JPH04259846A - Apparatus for dynamically measuring particle density in gas flow - Google Patents

Apparatus for dynamically measuring particle density in gas flow

Info

Publication number
JPH04259846A
JPH04259846A JP3267923A JP26792391A JPH04259846A JP H04259846 A JPH04259846 A JP H04259846A JP 3267923 A JP3267923 A JP 3267923A JP 26792391 A JP26792391 A JP 26792391A JP H04259846 A JPH04259846 A JP H04259846A
Authority
JP
Japan
Prior art keywords
cleaning air
flow
dead space
tube
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3267923A
Other languages
Japanese (ja)
Inventor
Michael Hoetger
ミッヒヤエル・ヘットゲル
Reinhard Winzer
ラインハルト・ウインツエル
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Volkswagen AG
Original Assignee
Volkswagen AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Volkswagen AG filed Critical Volkswagen AG
Publication of JPH04259846A publication Critical patent/JPH04259846A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/15Preventing contamination of the components of the optical system or obstruction of the light path
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/49Scattering, i.e. diffuse reflection within a body or fluid
    • G01N21/53Scattering, i.e. diffuse reflection within a body or fluid within a flowing fluid, e.g. smoke
    • G01N21/534Scattering, i.e. diffuse reflection within a body or fluid within a flowing fluid, e.g. smoke by measuring transmission alone, i.e. determining opacity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/15Preventing contamination of the components of the optical system or obstruction of the light path
    • G01N2021/155Monitoring cleanness of window, lens, or other parts

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Optical Measuring Cells (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

PURPOSE: To measure particle density accurately when measurement flow changes widely without contaminating a window. CONSTITUTION: A flow, where particle density is measured, passes a measurement pipe comprising an outer pipe 1 and an inner pipe 4. An annular dead space 7 that opens to the flow to be measured is provided at the downstream side of a measurement section 8. A ring 13 that surrounds a measurement pipe 5 at the height position of the measurement section 8 includes optical windows 18 and 19. The window forms the connection members of light conductors 20 and 21. The light conductors are connected to a light source or an evaluation unit. Chambers 16 and 17 with washing air supply ports 22 and 24 are provided in front of an optical window. Air is preferably supplied to the washing air supply port by an air pump that is adjusted to a constant air flow rate so that the device achieves a positive result over a wide parameter range of gas flow.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、測定管が互いに対向し
て一直線に並ぶ複数の光線通過口(放射線通過口)を備
え、この光線通過口が半径方向外方へ向かってそれぞれ
一つのチャンバに開口し、このチャンバが測定光線(測
定放射線)の流入または流出のための光学的な窓によっ
て画成され、かつポンプ操作の洗浄空気供給口を備えて
いる、濁度測定の原理による、ガス流、特に内燃機関の
排気ガス流内の粒子密度を動的に測定する装置に関する
[Industrial Application Field] The present invention provides a measuring tube having a plurality of light beam passing ports (radiation passing ports) facing each other and arranged in a straight line, and each of the light beam passing ports extending radially outward into one chamber. According to the principle of turbidity measurement, the gas The present invention relates to a device for dynamically measuring particle density in a flow, in particular an exhaust gas flow of an internal combustion engine.

【0002】0002

【従来の技術】このような装置は例えばドイツ連邦共和
国特許出願公開第3839348号公報によって知られ
ているように、ガス流の粒子密度のための信号を生じる
ために、ガス流を横方向に通過する光線の強さの低下を
利用する。ガス流内の粒子密度、すなわち内燃機関の排
気ガスの場合には煤密度が大きければ大きいほど、ガス
流を通過する前と通過した後の光線の強さの差は大きく
なる。
BACKGROUND OF THE INVENTION Such a device, as known for example from DE 38 39 348 A1, passes transversely through a gas stream in order to generate a signal for the particle density of the gas stream. take advantage of the decrease in the intensity of the light beam. The greater the particle density in the gas stream, ie the soot density in the case of the exhaust gas of an internal combustion engine, the greater the difference in the intensity of the light beam before and after passing through the gas stream.

【0003】本発明の有利な用途では、内燃機関、特に
自動車を駆動する内燃機関の排気ガス流内の粒子密度を
測定するために、内燃機関のあらゆる運転状態で、すな
わち空転時にも全負荷運転時にも、装置が粒子密度を高
い精度で測定できるようにしなければならない。
In an advantageous application of the invention, the particle density in the exhaust gas stream of an internal combustion engine, in particular an internal combustion engine driving a motor vehicle, is determined in all operating states of the internal combustion engine, that is to say even when running at full load. Sometimes it is necessary to ensure that the device can measure particle density with a high degree of accuracy.

