JPH04260424A - Manufacture of porous polysulfone hollow fiber membrane having high strength - Google Patents

Manufacture of porous polysulfone hollow fiber membrane having high strength

Info

Publication number
JPH04260424A
JPH04260424A JP2100991A JP2100991A JPH04260424A JP H04260424 A JPH04260424 A JP H04260424A JP 2100991 A JP2100991 A JP 2100991A JP 2100991 A JP2100991 A JP 2100991A JP H04260424 A JPH04260424 A JP H04260424A
Authority
JP
Japan
Prior art keywords
hollow fiber
fiber membrane
polysulfone
solution
polyethylene glycol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2100991A
Other languages
Japanese (ja)
Other versions
JP2675197B2 (en
Inventor
Tamiyuki Eguchi
江口 民行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP3021009A priority Critical patent/JP2675197B2/en
Publication of JPH04260424A publication Critical patent/JPH04260424A/en
Application granted granted Critical
Publication of JP2675197B2 publication Critical patent/JP2675197B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/66Polymers having sulfur in the main chain, with or without nitrogen, oxygen or carbon only
    • B01D71/68Polysulfones; Polyethersulfones

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Artificial Filaments (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To obtain a polysulfone hollow fiber membrane having a network structure whose inside comprises three-dimensionally continuous, thick branches and satisfying a high strength and a high rate of filtration at the same time. CONSTITUTION:A polysulfone hollow fiber membrane is manufactured from a spinning stock solution which is prepared by dissolving polysulfone in a solution of polyethylene glycol having a number-average molecular weight of 150,000-2,000,000 according to the dry and wet spinning.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、ポリスルホン中空糸膜
の製法に関する。さらに詳しくは、中空糸の内表面およ
び外表面に形の揃った孔を有する高強度・多孔質ポリス
ルホン中空糸膜の製法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing polysulfone hollow fiber membranes. More specifically, the present invention relates to a method for producing a high-strength, porous polysulfone hollow fiber membrane having uniformly shaped pores on the inner and outer surfaces of the hollow fibers.

【0002】0002

【従来の技術】ポリスルホン中空糸膜は、その優れた耐
熱性と耐薬品性が認められて、工業的な精密瀘過または
限外瀘過に広く利用されている。
BACKGROUND OF THE INVENTION Polysulfone hollow fiber membranes are widely used in industrial precision filtration or ultrafiltration because of their excellent heat resistance and chemical resistance.

【0003】従来のポリスルホン中空糸膜は、いわゆる
乾湿式紡糸法によって製造されている。この方法は、基
本的にはポリスルホンの均一またはほぼ均一な溶液を二
重ノズルから芯液とともに空気中に押し出したのち、凝
固液に浸す工程からなる。
Conventional polysulfone hollow fiber membranes are manufactured by a so-called dry-wet spinning method. This method basically consists of a step in which a homogeneous or nearly homogeneous solution of polysulfone is extruded into the air together with a core liquid through a double nozzle, and then immersed in a coagulation liquid.

【0004】これまで前記各工程について、主に膜の透
過性能の向上を目的とした多数の改良が加えられてきて
いる。
[0004] Up to now, many improvements have been made to each of the above steps, mainly for the purpose of improving the permeation performance of the membrane.

【0005】以下に本発明にかかわりのある、比較的大
きな孔を有するポリスルホン中空糸膜に関する従来の技
術について説明する。
[0005] The conventional technology related to polysulfone hollow fiber membranes having relatively large pores, which is related to the present invention, will be explained below.

【0006】従来の技術において、紡糸原液としては、
芳香族ポリスルホンをその良溶剤と添加剤との混合液に
溶解させた溶液が通常用いられている。
[0006] In the conventional technology, the spinning dope is as follows:
A solution in which aromatic polysulfone is dissolved in a mixture of its good solvent and additives is usually used.

【0007】前記良溶剤としては、水溶性で高沸点のジ
メチルホルムアミド、ジメチルアセトアミド、N−メチ
ル−2− ピロリドンなどが用いられている。
As the good solvent, dimethylformamide, dimethylacetamide, N-methyl-2-pyrrolidone, etc., which are water-soluble and have a high boiling point, are used.

【0008】前記添加剤としては、ポリスルホンの非溶
剤、たとえば炭素数が2〜4の多価アルコール(特開昭
56−15270号、同60−222112 号各公報
参照)や水溶性の造孔剤、たとえばポリエチレングリコ
ール(特開昭54−26283号、同57−35906
号、同58−114702号各公報参照)、ポリビニル
ピロリドン(特開昭61−93801号、同61−23
8306号、同63−97205号各公報参照)などが
使用されている。
The additives include polysulfone non-solvents, such as polyhydric alcohols having 2 to 4 carbon atoms (see JP-A-56-15270 and JP-A-60-222112), and water-soluble pore-forming agents. , for example, polyethylene glycol (JP-A-54-26283, JP-A-57-35906)
JP-A-61-93801, JP-A No. 61-23)
No. 8306 and No. 63-97205) are used.

【0009】前記芯液としては、ポリスルホンの非溶剤
、たとえば水または良溶剤の水溶液が使用されている。
As the core liquid, a non-solvent of polysulfone, such as water, or an aqueous solution of a good solvent is used.

【0010】紡糸原液の温度は、紡糸原液が均一または
ほぼ均一な状態になる範囲で一定に保持される。
[0010] The temperature of the spinning dope is kept constant within a range where the spinning dope becomes uniform or almost uniform.

【0011】空中の走行距離は通常数cm/数十cmに
設定される。
[0011] The traveling distance in the air is usually set to several cm/several tens of cm.

【0012】凝固液には、芯液と同様に、水または良溶
剤の水溶液が通常使用され、凝固液の温度は、室温から
70℃程度の範囲に設定される。
As with the core liquid, water or an aqueous solution of a good solvent is usually used as the coagulating liquid, and the temperature of the coagulating liquid is set in a range from room temperature to about 70°C.

