用いて
分離した液晶物質を加熱分解する第2工程とを備えるこ
とを特徴とする液晶物質を含む廃棄物の処理方法。
Claim 1: A first step of heating waste containing a liquid crystal substance in the presence of water to separate the liquid crystal substance from the waste; and separating the liquid crystal substance using a catalyst having a noble metal catalyst component and a base metal catalyst component. A method for treating waste containing a liquid crystal substance, comprising a second step of thermal decomposition.
JP3019958A 1991-02-13 1991-02-13 Treatment of waste refuse containing liquid crystal substance Pending JPH04260486A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3019958A JPH04260486A (en) 1991-02-13 1991-02-13 Treatment of waste refuse containing liquid crystal substance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3019958A JPH04260486A (en) 1991-02-13 1991-02-13 Treatment of waste refuse containing liquid crystal substance

Publications (1)

Publication Number Publication Date
JPH04260486A true JPH04260486A (en) 1992-09-16

Family

ID=12013709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3019958A Pending JPH04260486A (en) 1991-02-13 1991-02-13 Treatment of waste refuse containing liquid crystal substance

Country Status (1)

Country Link
JP (1) JPH04260486A (en)

Similar Documents

Publication Publication Date Title
JP4505688B2 (en) Novel photocatalyst and method for producing the same
JPS625008A (en) Method of decomposing noxious organic halide
EP0625368B1 (en) Process for cleaning harmful gas
JPH0531485B2 (en)
JPH04260486A (en) Treatment of waste refuse containing liquid crystal substance
JPH08243351A (en) Decomposition method of organic chlorine compound
US5332496A (en) System for performing catalytic dehalogenation of aqueous and/or non-aqueous streams
JPH10249165A (en) Treatment of ammonia-containing gas
JP2001259607A (en) Treatment method and apparatus for heavy metal or organic chlorine compound
JPH0249798B2 (en) JUKIKAGOBUTSUGANJUSUINOSHORIHOHO
JP2001070470A (en) Cracking and non-polluting treatment of hazardous organic compound and apparatus therefor
JP3442623B2 (en) Decomposition method of halogen-containing organic compounds
JP2003001277A (en) Method for decomposing persistent substance
JP4537539B2 (en) Decomposition treatment method and treatment equipment for hazardous substances
JPS63171623A (en) Removing method for nitrogen oxide
JPH04122419A (en) Organic halide compound decomposing method and decomposing catalyst
JPH0249158B2 (en)
JP3228459B2 (en) Decomposition method of halide gas
CZ302209B6 (en) Decomposition method of chlorine-containing organic compound comprised in combustion products and catalyst used in this method
JPH08168752A (en) Treatment of aromatic halogen compound contained in soil
JP2005161216A (en) Method for purifying gas containing harmful organic matter by irradiation with electron beam
JPH081140A (en) Treatment of aromatic halogen compound in earth
JP2001293465A (en) Treating agent and treating method for contaminated medium
JP2001347159A (en) Method for transforming halogen of organic halide and organic compound to inorganic substance and apparatus for the same
JPH07328595A (en) Purification of soil contaminated with aromatic halogen compound