【0004】このような装置に対する上述の要求と密接
に関連する、冒頭に述べた種類の装置の場合の他の問題
は、光学的な窓がガス流によって汚れないようにするこ
とである。ドイツ連邦共和国特許出願公開第38393
48号公報で取り上げた例では、ガス流の方向、すなわ
ち測定管の内室の方向において光学的な窓の前に、チャ
ンバが設けられている。このチャンバには洗浄空気が注
ぐ。この洗浄空気は更に、光線通過口を通って測定管の
内部に達する。この原理はドイツ連邦共和国特許出願公
開第3503720号公報および同第3638472号
公報記載の装置でも利用されている。しかし、ガス流は
測定区間の範囲でベンチュリへ流れ、洗浄空気はエアポ
ンプを使用しないで負圧で測定管の内部に吸い込まれる
。実験で証明されたように、測定ガスを供給する内燃機
関の所定の運転状態で、ベンチュリ状の測定管の使用が
逆流を含む不所望な流れ現象を生じるということは別と
して、この手段では、内燃機関の運転範囲全体にわたっ
て充分な洗浄空気流が決して確保されないという欠点が
ある。この理由から、冒頭に述べたドイツ連邦共和国特
許出願公開第3839348号公報記載の装置では、洗
浄空気供給口に空気を供給するためにエアポンプが設け
られている。しかし、このエアポンプが内燃機関の排気
脈動によって操作されるので、連続的な洗浄空気流が得
られない。更に、内燃機関の運転範囲全体にわたって充
分な洗浄空気流が生じない危険がある。更に、脈動する
洗浄空気流は測定区間の長さに対する流れ的な悪影響を
生じ、測定値が不正確になる。冒頭に述べた種類の装置
の場合に、煤粒子の沈着を避けるために加熱コイルが使
用される場合には、煤粒子が加熱コイルに接触すること
により、粒子の化学的な変換によって広帯域のスペクト
ルが検出される。これは測定値を一層不正確にする。
Another problem in the case of devices of the type mentioned at the outset, which is closely related to the above-mentioned requirements for such devices, is that the optical window should not be contaminated by the gas flow. Federal Republic of Germany Patent Application Publication No. 38393
In the example given in publication No. 48, a chamber is provided in front of the optical window in the direction of the gas flow, ie in the direction of the interior of the measuring tube. Cleaning air is poured into this chamber. This cleaning air also reaches the interior of the measuring tube through the beam passage opening. This principle is also used in the devices described in DE 3503720 and DE 3638472. However, the gas flow flows to the venturi in the area of the measuring section, and the cleaning air is sucked into the interior of the measuring tube at negative pressure without the use of an air pump. Apart from the fact that the use of a venturi-like measuring tube gives rise to undesired flow phenomena, including backflow, under certain operating conditions of the internal combustion engine supplying the measuring gas, as has been demonstrated by experiments, this measure The disadvantage is that a sufficient cleaning air flow is never ensured over the entire operating range of the internal combustion engine. For this reason, in the device described in DE 38 39 348 A1 mentioned at the beginning, an air pump is provided for supplying air to the cleaning air supply port. However, since this air pump is operated by the exhaust pulsation of the internal combustion engine, a continuous flow of cleaning air is not available. Furthermore, there is a risk that there will not be a sufficient cleaning air flow over the entire operating range of the internal combustion engine. Furthermore, the pulsating cleaning air flow has a negative flow effect on the length of the measuring section, leading to inaccurate measurements. If, in the case of devices of the type mentioned at the outset, heating coils are used to avoid the deposition of soot particles, the contact of the soot particles with the heating coils results in a broadband spectrum due to the chemical transformation of the particles. is detected. This makes the measurements even more inaccurate.