【0013】紡糸速度は通常20〜70m /分である
[0013] The spinning speed is usually 20 to 70 m/min.

【0014】このような方法で製造された中空糸膜の構
造をさらに安定にして、乾燥しても瀘過性能を失わない
ようにするために、80℃以上の温水に浸す処理が加え
られることもある(特開昭57−71606号公報参照
)。
[0014] In order to further stabilize the structure of the hollow fiber membrane produced by such a method and to prevent the membrane from losing its filtration performance even when dried, a process of soaking it in hot water of 80° C. or higher is added. There are also (see Japanese Patent Application Laid-open No. 71606/1983).

【0015】本発明にとくにかかわりのある従来の技術
の概要は以上のとおりであるが、つぎにこれらの問題点
についてのべる。
[0015] The outline of the conventional techniques particularly related to the present invention is as above, and the problems of these will be discussed next.

【0016】[0016]

【発明が解決しようとする課題】前記のように、芳香族
ポリスルホン中空糸膜は、耐熱性と耐薬品性に優れ、限
外瀘過から精密瀘過まで工業的に広く使用されている。 それにともない熱水滅菌や蒸気滅菌のような急激な温度
変化に耐えるもの、従来のいわゆるプリーツ型カートリ
ッジフィルターとおなじように過酷な取扱いを受ける用
途にも使えるものなどが要求されるようになってきてい
る。
As mentioned above, aromatic polysulfone hollow fiber membranes have excellent heat resistance and chemical resistance, and are widely used industrially for everything from ultrafiltration to precision filtration. As a result, there is a growing demand for filters that can withstand rapid temperature changes such as hot water sterilization and steam sterilization, and that can be used in applications that are subjected to harsh handling like conventional pleated cartridge filters. There is.

【0017】しかしながら、従来の製法は膜の瀘過性能
の向上に注力して開発されたものであるために、中空糸
膜の破断強度およびとりわけ破断時の伸びが小さく、前
記のような急激な温度変化や過酷な取扱いを受ける用途
では、しばしばポリスルホン中空糸膜が破断することが
指摘されている。
[0017] However, because the conventional manufacturing method was developed with emphasis on improving the filtration performance of the membrane, the breaking strength and especially the elongation at break of the hollow fiber membrane are low, and the rapid increase as described above is low. It has been pointed out that polysulfone hollow fiber membranes often break in applications where they are subjected to temperature changes or harsh handling.

【0018】たとえば、特開昭57−35906号公報
、同58−114702 号公報では、瀘過速度を大き
くするために、ポリスルホンのジメチルホルムアミドな
どの溶液に、高温(たとえば80〜 130℃)では溶
液が相分離して白濁するほど多量の平均分子量が400
 〜20000 のポリエチレングリコールを添加し、
これを冷却してえられる均一な溶液が、紡糸原液として
用いられている。この紡糸原液から製造される中空糸膜
は、特開昭58−114702 号公報の第6図にも示
されているように、連続していない細い枝も多数見られ
る網状構造を有するため、引っ張り強度、破断時の伸び
ともに小さく、とくに破断時の伸びは25%にも達しな
い。
For example, in JP-A-57-35906 and JP-A-58-114702, in order to increase the filtration rate, a solution of polysulfone such as dimethylformamide is The average molecular weight is so large that it phase separates and becomes cloudy.
~20,000 polyethylene glycol was added,
A uniform solution obtained by cooling this is used as a spinning dope. As shown in Figure 6 of JP-A-58-114702, the hollow fiber membrane produced from this spinning dope has a network structure with many discontinuous thin branches, so it is difficult to Both the strength and the elongation at break are low, especially the elongation at break does not reach 25%.

【0019】また、特開昭60−222112 号公報
には、孔径を大きくするために、紡糸原液としてポリス
ルホンのN−メチル−2− ピロリドンなどの溶液に、
室温以下の温度では溶液が相分離するようにプロピレン
グリコールなどの非溶剤を加え、これを加温して均一な
溶液にしたものが用いられている。この紡糸原液から製
造される中空糸膜は、同公報の第9図にも示されている
ように、枝がとぎれることなく高度に発達した網状構造
を有するため、破断時の伸びは大きく 100%にも達
するものもある。
Furthermore, Japanese Patent Application Laid-Open No. 60-222112 discloses that in order to increase the pore diameter, a solution of polysulfone such as N-methyl-2-pyrrolidone is added as a spinning stock solution.
A non-solvent such as propylene glycol is added so that the solution phase separates at temperatures below room temperature, and this is heated to form a homogeneous solution. As shown in Figure 9 of the same publication, the hollow fiber membrane produced from this spinning dope has a highly developed network structure with uninterrupted branches, so the elongation at break is large and can reach 100%. Some even reach.

【0020】しかしながら、さらに強度を上げるために
紡糸原液中のポリスルホン濃度を高くし、中空糸の肉厚
も大きくすると、膜内部は網状構造からセル構造へと変
化し、瀘過速度が著しく低下する。
However, when the polysulfone concentration in the spinning dope is increased and the thickness of the hollow fibers is also increased in order to further increase the strength, the inside of the membrane changes from a network structure to a cell structure, and the filtration rate decreases significantly. .

【0021】したがって、この方法でも満足できる引っ
張り強度を有する膜はえられない。
[0021] Therefore, even with this method, a film having satisfactory tensile strength cannot be obtained.

【0022】一方、添加剤としてポリビニルピロリドン
を使用した特開昭61−93801号、同61−238
306 号、同63−97205号の各公報に記載の中
空糸膜にも、前記特開昭57−35906号公報などに
おいてポリエチレングリコールを添加したばあいと同様
の問題がある。
On the other hand, JP-A-61-93801 and JP-A-61-238 using polyvinylpyrrolidone as an additive
The hollow fiber membranes described in JP-A No. 306 and JP-A No. 63-97205 also have the same problems as those described in JP-A-57-35906 and the like when polyethylene glycol is added.

【0023】また、一般に限外瀘過用に使用されている
マクロボイドを内部に有する中空糸膜はマクロボイドの
ないものに比べて強度が小さい。
[0023] Furthermore, hollow fiber membranes having macrovoids inside, which are generally used for ultrafiltration, have lower strength than those without macrovoids.

【0024】従来の技術の他の問題点は、中空糸膜の内
面または外面の孔の形が不揃いで均一性に乏しいことで
ある。たとえば特開昭57−35906号公報および同
58−114702 号公報に記載の中空糸膜の内面に
は、長さや幅が不揃いのスリット状の孔があり、また、
外面の孔も形が不揃いである(たとえば特開昭58−1
14702 号公報の第4図および第5図)。このよう
な不揃いな形の孔を有する中空糸膜は、孔径を大きくし
たばあいには分画分子量や瀘過速度のごとき瀘過性能の
再現性が乏しくなる。
Another problem with the prior art is that the pores on the inner or outer surface of the hollow fiber membrane are irregular in shape and lack uniformity. For example, the hollow fiber membranes described in JP-A-57-35906 and JP-A-58-114702 have slit-like holes with irregular lengths and widths on their inner surfaces.
The holes on the outer surface are also irregular in shape (for example, in JP-A-58-1
(Figures 4 and 5 of Publication No. 14702). In hollow fiber membranes having such irregularly shaped pores, when the pore diameter is increased, the reproducibility of filtration performance such as molecular weight cutoff and filtration rate becomes poor.

【0025】添加剤としてポリビニルピロリドンを用い
た特開昭61−23806号公報、同63−97205
 号公報にも前記と同様の問題がある。
[0025] JP-A-61-23806 and JP-A-63-97205 using polyvinylpyrrolidone as an additive
This publication also has the same problem as above.

【0026】本発明は、前述の問題を解決するためにな
されたものであり、引っ張り強度、破断時の伸びともに
従来の中空糸膜よりも格段に大きく、しかも内面・外面
に形の揃った均一な孔を有する中空糸膜をうることを目
的とする。
The present invention has been made to solve the above-mentioned problems, and has significantly greater tensile strength and elongation at break than conventional hollow fiber membranes, and has a uniform shape on the inner and outer surfaces. The purpose of this invention is to obtain a hollow fiber membrane having large pores.

【0027】[0027]

【課題を解決するための手段】本発明者は、前記目的を
達成するため鋭意検討を重ねた結果、以下の考え方に到
達した。
[Means for Solving the Problems] As a result of intensive studies to achieve the above object, the inventors have arrived at the following idea.

【0028】すなわち、前述のごとく、中空糸膜の構造
と強度および瀘過速度との関係については、■内部が連
続していない枝もある細い枝からなる網状構造の中空糸
膜は、瀘過速度は大きいが、引っ張り強度およびとくに
破断時の伸びが小さい■内部がセル構造の中空糸膜は、
引っ張り強度、破断時の伸びともに大きいが、瀘過速度
が小さいしたがって、■、■の構造の間に強度、瀘過速
度ともに大きい中空糸膜が存在すると考えられる。
That is, as mentioned above, regarding the relationship between the structure, strength, and filtration rate of hollow fiber membranes, ① Hollow fiber membranes with a network structure consisting of thin branches, some of which are not continuous inside, have a high filtration rate. The speed is high, but the tensile strength and especially the elongation at break are low. ■Hollow fiber membranes with a cellular structure inside are
Both the tensile strength and the elongation at break are high, but the filtration rate is low.Therefore, it is thought that a hollow fiber membrane with a high strength and filtration rate exists between the structures (1) and (2).

【0029】また、内面および外面の孔の形の均一性に
ついては、従来の方法では、いずれも重合度が数十とい
う比較的小さいポリスルホンが用いられており、重合度
の小さいポリスルホン分子はノズルから押し出されると
きに高度に配向する結果、凝固力の強い芯液と接触した
ときにはその配向状態がほぼそのまま固定され、特開昭
58−114702 号公報の第4図に示されているよ
うにスリット状の孔が形成される一方、凝固力の弱い芯
液と接触したときには、ポリスルホンは近接の分子同士
の間では分子間凝集力が強いが、分子量が小さいので凝
集が遠距離には及ばず局所的に凝集したものの集合状態
(孔の形が一定しない不揃いな状態)が形成され、特開
昭60−222112 号公報の第6図に示されている
ようになると考えられるしたがって、孔の形を揃えるた
めには、ノズルから出るときにポリスルホン分子が配向
しないような、また、ポリスルホンが局所的に凝集しな
いような紡糸原液を調製しなければならないと考えられ
る。
Regarding the uniformity of the pore shapes on the inner and outer surfaces, conventional methods use polysulfone with a relatively small degree of polymerization of several tens of degrees, and polysulfone molecules with a low degree of polymerization are removed from the nozzle. As a result of being highly oriented when extruded, when it comes into contact with the core liquid, which has a strong coagulating force, the orientation state is almost fixed as it is, and as shown in Figure 4 of JP-A-58-114702, a slit-like shape is formed. On the other hand, when polysulfone comes into contact with a core liquid that has weak coagulation power, intermolecular cohesion is strong between nearby molecules, but because the molecular weight is small, aggregation does not extend over long distances and is localized. It is thought that an agglomerated state (an irregular state in which the shape of the pores is not constant) is formed, as shown in Fig. 6 of JP-A No. 60-222112. In order to achieve this, it is considered necessary to prepare a spinning stock solution that does not orient the polysulfone molecules when exiting from the nozzle and prevents the polysulfone from locally aggregating.

【0030】なお、前記従来の方法では、いずれも重合
度が数十という比較的小さいポリスルホンが用いられて
おり、また、その溶液の特性に関して、濃度および組成
についても詳しく説明されており、さらに、相分離温度
や常識的な粘度についても説明されているが、それ以外
の説明、すなわち、中空糸膜の特性と紡糸原液の特性と
の関連については前記以外の説明はないし、示唆もない
のである。
[0030] In all of the above conventional methods, polysulfone with a relatively small degree of polymerization of several tens of degrees is used, and the concentration and composition of the solution are also explained in detail. Although the phase separation temperature and common sense viscosity are also explained, there is no other explanation or suggestion regarding the relationship between the characteristics of the hollow fiber membrane and the characteristics of the spinning dope. .