【0005】技術水準の提示を完璧にするために、ドイ
ツ連邦共和国特許出願公告第1598138号公報につ
いて手短に触れる。この公報は散光測定の原理による装
置を開示している。この場合、本来の測定区間の上流側
において測定管の中に、ノズル状のインサートが設けら
れているので、測定区間の場所にはその手前よりも非常
に大きな流れ横断面積が生じる。インサートと測定管の
間には、洗浄空気供給口を備えたリング状の死空間が設
けられている。この死空間は測定区間の手前で測定管の
内部ひいてはガス流に開口している。この構造の欠点は
、測定されるガス流の流速や脈動に応じて測定区間の直
径が変化することにある。更に、縁の渦や差圧によるガ
ス逆流を防止することができない。洗浄空気が負圧によ
って測定管に吸い込まれるので、この公知の装置は同様
に、接続された内燃機関の運転中発生するあらゆる排気
背圧において使用することができない。特に排気ターボ
過給器の手前におけるこの公知の装置の使用は不可能で
あり、特にシリンダ選択的な粒子認識が必要とされると
きには不可能である。
In order to complete the presentation of the state of the art, a brief mention will be made of German Patent Application No. 1598138. This publication discloses a device based on the principle of diffuse light measurement. In this case, a nozzle-like insert is provided in the measuring tube upstream of the actual measuring section, so that a much larger flow cross-section occurs at the location of the measuring section than in front of it. A ring-shaped dead space with a cleaning air supply opening is provided between the insert and the measuring tube. This dead space opens into the interior of the measuring tube and thus into the gas stream before the measuring section. The disadvantage of this construction is that the diameter of the measurement section changes depending on the flow rate and pulsation of the gas flow to be measured. Furthermore, gas backflow due to edge vortices and differential pressure cannot be prevented. Since the cleaning air is sucked into the measuring tube by means of negative pressure, this known device likewise cannot be used in any exhaust gas backpressure that occurs during operation of the connected internal combustion engine. The use of this known device in particular upstream of the exhaust turbocharger is not possible, especially when cylinder-selective particle recognition is required.

【0006】[0006]

【発明が解決しようとする課題】本発明は、冒頭に述べ
た種類の装置を、その利点を維持しつつ、次のように改
良することである。すなわち、窓が汚れる危険なしに、
測定流れの広範囲の変化において高い精度で粒子密度の
測定を可能にするように改良することである。
SUMMARY OF THE INVENTION The object of the invention is to improve a device of the type mentioned at the outset, while maintaining its advantages, as follows. i.e. without the risk of dirty windows.
The object of the present invention is to improve the particle density to be able to be measured with high accuracy over a wide range of changes in the measurement flow.

【0007】[0007]

【課題を解決するための手段】この課題の本発明による
解決策は、測定管がその全長にわたって一定の流れ横断
面積を維持しつつ外管と内管によって少なくとも一つの
死空間を形成しながら二重壁状に形成され、この死空間
が光学的な窓の間に形成された測定区間の下流側でガス
流に注いでいることにある。本発明の有利な実施形は請
求項2〜8に記載してある。
The solution according to the invention to this problem is such that the measuring tube is divided into two parts while maintaining a constant flow cross-sectional area over its entire length and forming at least one dead space by means of an outer pipe and an inner pipe. It is constructed in a heavy-walled manner in that this dead space opens into the gas stream downstream of the measuring section formed between the optical windows. Advantageous embodiments of the invention are set out in claims 2 to 8.

【0008】全長にわたって測定ガス流用の一定の流れ
横断面積を有する二重壁状の測定管を使用することによ
り、逆流のような不所望な流れ現象が、測定すべきガス
を供給する装置、特に内燃機関の運転範囲全体にわたっ
て避けられる。洗浄空気が流れ方向において測定区間の
前方でガス流に導かれるので、洗浄空気は測定に悪影響
を与えない。更に、本発明の好ましい実施形の場合には
、一定の空気流量に調節されたエアポンプ(例えばRo
mega  080タイプ84)が使用される。それに
よって、測定管内のその都度のガス背圧に依存しないで
、光学的な窓を綺麗にするのに充分な洗浄空気量が供給
される。これは、本発明の他の実施例に従って、測定区
間の上流側において少なくとも一つの他の洗浄空気流を
死空間に流入させるときには、省略可能である。この洗
浄空気流は、チャンバと死空間の間を延びる光線通過口
から死空間に出る洗浄空気を連行するので、洗浄空気は
内管の光線通過口を流通しない。
By using a double-walled measuring tube with a constant flow cross-section for the flow of the measuring gas over its entire length, undesirable flow phenomena such as backflow can be avoided in the device supplying the gas to be measured, especially in the avoided over the entire operating range of internal combustion engines. Since the cleaning air is introduced into the gas stream in the flow direction in front of the measuring section, the cleaning air does not have an adverse effect on the measurement. Furthermore, in a preferred embodiment of the invention, an air pump (e.g. Ro
mega 080 type 84) is used. As a result, a sufficient amount of cleaning air is supplied to clean the optical window, independent of the respective gas backpressure in the measuring tube. This can be omitted if, according to another embodiment of the invention, at least one other cleaning air flow is introduced into the dead space upstream of the measurement section. This cleaning air flow entrains the cleaning air exiting the dead space through a beam passage opening extending between the chamber and the dead space, so that no cleaning air flows through the beam passage opening of the inner tube.

【0009】本発明は、過給される内燃機関の排気ガス
中の粒子密度を有利に測定することができる。なぜなら
、前述のように、測定管内に発生する高い排気背圧が洗
浄空気流に関して実際に作用しないからである。
The present invention can advantageously measure particle density in the exhaust gas of a supercharged internal combustion engine. This is because, as mentioned above, the high exhaust backpressure generated in the measuring tube has no practical effect on the cleaning air flow.

【0010】0010

【実施例】次に、図に基づいて、排気ガス流内の粒子密
度を動的に測定する装置の本発明の実施例を説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the invention of a device for dynamically measuring particle density in an exhaust gas stream will now be described with reference to the figures.

【0011】図1に示すように、外管1と、両管部分2
,3を有する内管4とからなる測定管5は、フランジ継
手を介して、図示していない内燃機関の排気管6に装着
されているかまたはボルト止めされている。排気ガス流
は矢印で示してある。外管1と内管4は円環状の死空間
7を形成している。この死空間は下流側の端部が内側の
両管部分2,3の間で排気ガス流に開口している。図1
に示した管系全体はその全長にわたって一定の内径を有
するので、直径の急激な変化による排気ガス流への影響
は、特に測定区間8内で発生しない。排気ガス流への死
空間7の入口は次のように形成されている。すなわち、
内管4の下流側の部分3が円錐形の拡大部を有し、この
拡大部が管部分2の下流側の端部を間隔をおいて取り囲
むように形成されている。
As shown in FIG. 1, an outer tube 1 and both tube portions 2
, 3 is attached or bolted to an exhaust pipe 6 of an internal combustion engine (not shown) via a flange joint. Exhaust gas flow is indicated by arrows. The outer tube 1 and the inner tube 4 form an annular dead space 7. This dead space opens at its downstream end between the two inner tube sections 2, 3 into the exhaust gas flow. Figure 1
Since the entire tube system shown in FIG. 1 has a constant internal diameter over its entire length, no effect on the exhaust gas flow due to sudden changes in diameter occurs, especially in the measurement section 8. The inlet of the dead space 7 to the exhaust gas flow is configured as follows. That is,
The downstream section 3 of the inner tube 4 has a conical widening which surrounds the downstream end of the tube section 2 at a distance.

【0012】測定区間8は内管4の光線通過口9,10
と外管1の光線通過口11,12の位置によって決定さ
れる。このすべての光線通過口は直径方向に向き合って
いる。13は、測定区間8の範囲で測定管5を取り囲む
リングを示してる。このリングは光線通過口9〜12と
一直線上に位置する通路14,15を備えている。この
通路には、半径方向外側のチャンバ16,17が接続し
ている。このチャンバ自体は外側が光学的な窓18,1
9によって画成されている。本実施例では、この窓から
普通の光導体20,21が延びている。光導体20は光
源まで延び、光導体21は受光器および光変換器まで延
びている。この受光器および光変換器は評価装置の一部
である。このような評価装置は例えば上述のドイツ連邦
共和国特許出願公開第3503720号明細書から調節
された実施形が公知である。この場合、調節は送光器に
おいて一定の光の強さを確保する働きをする。このよう
な評価および調節装置は技術水準であるので、ここでこ
れ以上説明しない。
The measurement section 8 is the light beam passage opening 9, 10 of the inner tube 4.
and the positions of the light beam passage ports 11 and 12 of the outer tube 1. All the ray apertures are diametrically opposed. 13 designates a ring surrounding the measuring tube 5 in the area of the measuring section 8. This ring is provided with passages 14, 15 located in line with the beam passage openings 9-12. The radially outer chambers 16, 17 are connected to this passage. The chamber itself has an optical window 18,1 on the outside.
9. In this embodiment, ordinary light guides 20, 21 extend from this window. The light guide 20 extends to the light source, and the light guide 21 extends to the light receiver and the light converter. This light receiver and light converter are part of the evaluation device. Such an evaluation device is known, for example, in a modified embodiment from German Patent Application No. 3,503,720 mentioned above. In this case, the adjustment serves to ensure a constant light intensity at the transmitter. Since such evaluation and adjustment devices are state of the art, they will not be described further here.

【0013】上記の装置による測定は次のように行われ
る。すなわち、排気ガスが測定管1を流過し、光線が光
導体20、窓16、通路14および光線通過口12,9
を経て測定区間8に送光される。光線は光線通過口10
,11と通路15を通過し、最後には光導体21を経て
評価装置に導かれる。排気ガス流内の粒子密度が大きけ
れば大きいほど、放射された光の強さと受けた光の強さ
との差が大きくなる。この差はその都度の粒子密度の信
号を発生するために役立つ。
Measurement using the above device is carried out as follows. That is, the exhaust gas flows through the measuring tube 1 and the light beam passes through the light guide 20, the window 16, the channel 14 and the light beam passage openings 12, 9.
The light is transmitted to the measurement section 8 through the . The light beam passes through the light beam passage port 10.
, 11 and a channel 15 and is finally led via a light guide 21 to an evaluation device. The greater the particle density in the exhaust gas stream, the greater the difference between the emitted and received light intensities. This difference serves to generate a signal of the respective particle density.