【0031】本発明者は、前記考え方にしたがって、前
記2つの問題を同時に解決した中空糸膜をうるべく検討
を重ねた結果、添加剤のポリエチレングリコールの分子
量を広範に変えた紡糸原液を用いて中空糸膜を作製した
とき、主にポリエチレングリコールの分子量にもとずく
特定の溶液特性を持つ紡糸原液を選んだときに前述のふ
たつの問題を同時に解決することができることを見出し
、本発明を完成するに至った。
[0031] In accordance with the above-mentioned concept, the present inventor has conducted repeated studies to create a hollow fiber membrane that solves the above-mentioned two problems at the same time.As a result, the present inventor has developed a method using a spinning dope in which the molecular weight of polyethylene glycol as an additive is varied over a wide range. When producing hollow fiber membranes, they discovered that the above two problems could be solved at the same time by selecting a spinning dope with specific solution properties based mainly on the molecular weight of polyethylene glycol, and completed the present invention. I ended up doing it.

【0032】すなわち、本発明は、ポリスルホンが、法
線応力効果を有する数平均分子量が15万〜 200万
のポリエチレングリコールの溶液に溶解しているものを
紡糸原液とすることを特徴とする高強度・多孔質ポリス
ルホン中空糸膜の製法に関する。
That is, the present invention provides a high-strength spinning dope in which polysulfone is dissolved in a solution of polyethylene glycol having a number average molecular weight of 150,000 to 2,000,000 and having a normal stress effect. -Relating to a method for producing porous polysulfone hollow fiber membranes.

【0033】[0033]

【作用】従来の方法では、ポリスルホン分子は繊維軸方
向だけに配向する作用を受けるため繊維軸方向に配向し
ていたが、数平均分子量15万〜 200万のポリエチ
レングリコールの溶液を用いた紡糸原液をノズルから押
し出すと、半径方向に急激に膨らむ(法線応力効果を有
する)ために、ポリスルホン分子は繊維軸方向だけでな
く円周方向にも配向するようになり、ポリスルホン分子
は特定の方向に配向しなくなる。そのため、中空糸膜の
内面および外面に形の揃った孔が形成される。また、前
記のような高分子量のポリエチレングリコールは、少量
の添加で法線応力効果を与えるとともに、このような紡
糸原液から作られた中空糸膜の内部は太い枝が3次元的
に連続した網状構造を有し、高い強度と瀘過速度を同時
に満足する。
[Function] In the conventional method, polysulfone molecules were oriented in the fiber axis direction because they were oriented only in the fiber axis direction, but a spinning dope using a solution of polyethylene glycol with a number average molecular weight of 150,000 to 2 million When extruded from a nozzle, the polysulfone molecules expand rapidly in the radial direction (having a normal stress effect), so the polysulfone molecules become oriented not only in the fiber axis direction but also in the circumferential direction, and the polysulfone molecules are oriented in a specific direction. It becomes unoriented. Therefore, uniformly shaped pores are formed on the inner and outer surfaces of the hollow fiber membrane. In addition, the above-mentioned high molecular weight polyethylene glycol gives a normal stress effect when added in a small amount, and the inside of the hollow fiber membrane made from such a spinning dope has a network of three-dimensionally continuous thick branches. It has a structure that satisfies high strength and filtration speed at the same time.

【0034】[0034]

【実施例】本発明に使用するポリスルホンは、式(1)
 :
[Example] The polysulfone used in the present invention has the formula (1)
:

【0035】[0035]

【化1】[Chemical formula 1]

【0036】または式(2) :Or formula (2):

【0037】[0037]

【化2】[Case 2]

【0038】で表わされる繰り返し単位からなるものが
代表的である。
A typical example is one consisting of a repeating unit represented by the following.

【0039】本発明に用いるポリエチレングリコールの
数平均分子量は、15万〜 200万、好ましくは20
万〜50万である。前記数平均分子量が15万未満のば
あい、法線応力効果を与えるためには多量の添加が必要
であり、このような紡糸原液からは、細い枝の網状構造
の中空糸膜が形成され、強度が低くなる。一方、 20
0万をこえると逆にポリエチレングリコールの溶解度が
小さくなり、セル構造の中空糸膜が形成され、瀘過速度
が小さくなる。
The number average molecular weight of the polyethylene glycol used in the present invention is 150,000 to 2,000,000, preferably 20,000 to 2,000,000.
It is between 10,000 and 500,000. If the number average molecular weight is less than 150,000, it is necessary to add a large amount to provide a normal stress effect, and a hollow fiber membrane with a network structure of thin branches is formed from such a spinning stock solution. Strength decreases. On the other hand, 20
When it exceeds 0,000, the solubility of polyethylene glycol decreases, a hollow fiber membrane with a cellular structure is formed, and the filtration rate decreases.

【0040】前記法線応力効果とは、ポリエチレングリ
コールの溶液を撹拌棒で撹拌したとき、その溶液が撹拌
棒に溶液の表面張力をこえてはい上る現象をいう。
The above-mentioned normal stress effect refers to a phenomenon in which when a solution of polyethylene glycol is stirred with a stirring rod, the solution crawls up to the stirring rod by exceeding the surface tension of the solution.

【0041】ポリエチレングリコールの溶液を調製する
のに使用する溶媒としては、ポリスルホンの溶媒でもあ
るジメチルホルムアミド、ジメチルアセトアミド、N−
メチル−2− ピロリドンなどが使用されうるが、明瞭
な法線応力効果を与えるという点から、N−メチル−2
− ピロリドンがとくに好ましい。これらの良溶媒に少
量の水やプロピレングリコールなどの低分子量多価アル
コールを加えた混合溶媒を使用することももちろん可能
である。これらの溶媒に前記ポリエチレングリコールを
1〜15%(重量%、以下同様)、好ましくは2〜10
%溶解させることにより法線応力効果を示す溶液が調製
される。前記ポリエチレングリコールの溶解量が15%
よりも多くなると、中空糸膜が弱くなり、1%よりも少
ないと瀘過速度が小さくなる。
Solvents used to prepare the polyethylene glycol solution include dimethylformamide, dimethylacetamide, N- which is also a polysulfone solvent.
Methyl-2-pyrrolidone and the like can be used, but N-methyl-2
- Particular preference is given to pyrrolidone. Of course, it is also possible to use a mixed solvent in which a small amount of water or a low molecular weight polyhydric alcohol such as propylene glycol is added to these good solvents. The polyethylene glycol is added to these solvents in an amount of 1 to 15% (by weight, the same applies hereinafter), preferably 2 to 10%.
A solution exhibiting normal stress effects is prepared by dissolving %. The amount of dissolved polyethylene glycol is 15%
When the amount is more than 1%, the hollow fiber membrane becomes weak, and when it is less than 1%, the filtration rate becomes low.

【0042】ポリスルホンは、前記のポリエチレングリ
コールの溶液に通常15〜35%、好ましくは16〜2
5%溶解せしめられる。なお、ポリスルホンとポリエチ
レングリコールを含む溶液を調製する際の順序にはとく
に限定はない。ポリスルホンの溶解量が15%未満では
中空糸膜の強度が小さくなり、35%をこえると粘度が
高くなって溶液を調製することが困難になる。このばあ
い、中空糸膜の強度も大きくなるが、必要とされる強度
をこえた過剰性能になる。
[0042] Polysulfone is added to the polyethylene glycol solution in an amount of usually 15 to 35%, preferably 16 to 2%.
5% dissolved. Note that there is no particular limitation on the order in which the solution containing polysulfone and polyethylene glycol is prepared. If the dissolved amount of polysulfone is less than 15%, the strength of the hollow fiber membrane will be reduced, and if it exceeds 35%, the viscosity will increase and it will be difficult to prepare a solution. In this case, the strength of the hollow fiber membrane also increases, but the performance exceeds the required strength.

【0043】前述のごとき特徴を有する紡糸原液を従来
の方法と同様にして2重ノズルから芯液とともに押し出
し、空気中を適当な距離走行させたのち凝固液に浸して
から巻き取ることにより、本発明が目的とする高強度・
多孔質ポリスルホン中空糸膜が製造される。
[0043] In the same manner as in the conventional method, the spinning stock solution having the above-mentioned characteristics is extruded from a double nozzle together with the core liquid, and after traveling an appropriate distance in the air, it is immersed in the coagulation liquid and then wound up. High strength and
A porous polysulfone hollow fiber membrane is produced.

【0044】この際、芯液の凝固作用が弱くなるにした
がって、内面の孔径は大きく、かつ多くなる。また、孔
の形は滑らかな周囲を持つ円形状から、孔の数が増加し
て円と円が接触したような形状、そして完全な網状へと
変化する。いずれの形状においても孔の形には特定の方
向性はない。
At this time, as the coagulation effect of the core liquid becomes weaker, the pores on the inner surface become larger and more numerous. In addition, the shape of the pores changes from a circular shape with a smooth periphery, to a shape where the number of pores increases and two circles touch each other, and then to a complete net shape. There is no particular directionality in the shape of the pores in any of the shapes.

【0045】一方、空気中の走行距離を長くしたり、紡
糸原液の中に非溶剤を添加して凝固しやすいものにする
と、外面の孔径は大きく、かつ多くなる。また、内面の
ばあいと同じように、孔の形は滑らかな周囲を持つ円形
状から、孔の数が増加して円と円とが接触したような形
状、そして完全な網状へと変化する。いずれの形状にお
いても、内面のばあいと同様に、孔の形には特定の方向
性がほとんどない。また、内面および外面の状態には、
孔の大きさ、形状などによらず特定の方向性がないので
、製造上の再現性がきわめて高い。
On the other hand, if the traveling distance in the air is increased or if a non-solvent is added to the spinning dope to make it easier to coagulate, the pore diameter on the outer surface becomes larger and more numerous. Also, as with the inner surface, the shape of the pores changes from a circular shape with a smooth periphery, to an increasing number of pores, to a shape where two circles touch each other, and then to a complete net shape. . In either shape, as with the inner surface, the shape of the hole has almost no specific directionality. In addition, the inner and outer conditions include
Since there is no specific directionality regardless of the hole size or shape, the manufacturing reproducibility is extremely high.

【0046】本発明によって製造された中空糸膜の内部
は、丈夫な枝が連続的に3次元的に発達しており、引っ
張り強度、破断時の伸びともに大きく、とくに伸びは5
0〜100 %にも達する。また、このような構造を有
するため瀘過速度についても従来の中空糸膜をこえたも
のとなっている。
The inside of the hollow fiber membrane produced according to the present invention has strong branches that are continuously developed three-dimensionally, and has high tensile strength and elongation at break, especially elongation of 5.
It reaches 0-100%. Moreover, since it has such a structure, its filtration rate also exceeds that of conventional hollow fiber membranes.

【0047】以下、実施例によって本発明の製法をさら
に具体的に説明する。
[0047] The production method of the present invention will be explained in more detail below with reference to Examples.