【0014】チャンバ16,17を画成する光学的窓1
8,19の表面への粒子の沈着を避けるために、本発明
による装置の場合には、複数の手段が講じられている。
Optical window 1 defining chambers 16, 17
In order to avoid the deposition of particles on the surfaces of 8,19, several measures have been taken in the device according to the invention.

【0015】チャンバ16に通じる二次空気供給口が2
2のところに設けられている。この二次空気供給口は、
ほぼ窓18または19の表面に沿った洗浄空気流がチャ
ンバ16,17内に形成されるように配向されている。 洗浄空気は更に、通路14,15を通って死空間7に達
する。洗浄空気はこの死空間の下流側の端部から排気ガ
ス流れに達する。すなわち、測定区間8から比較的に離
れた場所で排気ガス流に達する。光学的窓18,19が
汚れないようにするための他の手段は、流れ通過口9/
12およびまたは通路14,15が、同時に絞り機能を
有するように、小さな直径に形成されていることにある
。しかしこれによって、チャンバ16,17への粒子の
流入が一層困難になるだけでなく、散光が受光器に達し
て測定値を不正確にすることが回避される。この場合、
二次空気供給口22,23への空気供給のために、エア
ポンプが使用される。このポンプは一定の空気流れに調
節される、すなわち測定管4内の排気背圧に依存しない
で供給される。それによって、内燃機関のあらゆる運転
態様の場合に、従って測定管4内のあらゆる排気背圧の
場合に、汚れを避けるのに充分な洗浄空気流れが確保さ
れる。
There are two secondary air supply ports leading to the chamber 16.
It is located at 2. This secondary air supply port is
A cleaning air flow is oriented in the chambers 16, 17 approximately along the surface of the window 18 or 19. The cleaning air also reaches the dead space 7 through channels 14, 15. The cleaning air reaches the exhaust gas stream from the downstream end of this dead space. That is, the exhaust gas flow is reached at a relatively remote location from the measuring section 8. Other means to keep the optical windows 18, 19 clean are the flow passage openings 9/
12 and/or channels 14, 15 are designed with a small diameter so that they simultaneously have a throttling function. However, this not only makes it more difficult for the particles to enter the chambers 16, 17, but also prevents scattered light from reaching the receiver and making the measurements inaccurate. in this case,
An air pump is used to supply air to the secondary air supply ports 22, 23. This pump is regulated with a constant air flow, that is to say independent of the exhaust backpressure in the measuring tube 4. This ensures that in all operating modes of the internal combustion engine and thus in all exhaust gas backpressures in the measuring tube 4, there is a sufficient cleaning air flow to avoid fouling.

【0016】図1に明瞭に示すように、光線通過口9,
10が洗浄空気用通路14,15に直接対向するので、
洗浄空気流が少しだけ通過口9,10を通って排気ガス
流に達する。これを避けるために、しかも洗浄空気の強
い流れを確保するために、24で示すように、死空間7
に通じる付加的な洗浄空気供給口が設けられている。こ
の洗浄空気供給口は装置の軸線25に対して平行に延び
ている。洗浄空気供給口は、流れ案内部材(死空間7内
の案内板)と組み合わせて、24の場所の孔によって形
成可能である。この孔の流れ横断面積は隣の光線通過口
14の横断面積よりも大きくなっている(横断面積の比
は約3:1である)。いかなる場合でも、付加的な洗浄
空気流が光線通過口9,10から排気ガス流への洗浄空
気の流入を阻止する。
As clearly shown in FIG.
10 directly faces the cleaning air passages 14 and 15,
A small amount of the cleaning air stream passes through the passage openings 9, 10 into the exhaust gas stream. To avoid this, and to ensure a strong flow of cleaning air, a dead space 7, as shown at 24, is provided.
An additional cleaning air supply opening is provided leading to. This cleaning air supply runs parallel to the axis 25 of the device. The cleaning air supply opening can be formed by holes at 24 locations in combination with the flow guide member (guide plate in the dead space 7). The flow cross-sectional area of this hole is larger than the cross-sectional area of the adjacent beam passage opening 14 (the ratio of the cross-sectional areas is approximately 3:1). In any case, the additional cleaning air stream prevents cleaning air from entering the exhaust gas stream through the beam passage openings 9,10.