【0048】なお、中空糸膜の状態(構造)は、走査型
電子顕微鏡で観察した。また、水の瀘過速度は、小型の
モジュールを使用し、中空糸膜の外面から内面へ瀘過し
て、1/ m2 ・hr・kg/cm2 で表わした。 ただし、有効膜面積は外面について測定し、圧力には外
面と内面の膜間圧力差を用いた。さらに、中空糸膜の強
度は、(株)島津製作所製のオートグラフAG−200
0Aを使用し、サンプル長さ50mm、引っ張りスピー
ド50mm/分で測定した。引っ張り強度は、中空糸膜
1本当りの破断時の荷重(グラム)で表わし、伸びは、
元の長さに対する破断までに伸びた長さ(%)で表わし
た。
The state (structure) of the hollow fiber membrane was observed using a scanning electron microscope. Furthermore, the water filtration rate was expressed as 1/m2·hr·kg/cm2, using a small module and filtering from the outer surface to the inner surface of the hollow fiber membrane. However, the effective membrane area was measured on the outer surface, and the pressure difference between the membranes between the outer surface and the inner surface was used for the pressure. Furthermore, the strength of the hollow fiber membrane was measured using Autograph AG-200 manufactured by Shimadzu Corporation.
Measurement was carried out using 0A, sample length of 50 mm, and pulling speed of 50 mm/min. The tensile strength is expressed as the load (grams) at break per hollow fiber membrane, and the elongation is
It is expressed as the length (%) elongated to breakage relative to the original length.

【0049】試験例1 数平均分子量が、5万、10万、20万、30万、50
万、200 万および 400万のポリエチレングリコ
ールを100cc のナス型フラスコ中でそれぞれ濃度
を変えてN−メチル−2− ピロリドンに総量が100
gになるように溶解させ、60℃でステンレススチール
製の撹拌棒へのはい上り状態を観察して法線応力効果の
有無を判定した。数平均分子量が10万以下のポリエチ
レングリコールの溶液は、濃度が15%以下では法線応
力効果を有さなかった。数平均分子量が20万から20
0万のポリエチレングリコールの溶液は、分子量によっ
ても変わるが、2〜15%で法線応力効果を有した。し
かし、400 万のポリエチレングリコールの溶液は、
2%以上ではあまりにも法線応力効果が強く、均一な溶
液というよりもゲル状態に近く、溶解も困難であった。 これらの特徴は、N−メチル−2− ピロリドンにポリ
スルホンの非溶剤であるプロピレングリコールをおよそ
15%添加したときにも同様に観察された。
Test Example 1 Number average molecular weight is 50,000, 100,000, 200,000, 300,000, 50
1,000,000, 2,000,000 and 4,000,000 polyethylene glycol were added to N-methyl-2-pyrrolidone at different concentrations in a 100 cc eggplant-shaped flask until the total amount was 100%.
The presence or absence of a normal stress effect was determined by observing the state in which it crawled onto a stainless steel stirring bar at 60°C. A solution of polyethylene glycol with a number average molecular weight of 100,000 or less had no normal stress effect at a concentration of 15% or less. Number average molecular weight is 200,000 to 20
Solutions of 0,000 polyethylene glycol had normal stress effects between 2 and 15%, depending on molecular weight. However, a solution of 4 million polyethylene glycol
At 2% or more, the normal stress effect was so strong that it resembled a gel state rather than a uniform solution, making it difficult to dissolve. These characteristics were similarly observed when approximately 15% propylene glycol, a non-solvent for polysulfone, was added to N-methyl-2-pyrrolidone.

【0050】実施例1〜3 N−メチル−2− ピロリドン66部(重量部、以下同
様)とプロピレングリコール9部との混合溶剤に数平均
分子量が30万のポリエチレングリコールを5部溶解さ
せ、法線応力効果を持つ溶液を作り、これにポリスルホ
ン(アモコ社製のユーデルポリスルホンP−3500)
を20部溶解させて紡糸原液を調製した。この紡糸原液
を60℃に保ちながら、芯液として表1に記載のものを
用いて、内径0.5mm 、外径0.8mmのノズルか
ら吐出させ、ノズルの下方15cmにある60℃の温水
中で凝固させながら紡糸速度 50m/分で巻き取り、
内径および外径がおよそ 450μm および 700
μm の中空糸膜をえた。えられた中空糸膜の特性を表
1に示す。
Examples 1 to 3 5 parts of polyethylene glycol having a number average molecular weight of 300,000 was dissolved in a mixed solvent of 66 parts (by weight, same hereinafter) of N-methyl-2-pyrrolidone and 9 parts of propylene glycol. Prepare a solution with linear stress effect and add polysulfone (Udel Polysulfone P-3500 manufactured by Amoco) to this solution.
A spinning stock solution was prepared by dissolving 20 parts of. While maintaining this spinning stock solution at 60°C, using the core liquid listed in Table 1, it was discharged from a nozzle with an inner diameter of 0.5 mm and an outer diameter of 0.8 mm, and was placed in a warm water at 60°C located 15 cm below the nozzle. While coagulating with a spinning speed of 50 m/min,
The inner and outer diameters are approximately 450μm and 700μm.
A hollow fiber membrane of μm size was obtained. Table 1 shows the properties of the hollow fiber membrane obtained.

【0051】なお、表1中の記号の意味はつぎの通りで
ある。
The meanings of the symbols in Table 1 are as follows.

【0052】 G:グリセリン N:N−メチル−2− ピロリドン ICP :円形の孔が独立に分散している状態PSCP
:一部の円形の孔が接触しあっている状態(孔が増加す
るほど接触しあっている孔の数も増加する)SNW :
丈夫な枝からなる網状構造
G: Glycerin N: N-methyl-2-pyrrolidone ICP: PSCP in which circular pores are independently dispersed
: A state where some circular holes are in contact with each other (as the number of holes increases, the number of holes in contact with each other also increases) SNW:
A network of strong branches

【0053】[0053]

【表1】[Table 1]