【0017】一つの死空間(デッドスペース)の代わり
に、周方向に並んでいる複数の死空間を設けることがで
きる。
[0017] Instead of one dead space, a plurality of dead spaces arranged in the circumferential direction can be provided.

【0018】温度変化が測定精度に影響を与えないよう
にするために、リング13内には、周方向に延びる冷却
媒体通路26が設けられている。この冷却媒体通路は特
にリング13の範囲における熱の滞留を阻止する。
In order to prevent temperature changes from affecting the measurement accuracy, a cooling medium passage 26 is provided in the ring 13 that extends in the circumferential direction. This cooling medium channel prevents heat buildup in the area of the ring 13 in particular.

【0019】本発明により、簡単な手段で、測定すべき
流れの流れパラメータの大きな範囲にわたって高い測定
精度を得ることができる、冒頭に述べた種類の装置が提
供される。
[0019] The invention provides a device of the type mentioned at the outset, which makes it possible to obtain high measurement accuracy over a large range of flow parameters of the stream to be measured with simple means.

【0020】[0020]

【発明の効果】以上説明したように本発明の装置は、窓
が汚れる危険なしに、測定流れの広範囲の変化において
高い精度で粒子密度の測定を可能にする。
As explained above, the device according to the invention makes it possible to measure particle density with high accuracy over a wide range of changes in the measured flow without the risk of contaminating the window.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の実施例の縦断面図である。FIG. 1 is a longitudinal sectional view of an embodiment of the invention.

【図2】図1のII−II線に沿った本発明の実施例の
横断面図である。
2 is a cross-sectional view of an embodiment of the invention along line II-II in FIG. 1; FIG.

【符号の説明】[Explanation of symbols]

1        外管 4        内管 5        測定管 7        死空間 8        測定区間 16,17        チャンバ 18,19        窓 1 Outer tube 4 Inner tube 5 Measurement tube 7 Dead space 8 Measurement section 16, 17 Chamber 18, 19 Window

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】  測定管が互いに対向して一直線に並ぶ
複数の光線通過口を備え、この光線通過口が半径方向外
方へ向かってそれぞれ一つのチャンバに開口し、このチ
ャンバが測定光線の流入または流出のための光学的な窓
によって画成され、かつポンプ操作の洗浄空気供給口を
備えている、濁度測定の原理による、ガス流、特に内燃
機関の排気ガス流内の粒子密度を動的に測定する装置に
おいて、測定管(5)がその全長にわたって一定の流れ
横断面積を維持しつつ外管(1)と内管(4)によって
少なくとも一つの死空間(7)を形成しながら二重壁状
に形成され、この死空間が光学的な窓(18,19)の
間に形成された測定区間(8)の下流側でガス流に注い
でいることを特徴とする装置。
Claim: 1. A measuring tube is provided with a plurality of light beam passage ports facing each other and arranged in a straight line, each of the light beam passage holes opening radially outward into a chamber, which chamber receives the measurement light beam. or to drive the particle density in a gas stream, in particular an exhaust gas stream of an internal combustion engine, by the principle of turbidity measurement, defined by an optical window for outflow and equipped with a pump-operated cleaning air supply. In a device for measuring the temperature of a meter, the measuring tube (5) maintains a constant flow cross-sectional area over its entire length and forms at least one dead space (7) by the outer tube (1) and the inner tube (4). Device characterized in that it is designed as a heavy wall and that this dead space opens into the gas stream downstream of the measuring section (8) formed between the optical windows (18, 19).
【請求項2】  一定の空気流量に調節されたエアポン
プが洗浄空気供給口(22,23)へ空気を供給するこ
とを特徴とする請求項1の装置。
2. Device according to claim 1, characterized in that an air pump regulated at a constant air flow rate supplies air to the cleaning air supply openings (22, 23).
【請求項3】  光線通過口(9,10,11,12,
14,15)が絞りとして作用するような小さな横断面
積を有することを特徴とする請求項1または2の装置。
[Claim 3] Light beam passage ports (9, 10, 11, 12,
3. Device according to claim 1, characterized in that 14, 15) have such a small cross-sectional area that they act as a diaphragm.
【請求項4】  測定区間(8)の上流において、測定
区間を含む縦平面内で、少なくとも一つの他の洗浄空気
供給口(24)が死空間(7)に開口し、洗浄空気供給
口から死空間(7)に生じる洗浄空気流が、少なくとも
一つのチャンバ(16,17)と死空間(7)の間を延
びる光線通過口(14,15)から出る洗浄空気を、測
定区間(8)に対して横方向に連行することを特徴とす
る請求項1から3までのいずれか一つの装置。
4. Upstream of the measurement section (8), in the longitudinal plane containing the measurement section, at least one other cleaning air supply opening (24) opens into the dead space (7), and from the cleaning air supply opening The cleaning air flow generated in the dead space (7) is arranged so that the cleaning air exiting from the beam passage opening (14, 15) extending between the at least one chamber (16, 17) and the dead space (7) is transferred to the measuring section (8). 4. Device according to claim 1, characterized in that it is entrained in a transverse direction relative to the object.
【請求項5】  少なくとも一つのチャンバ(16,1
7)の範囲に、冷却媒体通路(26)が設けられている
ことを特徴とする請求項1から4までのいずれか一つの
装置。
5. At least one chamber (16,1
5. Device according to claim 1, characterized in that in the area of 7) a cooling medium channel (26) is provided.
【請求項6】  チャンバ(16,17)、窓(18,
19)および場合によっては洗浄空気供給口(22,2
3)が、測定管(5)を取り巻くリング(13)内に設
けられていることを特徴とする請求項1から5までのい
ずれか一つの装置。
6. Chamber (16, 17), window (18,
19) and possibly cleaning air supply ports (22, 2
6. Device according to claim 1, characterized in that 3) is provided in a ring (13) surrounding the measuring tube (5).
【請求項7】  ガス流への死空間(7)の開口場所で
、内管(4)が二つの管部分(2,3)に分割され、下
流側の管部分(3)の拡大部が、他方の管部分(2)の
端範囲を、間隔を保って取り囲んでいることを特徴とす
る請求項1から6までのいずれか一つの装置。
7. At the point of opening of the dead space (7) to the gas flow, the inner tube (4) is divided into two tube sections (2, 3), the enlargement of the downstream tube section (3) being , surrounding the end region of the other tube section (2) at a distance.
【請求項8】  光学的な窓(18,19)が光案内装
置の一部であることを特徴とする請求項1から7までの
いずれか一つの装置。
8. Device according to claim 1, characterized in that the optical window (18, 19) is part of a light guiding device.
JP3267923A 1990-10-16 1991-10-16 Apparatus for dynamically measuring particle density in gas flow Withdrawn JPH04259846A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4032809 1990-10-16
DE40328090 1990-10-16

Publications (1)

Publication Number Publication Date
JPH04259846A true JPH04259846A (en) 1992-09-16

Family

ID=6416389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3267923A Withdrawn JPH04259846A (en) 1990-10-16 1991-10-16 Apparatus for dynamically measuring particle density in gas flow

Country Status (4)

Country Link
JP (1) JPH04259846A (en)
DE (1) DE4133452A1 (en)
FR (1) FR2667941A1 (en)
IT (1) IT1251690B (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008203048A (en) * 2007-02-19 2008-09-04 Toyota Motor Corp Sensor for exhaust gas analysis
JP2008215840A (en) * 2007-02-28 2008-09-18 Horiba Ltd Exhaust gas analyzer
JP2009047612A (en) * 2007-08-21 2009-03-05 Toyota Motor Corp Exhaust gas analysis sensor
JP2009115556A (en) * 2007-11-05 2009-05-28 Toyota Motor Corp Exhaust gas analysis device
JP2009156850A (en) * 2007-12-28 2009-07-16 Horiba Ltd Exhaust gas analyzer
JP2011007602A (en) * 2009-06-25 2011-01-13 Yokogawa Electric Corp Laser gas analyzer
CN104807785A (en) * 2015-05-14 2015-07-29 安徽中烟工业有限责任公司 Device and method for measuring release amount of smoke after combustion and pyrolysis of tobacco

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4440417C2 (en) * 1994-11-11 1998-07-02 Bayerische Motoren Werke Ag Measuring device for determining a powder content
DE10049125C2 (en) * 2000-10-02 2002-09-19 Zentr Mikroelekt Dresden Gmbh Method for measuring particles in gas flows and particle sensor arrangement for carrying out the method
DE102005009582A1 (en) * 2005-02-28 2006-08-31 Konstantinos Nalpantidis Determining type, size and/or concentration of components of fluid flow in process chamber, for treating smoke from power station
SE0700478L (en) * 2007-02-27 2008-08-28 Promech Lab Ab Apparatus and method for detecting particles in a particulate flow
SE1930413A1 (en) * 2019-12-20 2021-06-21 David Bilby Transparent membranes for enabling the optical measurement of properties of soot-containing exhaust gas, and modes of operation for keeping their surface clear from deposits
US20230095478A1 (en) * 2021-09-29 2023-03-30 Kidde Technologies, Inc. Compressed gas cleaning of windows in particle concentration measurement device