【0054】実施例4〜6 N−メチル−2− ピロリドン67.5部とプロピレン
グリコール11.5部との混合溶剤に数平均分子量30
万のポリエチレングリコールを5部溶解させて法線応力
効果を持つ溶液を作り、これにポリスルホンを16部溶
解させて紡糸原液を調製した。これを60℃に保ちなが
ら、芯液として表2に記載のものを用いて、内径0.4
mm 、外径0.6mm のノズルから吐出させ、ノズ
ルの下方15cmにある60℃の温水中で凝固させなが
ら紡糸速度 50m/分で巻き取り、内径および外径が
およそ 300μm および500μm の中空糸膜を
えた。えられた中空系膜の特性を表2に示す。
Examples 4 to 6 A number average molecular weight of 30 was added to a mixed solvent of 67.5 parts of N-methyl-2-pyrrolidone and 11.5 parts of propylene glycol.
A solution having a normal stress effect was prepared by dissolving 5 parts of polyethylene glycol, and 16 parts of polysulfone was dissolved therein to prepare a spinning dope. While keeping this at 60℃, using the core liquid listed in Table 2,
A hollow fiber membrane with inner and outer diameters of approximately 300 μm and 500 μm was produced by discharging it from a nozzle with an outer diameter of 0.6 mm and coagulating it in hot water at 60°C located 15 cm below the nozzle, and winding it up at a spinning speed of 50 m/min. I got it. Table 2 shows the properties of the obtained hollow membrane.

【0055】なお、表2中の記号の意味はつぎの通りで
ある。
The meanings of the symbols in Table 2 are as follows.

【0056】 P:プロピレングリコール SSCP:多数の円形の孔が接触しあっている状態NW
P :ほとんどの円形の孔が互いに接触して接触部分が
連続した枝を形成している網状構造 NW:網状構造
P: Propylene glycol SSCP: State where many circular holes are in contact with each other NW
P: Network structure in which most of the circular pores are in contact with each other and the contact areas form continuous branches NW: Network structure

【0057】[0057]

【表2】[Table 2]

【0058】試験例2 実施例6の中空糸膜に対して負荷量が107 個/cm
2 となるようにシュードモナス  ディミニュータ 
IFO−12697(Pseudomonas dim
inuta IFO−12697)菌の培養液を瀘過し
た。瀘過液中にはこの菌は検出されなかった。
Test Example 2 Load amount on the hollow fiber membrane of Example 6 was 107 pieces/cm
2 Pseudomonas diminuta
IFO-12697 (Pseudomonas dim
Inuta IFO-12697) culture solution was filtered. This bacterium was not detected in the filtrate.

【0059】試験例3 実施例6の中空糸膜を使って小型モジュールを作り、市
販の家庭用浄水器から取り出したポリスルホンを素材と
した中空糸膜で作った有効膜面積がほぼ等しい小型モジ
ュールと神戸市水道水に対する瀘過能力を比較した。瀘
過速度が500リットル/ m2 ・hr・kg/cm
2 まで低下したときを寿命とした。寿命までの積算瀘
過量は、本発明による中空糸膜が比較のものより1.8
4倍もあり、きわめて長寿命であった。
Test Example 3 A small module was made using the hollow fiber membrane of Example 6, and the effective membrane area was approximately the same as that of a small module made from a hollow fiber membrane made of polysulfone taken from a commercially available household water purifier. The filtration capacity for Kobe city tap water was compared. Filtration speed is 500 liters/m2・hr・kg/cm
The life span was defined as the time when the temperature decreased to 2. The cumulative filtration amount over the life of the hollow fiber membrane according to the present invention is 1.8 higher than that of the comparative membrane.
It had an extremely long lifespan, four times as long.

【0060】比較例1 N−メチル−2− ピロリドン60.2部とプロピレン
グリコール9.8 部との混合溶剤に数平均分子量が5
万のポリエチレングリコールを10部溶解させた。この
溶液は法線応力効果を有さなかった。これにポリスルホ
ンを20部溶解させて紡糸原液とし、実施例1と同様に
して中空糸膜を作製した。この中空糸膜の外面には、平
均孔径が約 0.8μm の円形の孔が形成されたが、
内面には形が一定しない孔が形成された。
Comparative Example 1 A mixed solvent of 60.2 parts of N-methyl-2-pyrrolidone and 9.8 parts of propylene glycol had a number average molecular weight of 5.
10 parts of polyethylene glycol was dissolved. This solution had no normal stress effects. 20 parts of polysulfone was dissolved in this to prepare a spinning dope, and a hollow fiber membrane was produced in the same manner as in Example 1. Circular pores with an average pore diameter of approximately 0.8 μm were formed on the outer surface of this hollow fiber membrane.
Holes with irregular shapes were formed on the inner surface.

【0061】比較例2 N−メチル−2− ピロリドン68部とプロピレングリ
コール11部との混合溶剤に数平均分子量が4,000
,000 のポリエチレングリコールを1部溶解させて
法線応力効果を持つ溶液を作った。これにポリスルホン
を20部溶解させて紡糸原液とし、実施例1と同様にし
て中空糸膜を作製した。 この中空糸膜は、内面および外面の両面に比較的形が均
一な孔を有し、引張強度も大きかったが、瀘過速度はき
わめて小さかった。
Comparative Example 2 A mixed solvent of 68 parts of N-methyl-2-pyrrolidone and 11 parts of propylene glycol had a number average molecular weight of 4,000.
,000 of polyethylene glycol was dissolved to create a solution with a normal stress effect. 20 parts of polysulfone was dissolved in this to prepare a spinning dope, and a hollow fiber membrane was produced in the same manner as in Example 1. This hollow fiber membrane had relatively uniformly shaped pores on both the inner and outer surfaces and had high tensile strength, but the filtration rate was extremely low.

【0062】実施例7 芯液として数平均分子量1000のポリエチレングリコ
ールの50%水溶液を用いた他は実施例4と同様にして
中空糸膜を作製した。この中空糸膜の外面には平均孔径
がおよそ 0.8μm の円形な孔が多数あり、内面に
はスリット状でないおよそ0.03μm 以下のほぼ円
形の均一な孔が形成されていた。また、内部は内面から
外面に向かって次第に目の大きさが大きくなる網状構造
であった。
Example 7 A hollow fiber membrane was prepared in the same manner as in Example 4, except that a 50% aqueous solution of polyethylene glycol having a number average molecular weight of 1000 was used as the core liquid. The outer surface of this hollow fiber membrane had many circular pores with an average pore diameter of approximately 0.8 μm, and the inner surface had substantially circular uniform pores with an average diameter of approximately 0.03 μm or less that were not slit-shaped. The interior had a net-like structure, with the eyes gradually increasing in size from the inner surface to the outer surface.