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1427768A (en) * 1964-11-30 1966-02-11 Union Tech De L Automobile Method and apparatus for measuring the opacity of a gas
DE1598138C3 (en) * 1966-09-24 1974-10-17 Robert Bosch Gmbh, 7000 Stuttgart Device for measuring the concentration of particles suspended in a flowing gas, in particular the soot content of the exhaust gases from internal combustion engines
US3628028A (en) * 1968-03-01 1971-12-14 Honeywell Inc Window cleaning apparatus for photometric instruments
US3833305A (en) * 1969-09-17 1974-09-03 Commercial Electronics Inc Gas analyzing apparatus
US4583859A (en) * 1984-03-30 1986-04-22 The Babcock & Wilcox Company Filter cleaning system for opacity monitor
EP0208646B1 (en) * 1985-07-05 1991-01-23 Bergwerksverband GmbH Stationary tyndallometer
DE3638472A1 (en) * 1985-11-22 1987-05-27 Volkswagen Ag Device for the optical measurement and observation of exhaust gases of a diesel internal combustion engine
DE3839348A1 (en) * 1987-11-23 1989-06-01 Bosch Gmbh Robert DEVICE FOR MEASURING PARTICLE EXPOSURE IN THE SMOKE AND EXHAUST GAS FROM A COMBUSTION PROCESS
DE9002458U1 (en) * 1990-03-02 1990-05-17 Siemens AG, 1000 Berlin und 8000 München Device for measuring the turbidity of flue gas

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008203048A (en) * 2007-02-19 2008-09-04 Toyota Motor Corp Sensor for exhaust gas analysis
JP2008215840A (en) * 2007-02-28 2008-09-18 Horiba Ltd Exhaust gas analyzer
JP2009047612A (en) * 2007-08-21 2009-03-05 Toyota Motor Corp Exhaust gas analysis sensor
JP2009115556A (en) * 2007-11-05 2009-05-28 Toyota Motor Corp Exhaust gas analysis device
JP2009156850A (en) * 2007-12-28 2009-07-16 Horiba Ltd Exhaust gas analyzer
JP2011007602A (en) * 2009-06-25 2011-01-13 Yokogawa Electric Corp Laser gas analyzer
CN104807785A (en) * 2015-05-14 2015-07-29 安徽中烟工业有限责任公司 Device and method for measuring release amount of smoke after combustion and pyrolysis of tobacco

Also Published As

Publication number Publication date
ITMI912709A0 (en) 1991-10-14
ITMI912709A1 (en) 1993-04-14
IT1251690B (en) 1995-05-19
FR2667941A1 (en) 1992-04-17
DE4133452A1 (en) 1992-04-23

Similar Documents

Publication Publication Date Title
JPH04259846A (en) Apparatus for dynamically measuring particle density in gas flow
KR101414923B1 (en) Flow rate measurement device and flow speed measurement device
US20090120066A1 (en) Cooling device for high temperature exhaust
CN1119626C (en) Device for measuring amount of flowing medium
US7319524B2 (en) Air purged optical densitometer
US6575022B1 (en) Engine crankcase gas blow-by sensor
US7140344B2 (en) Air cleaner
US20040168508A1 (en) Exhaust gas recirculation measurement device
KR20010012584A (en) Device for measuring the mass of a flowing medium
JP5249467B2 (en) Device for collecting exhaust gas samples from internal combustion engines
JP6072086B2 (en) Device for collecting exhaust gas samples of internal combustion engines
JP2011529566A (en) Adjusting orifice plate with passages in the tube wall
KR20180082076A (en) Dust sensor having flow control function
EP0777041B1 (en) An internal combustion engine with an engine crankcase gas blow-by sensor and a method of evaluating performance of an internal combustion engine
US4290314A (en) Target flowmeter
JPH05240764A (en) Exhaust gas particle sensor
EP0864076B1 (en) Improved fluid pressure measuring system for control valves
JPH08210197A (en) Exhaust gas recirculation valve
CN111542732B (en) Measuring device for determining a parameter of a fluid medium flowing through a fluid flow channel and fluid flow channel having such a measuring device
US6923715B2 (en) Device for regulating the air volume flow for a vent in a laboratory
CN110748444B (en) Exhaust gas recirculation system
US4783959A (en) Exhaust processor assembly
US5980835A (en) Ambient air inlet assembly for a hazardous gas mixing apparatus
CN219121982U (en) Oil smoke sensor and smoke sucking and exhausting device
KR100210664B1 (en) Apparatus for sampling automotive exhaust gas

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990107