【0063】[0063]

【発明の効果】本発明では、法線応力効果を有するポリ
エチレングリコールの溶液にポリスルホンを溶解させた
紡糸原液を用いてポリスルホン中空糸膜を製造するため
、ポリスルホン分子が特定の方向に配向しなくなり、中
空糸膜の内面、外面の両面に形の揃った孔が形成される
。このようにして形成された中空糸膜は、内部に太い枝
が3次元的に連続した網状構造を有し、高い強度と瀘過
速度を同時に満足する。このような効果は従来の技術で
使用されているポリビニルピロリドンでは発現しない。
Effects of the Invention In the present invention, since a polysulfone hollow fiber membrane is manufactured using a spinning stock solution in which polysulfone is dissolved in a polyethylene glycol solution having a normal stress effect, polysulfone molecules are no longer oriented in a specific direction. Holes of uniform shape are formed on both the inner and outer surfaces of the hollow fiber membrane. The hollow fiber membrane thus formed has a network structure in which thick branches are three-dimensionally continuous, and satisfies high strength and filtration speed at the same time. Such an effect is not exhibited by polyvinylpyrrolidone used in conventional technology.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  ポリスルホンが、法線応力効果を有す
る数平均分子量が15万〜 200万のポリエチレング
リコールの溶液に溶解しているものを紡糸原液とするこ
とを特徴とする高強度・多孔質ポリスルホン中空糸膜の
製法。
1. A high-strength, porous polysulfone characterized in that the spinning dope is a solution of polysulfone having a normal stress effect and a number average molecular weight of 150,000 to 2,000,000. Manufacturing method for hollow fiber membranes.
JP3021009A 1991-02-14 1991-02-14 Manufacturing method of high strength and porous polysulfone hollow fiber membrane Expired - Fee Related JP2675197B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3021009A JP2675197B2 (en) 1991-02-14 1991-02-14 Manufacturing method of high strength and porous polysulfone hollow fiber membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3021009A JP2675197B2 (en) 1991-02-14 1991-02-14 Manufacturing method of high strength and porous polysulfone hollow fiber membrane

Publications (2)

Publication Number Publication Date
JPH04260424A true JPH04260424A (en) 1992-09-16
JP2675197B2 JP2675197B2 (en) 1997-11-12

Family

ID=12043069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3021009A Expired - Fee Related JP2675197B2 (en) 1991-02-14 1991-02-14 Manufacturing method of high strength and porous polysulfone hollow fiber membrane

Country Status (1)

Country Link
JP (1) JP2675197B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6165363A (en) * 1995-12-18 2000-12-26 Asahi Kasei Kogyo Kabushiki Kaisha Hollow fiber type filtration membrane
KR100426183B1 (en) * 2001-11-27 2004-04-06 주식회사 코레드 A composition for producing microporous polyethersulfone membrane and a method for preparing microporous membrane using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6165363A (en) * 1995-12-18 2000-12-26 Asahi Kasei Kogyo Kabushiki Kaisha Hollow fiber type filtration membrane
KR100426183B1 (en) * 2001-11-27 2004-04-06 주식회사 코레드 A composition for producing microporous polyethersulfone membrane and a method for preparing microporous membrane using the same

Also Published As

Publication number Publication date
JP2675197B2 (en) 1997-11-12

Similar Documents

Publication Publication Date Title
JP3232117B2 (en) Polysulfone porous hollow fiber
KR101597829B1 (en) Porous Membrane and Method for Manufacturing The Same
KR20070113375A (en) Asymmetric poly(vinylidene fluoride) hollow fiber membranes and methods to make membranes
WO1995033549A1 (en) Porous polysulfone membrane and process for producing the same
JPH0122003B2 (en)
KR101077954B1 (en) A polysulfone-based hollowfiber membrane having a excellent impact strength and water permeability and preparing the same
JP5648633B2 (en) Method for producing porous membrane
EP1669128A1 (en) The preparation method of exo-pressure type poly(vinylidene fluoride) hollow fiber membrane spinned utilizing a immersion-coagulation method and the product thereof
KR20110033729A (en) Fluorinated hollow fiber membrane and method for preparing the same
KR20130053933A (en) Hydrophilic polyvinylidene fluoride based hollow fiber membrane and preparing method thereof
KR101150285B1 (en) Water purification membranes with enhanced antifouling property and manufacturing method thereof
KR20100114808A (en) Method for asymmetric microporous hollow fiber membrane
WO2017217446A1 (en) Porous membrane, and method for manufacturing porous membrane
JPS58114702A (en) Polysulfone hollow fiber membrane and its production
JPS61164602A (en) Hllow yarn membrane made of polysulfone resin and its preparation
KR20070113374A (en) Porous poly(vinylidene fluoride) hollow fiber membranes composed of spherical particles containing polymeric nanofibers
JPH04260424A (en) Manufacture of porous polysulfone hollow fiber membrane having high strength
JPH03258330A (en) Porous hollow fiber membrane
KR20070103187A (en) Porous poly(vinylidene fluoride) hollow fiber membranes composed of both fibril and nodular structures
JP2868558B2 (en) Manufacturing method of high-strength, high-flux polysulfone hollow fiber membrane
JP2528893B2 (en) Method for producing polysulfone hollow fiber membrane
JPH119977A (en) Polyethylene composite microporous hollow fiber membrane
JP4075236B2 (en) Production method of polyphenylsulfone hollow fiber membrane
KR101951065B1 (en) Process for fabricating pbi hollow fiber asymmetric membranes for gas separation and liquid separation
WO2023027052A1 (en) Hollow fiber microporous membrane, and gas separation membrane module with same built thereinto

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees