JPH04259563A - Ink jet head and its manufacture - Google Patents

Ink jet head and its manufacture

Info

Publication number
JPH04259563A
JPH04259563A JP3019845A JP1984591A JPH04259563A JP H04259563 A JPH04259563 A JP H04259563A JP 3019845 A JP3019845 A JP 3019845A JP 1984591 A JP1984591 A JP 1984591A JP H04259563 A JPH04259563 A JP H04259563A
Authority
JP
Japan
Prior art keywords
substrate
piezoelectric
inkjet head
flow path
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3019845A
Other languages
Japanese (ja)
Other versions
JP3087315B2 (en
Inventor
Mari Sakai
酒井真理
Yoshiko Tatezawa
立沢佳子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=12010595&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH04259563(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP1984591A priority Critical patent/JP3087315B2/en
Publication of JPH04259563A publication Critical patent/JPH04259563A/en
Application granted granted Critical
Publication of JP3087315B2 publication Critical patent/JP3087315B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2202/00Embodiments of or processes related to ink-jet or thermal heads
    • B41J2202/01Embodiments of or processes related to ink-jet heads
    • B41J2202/10Finger type piezoelectric elements

Landscapes

  • Particle Formation And Scattering Control In Inkjet Printers (AREA)

Abstract

PURPOSE:To provide a high releable ink jet head which is high in density and high in a number of nozzles. CONSTITUTION:Piezoelectric substrates 20, 21 made from piezoelectric material polarized in the thickness direction are joined to each other symmetrically by placing the joined part 30 between them so that polarization directions 50, 51 become an opposed direction to each other to form a laminate substrate. Thereafter, a passage 5 and an electrode layer 40 are formed on the laminate substrate.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、インク液滴を画像記録
媒体上へ選択的に付着させるインクジェットヘッドに関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ink jet head for selectively depositing ink droplets onto an image recording medium.

【0002】0002

【従来の技術】従来のインクジェットヘッドの構造は、
特開昭63−252750号公報、あるいは特開昭63
−247051号公報に開示されてある。
[Prior Art] The structure of a conventional inkjet head is as follows:
JP-A-63-252750 or JP-A-63
It is disclosed in the publication No.-247051.

【0003】これらのインクジェットヘッドは図16に
示すように、ノズルの並び方向に互いに間隔を有する多
数の平行な流路235を有しており、これら流路は流路
の長手方向及び長手方向とノズル並び方向の両方に垂直
に伸びる側壁236により区画されている。これら流路
の一端は複数のノズル3を有するノズルプレート2に接
続され、他の一端はインクを各チャンネルに補充するイ
ンク供給手段209に接続されている。側壁236はそ
の一部あるいは全体が圧電物質で構成され、電気的アク
チュエート手段により剪断モードなどのアレイ方向に平
行な変形を引き起こし、流路を圧力発生室5としてイン
クの圧力を変化させノズル3からインク滴を噴射させる
ものであった。また、その製造方法は、図17に示すよ
うに、厚さ方向に分極された圧電セラミクス基板220
上に平行な流路235を複数加工する工程と、図18に
示すように、隣接する流路235を区画する側壁236
に、電極層240を流路ごとに形成する工程と、図16
に示すように、上記工程を施した圧電セラミクス基板か
らなる上部基板221と下部基板222を、両基板の流
路同士が対向して重なり、上部基板の電極層241と下
部基板の電極層242が両基板の表面部243で電気的
に接続されるように、接合・固着して、圧力発生室5を
形成する工程からなるものであった。
As shown in FIG. 16, these inkjet heads have a large number of parallel channels 235 spaced apart from each other in the direction in which the nozzles are arranged, and these channels are arranged in the longitudinal direction of the channels and in the longitudinal direction. It is divided by side walls 236 extending perpendicularly to both nozzle arrangement directions. One end of these channels is connected to a nozzle plate 2 having a plurality of nozzles 3, and the other end is connected to an ink supply means 209 for replenishing each channel with ink. The side wall 236 is partially or entirely composed of a piezoelectric material, and causes deformation parallel to the array direction such as a shear mode using an electric actuator, and changes the pressure of the ink by using the flow path as the pressure generating chamber 5 and the nozzle 3. It was designed to eject ink droplets from. Moreover, as shown in FIG. 17, the manufacturing method includes a piezoelectric ceramic substrate 220 polarized in the thickness direction.
A process of forming a plurality of parallel channels 235 on the top, and forming side walls 236 that partition adjacent channels 235, as shown in FIG.
16, a step of forming an electrode layer 240 for each channel, and FIG.
As shown in , an upper substrate 221 and a lower substrate 222 made of piezoelectric ceramic substrates subjected to the above process are stacked so that the flow channels of both substrates face each other and overlap, and the electrode layer 241 of the upper substrate and the electrode layer 242 of the lower substrate are stacked. This consisted of a step of joining and fixing both substrates so that they are electrically connected at the surface portions 243 to form the pressure generating chamber 5.

【0004】0004

【発明が解決しようとする課題】しかし、上部基板と下
部基板とに圧力発生室となる流路をそれぞれ加工し、各
圧力発生室を区画する側壁に変形を引き起こすための電
極層を形成した後、上部基板と下部基板をその流路が重
なるように接合・固着する従来技術では、次のような問
題点があった。
[Problems to be Solved by the Invention] However, after forming flow channels that will become pressure generation chambers on the upper substrate and the lower substrate, and forming electrode layers for causing deformation on the side walls that partition each pressure generation chamber. The conventional technique of joining and fixing an upper substrate and a lower substrate so that their flow paths overlap had the following problems.

【0005】(i)両部材間の相対的位置精度を十分に
高くしなければならない。
(i) The relative positional accuracy between both members must be sufficiently high.

【0006】(ii)接合・固着時に強度的に弱い側壁
部の破壊が生じ易い。
(ii) During joining and fixing, the side wall portion, which is weak in strength, is likely to be destroyed.

【0007】(iii)接合・固着時に接着材が流路を
塞いでしまう。
(iii) The adhesive material blocks the flow path during bonding and fixing.

【0008】(iv)上部と下部の電極を接続しなけれ
ばならない。
(iv) The upper and lower electrodes must be connected.

【0009】そこで本発明の課題は、これらの問題点を
解決することで、その目的とするところは、流路及び電
極を形成した上部基板と下部基板とを接合する必要性を
なくすことにより、高密度、高ノズル数、そして信頼性
の高いインクジェットヘッドを提供することにある。
The object of the present invention is to solve these problems, and the purpose is to eliminate the need to bond the upper and lower substrates on which flow channels and electrodes are formed. Our objective is to provide an inkjet head with high density, high number of nozzles, and high reliability.

【0010】0010

【課題を解決するための手段】本発明による第1のイン
クジェットヘッドは、ノズルの並び方向に互いに間隔を
有する多数の平行な流路を有し、これら流路の天部、底
部、及び側壁の一部または全表面に電極が形成され、前
記側壁はその一部または全体が圧電物質で構成され、こ
の側壁の電気的アクチュエート手段による変形により前
記流路内の圧力を変化させて、流路の一端に形成された
ノズルからインク滴を噴射せしめるインクジェットヘッ
ドであって、厚さ方向に分極された圧電物質からなる圧
電基板同士を、接合部を挟んで分極方向が互いに反対方
向となるように対称に接合して、積層基板を形成した後
、この積層基板に流路及び電極を形成したことを特徴と
する。
[Means for Solving the Problems] A first inkjet head according to the present invention has a large number of parallel channels spaced apart from each other in the direction in which the nozzles are arranged, and the top, bottom, and side walls of these channels are Electrodes are formed on a part or all of the surface, and the side wall is made of a piezoelectric material, and the pressure in the channel is changed by deformation of the side wall by electrical actuating means. This is an inkjet head that ejects ink droplets from a nozzle formed at one end, and the piezoelectric substrates are made of piezoelectric material polarized in the thickness direction, and the polarization directions are opposite to each other with a joint between them. The present invention is characterized in that after symmetrically bonding to form a laminated substrate, flow channels and electrodes are formed on this laminated substrate.

【0011】また、本発明による第2のインクジェット
ヘッドは、前記積層基板の前記圧電基板が、厚さの異な
る圧電基板であり、薄い圧電基板側から前記流路が形成
され、厚い圧電基板における流路の深さが前記薄い圧電
基板の厚さに等しいことを特徴とする。
Further, in the second inkjet head according to the present invention, the piezoelectric substrates of the laminated substrate are piezoelectric substrates having different thicknesses, and the flow path is formed from the thin piezoelectric substrate side, and the flow path is formed from the thin piezoelectric substrate side. The depth of the path is equal to the thickness of the thin piezoelectric substrate.

【0012】また、本発明による第3のインクジェット
ヘッドは、前記積層基板が、ベース基板上に厚さの等し
い圧電基板2枚を分極方向が互いに反対方向となるよう
に積層してなり、前記流路が、前記圧電基板の表面から
ベース基板に到達する深さに形成されていることを特徴
とする。また第4のインクジェットヘッドは、前記ベー
ス基板が、前記圧電物質より誘電率の低い絶縁物質より
なることを特徴とする。
Further, in the third inkjet head according to the present invention, the laminated substrate is formed by laminating two piezoelectric substrates of equal thickness on a base substrate so that polarization directions are opposite to each other, and A path is formed at a depth reaching the base substrate from the surface of the piezoelectric substrate. Further, the fourth inkjet head is characterized in that the base substrate is made of an insulating material having a lower dielectric constant than the piezoelectric material.

【0013】さらに、本発明によるインクジェットヘッ
ドの製造方法は、ノズルの並び方向に互いに間隔を有す
る多数の平行な流路を有し、これら流路の天部、底部、
及び側壁の一部または全表面に電極が形成され、前記側
壁はその一部または全体が圧電物質で構成され、この側
壁の電気的アクチュエート手段による変形により前記流
路内の圧力を変化させて、流路の一端に形成されたノズ
ルからインク滴を噴射せしめるインクジェットヘッドの
製造方法であって、厚さ方向に分極された圧電物質から
なる圧電基板同士を、接合部を挟んで分極方向が互いに
反対方向となるように接合し、積層基板を形成する工程
と、前記積層基板表面へ、互いに間隔を有する多数の平
行な流路を形成する工程と、前記積層基板に形成された
流路の内面に、電極層を形成する工程と、前記流路及び
電極層が形成された前記積層基板の表面へ、基板を接合
する工程とからなることを特徴とする。
Furthermore, the method for manufacturing an inkjet head according to the present invention has a large number of parallel channels spaced apart from each other in the direction in which the nozzles are arranged, and the top, bottom, and
and an electrode is formed on a part or the entire surface of the side wall, the side wall is partially or entirely composed of a piezoelectric material, and the pressure in the flow path is changed by deformation of the side wall by electrical actuating means. , a method for manufacturing an inkjet head in which ink droplets are ejected from a nozzle formed at one end of a flow path, in which piezoelectric substrates made of piezoelectric material polarized in the thickness direction are sandwiched between piezoelectric substrates whose polarization directions are mutually opposite to each other with a joint between them. a step of bonding in opposite directions to form a laminated substrate; a step of forming a large number of parallel channels having intervals from each other on the surface of the laminated substrate; and an inner surface of the flow path formed in the laminated substrate. The method is characterized by comprising a step of forming an electrode layer, and a step of bonding a substrate to the surface of the laminated substrate on which the flow path and the electrode layer are formed.

【0014】[0014]

【作用】本発明のインクジェットヘッドの上記の構成に
よれば、圧力発生室となる流路を区画する側壁を構成す
る圧電物質が、その接合部に関して対称に構成されるた
め、側壁の変形時に力学的に効率の良いアクチュエータ
を構成できる。また、ベース基板を圧電物質より誘電率
の低い絶縁物質とすることで、各圧力発生室に形成され
る電極間の結合を押さえることができる。
[Operation] According to the above structure of the inkjet head of the present invention, the piezoelectric material forming the side wall that partitions the flow path serving as the pressure generating chamber is symmetrical with respect to the joint, so that when the side wall is deformed, the piezoelectric material A highly efficient actuator can be constructed. Further, by using an insulating material having a lower dielectric constant than a piezoelectric material for the base substrate, it is possible to suppress the bonding between the electrodes formed in each pressure generating chamber.

【0015】また、本発明のインクジェットヘッドの製
造方法によれば、圧力発生室となる流路を区画する側壁
が、圧電基板を接合した後に形成されるため、加工時に
相対的位置精度が自動的に保証される。また、圧電基板
の接着層が流路を塞ぐことがなく、しかも、接合・固着
時の基板強度が高く十分な接着強度を確保できる。また
、側壁が形成された後に電極層が形成されるため、圧力
発生室内で電極層を結合する必要がない。
Furthermore, according to the method of manufacturing an inkjet head of the present invention, the side walls that define the flow paths that become the pressure generating chambers are formed after the piezoelectric substrates are bonded, so that the relative positional accuracy is automatically adjusted during processing. guaranteed. In addition, the adhesive layer of the piezoelectric substrate does not block the flow path, and the substrate strength during bonding and fixation is high and sufficient adhesive strength can be ensured. Furthermore, since the electrode layer is formed after the sidewall is formed, there is no need to bond the electrode layer within the pressure generating chamber.

【0016】[0016]

【実施例】本発明の実施例を以下で詳細に説明する。EXAMPLES Examples of the present invention will be described in detail below.

【0017】以後の説明に用いる図面において、圧電材
料内の矢印は分極方向を示す。
In the drawings used in the following description, arrows within the piezoelectric material indicate polarization directions.

【0018】(第1実施例)図1において、厚さ方向に
分極されたチタン酸ジルコン酸鉛の圧電物質からなる、
厚さ400μmの圧電基板20と厚さ1mmの圧電基板
21をその分極方向50、51が互いに反対方向である
ようにポリイミドの基板接合層30で接着し、積層基板
11を構成した。積層基板11には、図2に示すように
、ダイヤモンドカッティング円板を用いて深さ800μ
m、幅100μmの平行溝を互いに平行に169μmの
ピッチで多数加工し、多数の平行流路35を形成した。 カッティングを積層基板11を構成する薄い圧電基板2
0側から行ない、溝の深さを薄い圧電基板20の厚さ4
00μmの2倍とすることにより、隣接する流路を区画
する側壁である変形部36が基板接合層30に関して対
称となるよう形成できる。本実施例においては、ポリイ
ミドの基板接合層30は圧電基板20の厚さに比べ十分
に薄いため、圧電基板20の2倍の溝深さとしたが、基
板接合層30が厚い場合には基板接合層30の厚さを加
えた溝深さとすることにより、変形部36が基板接合層
30に関して対称となるよう形成できる。溝を形成した
積層基板111には、図3に示すように、流路35の内
面に電極層40を蒸着形成し、不要な電極部を除去した
後、インク液密性を持つポリイミドのストリップシール
からなる接合シール層45を用いて、厚さ400μmの
アルミナ基板25を接合し、圧力発生室5を形成した。 図1〜3のプロセスで形成された圧力発生室5を図4に
示すようにノズルプレート2に形成したノズル3とイン
ク供給手段9に接続し、電極層40を図5に示すように
電気的アクチュエート手段70に接続することにより、
インクジェットヘッドが構成される。
(First Embodiment) In FIG. 1, a piezoelectric material made of lead zirconate titanate is polarized in the thickness direction.
A 400 μm thick piezoelectric substrate 20 and a 1 mm thick piezoelectric substrate 21 were bonded together using a polyimide substrate bonding layer 30 such that their polarization directions 50 and 51 were opposite to each other to form a laminated substrate 11. As shown in FIG. 2, the laminated substrate 11 is cut to a depth of 800μ using a diamond cutting disk.
A large number of parallel grooves each having a width of 100 μm and a width of 100 μm were formed in parallel with each other at a pitch of 169 μm to form a large number of parallel channels 35. Thin piezoelectric substrate 2 constituting the laminated substrate 11 for cutting
Start from the 0 side and adjust the depth of the groove to the thickness 4 of the thin piezoelectric substrate 20.
By setting the thickness to twice 00 μm, the deformed portions 36, which are side walls that partition adjacent flow channels, can be formed symmetrically with respect to the substrate bonding layer 30. In this embodiment, since the substrate bonding layer 30 made of polyimide is sufficiently thin compared to the thickness of the piezoelectric substrate 20, the groove depth is set to twice that of the piezoelectric substrate 20. However, if the substrate bonding layer 30 is thick, By adding the thickness of the layer 30 to the groove depth, the deformed portion 36 can be formed symmetrically with respect to the substrate bonding layer 30. As shown in FIG. 3, on the grooved multilayer substrate 111, an electrode layer 40 is formed by vapor deposition on the inner surface of the channel 35, and after removing unnecessary electrode parts, a polyimide strip seal with ink liquid tightness is applied. The pressure generating chamber 5 was formed by bonding the alumina substrate 25 with a thickness of 400 μm using the bonding seal layer 45 consisting of the following. The pressure generating chamber 5 formed by the process of FIGS. 1 to 3 is connected to the nozzle 3 formed on the nozzle plate 2 and the ink supply means 9 as shown in FIG. 4, and the electrode layer 40 is electrically connected as shown in FIG. By connecting to the actuating means 70,
An inkjet head is configured.

【0019】次に、本実施例の圧力発生室を用いたイン
クジェットヘッドの動作原理を図5、6を用いて概説す
る。図5において、圧力発生室5内に形成されている電
極40a、40bは電気的に接続され、各流路ごとに電
気的アクチュエート手段である駆動用ドライバ素子70
に接続されている。ドライバ素子70は制御部71から
の制御信号72に対応して、直流電源73より高電圧出
力あるいは低電圧出力を各圧力発生室5内の電極40に
選択的に供給する。各圧力発生室5は一つ飛ばし(偶数
番と奇数番)の2つにグループ化され、それぞれのグル
ープごとに時間で区画化され交互に駆動される。図6に
示すように、選択された圧力発生室5aとその隣接する
圧力発生室5b、5bとを区画する側壁である変形部3
6、36に、圧電物質の分極方向50、51と直交する
ように、選択された圧力発生室5aとその隣接する圧力
発生室5b、5bとに接続されるドライバ素子を制御す
ると、圧電物質からなる変形部36は剪断モードで図示
のように変形する。この変形によって、選択された圧力
発生室5aの容積が縮小し圧力発生室5aを満たすイン
ク6に圧力が発生する。発生した圧力は、圧力発生室5
a内を伝搬し、ノズル(図4参照)からインク滴を吐出
させる。
Next, the principle of operation of the ink jet head using the pressure generating chamber of this embodiment will be outlined with reference to FIGS. 5 and 6. In FIG. 5, electrodes 40a and 40b formed in the pressure generating chamber 5 are electrically connected, and a driving driver element 70, which is an electrical actuating means, is connected for each flow path.
It is connected to the. The driver element 70 selectively supplies high voltage output or low voltage output from the DC power supply 73 to the electrodes 40 in each pressure generating chamber 5 in response to a control signal 72 from the control unit 71 . Each pressure generating chamber 5 is grouped into two groups (even numbered and odd numbered), and each group is divided by time and driven alternately. As shown in FIG. 6, the deformed portion 3 is a side wall that partitions a selected pressure generating chamber 5a and its adjacent pressure generating chambers 5b, 5b.
6, 36, when the driver elements connected to the selected pressure generating chamber 5a and its adjacent pressure generating chambers 5b, 5b are controlled so as to be perpendicular to the polarization directions 50, 51 of the piezoelectric material, the piezoelectric material The deformed portion 36 deforms as shown in the shear mode. Due to this deformation, the volume of the selected pressure generating chamber 5a is reduced, and pressure is generated in the ink 6 filling the pressure generating chamber 5a. The generated pressure is transferred to the pressure generation chamber 5.
The ink droplets propagate through the inside of a and eject ink droplets from the nozzle (see FIG. 4).

【0020】以後に説明する実施例においても、基本動
作原理は同様である。
The basic operating principle is the same in the embodiments described below.

【0021】(第2実施例)図7において、厚さ方向に
分極されたチタン酸ジルコン酸鉛の圧電物質からなる、
厚さ400μmの圧電基板20、22と厚さ1.5mm
の圧電基板21をその分極方向50、51が接合面にお
いて互いに反対方向であるようにポリイミドの基板接合
層30で接着し、積層基板13を構成した。積層基板1
3には、図8に示すように、ダイヤモンドカッティング
円板を用いて、積層基板13の両面に深さ800μm、
幅100μmの平行溝を互いに平行に169μmのピッ
チで、積層基板13の両面で1/2ピッチ位置をずらし
て多数加工し、多数の平行流路35を形成した。カッテ
ィング溝の深さを薄い圧電基板20、22の厚さ400
μmの2倍とすることにより、隣接する流路を区画する
側壁である変形部36が基板接合層30に関して対称と
なるよう形成できる。溝を形成した積層基板113には
、図9に示すように、流路35の内面に電極層40を蒸
着形成し、不要な電極部を除去した後、インク液密性を
持つポリイミドのストリップシールからなる接合シール
層45を用いて、厚さ400μmのアルミナ基板25を
接合し、圧力発生室5を形成した。
(Second Embodiment) In FIG. 7, a piezoelectric material of lead zirconate titanate polarized in the thickness direction is shown.
Piezoelectric substrates 20 and 22 with a thickness of 400 μm and a thickness of 1.5 mm
The piezoelectric substrates 21 were bonded together with a polyimide substrate bonding layer 30 such that their polarization directions 50 and 51 were opposite to each other at the bonding surface, thereby forming a laminated substrate 13. Laminated board 1
3, as shown in FIG.
A large number of parallel grooves each having a width of 100 μm were formed parallel to each other at a pitch of 169 μm on both sides of the laminated substrate 13 while being shifted by 1/2 pitch, thereby forming a large number of parallel channels 35. The depth of the cutting groove is 400 mm, which is the thickness of the thin piezoelectric substrates 20 and 22.
By setting the thickness to twice μm, the deformed portions 36, which are side walls that partition adjacent flow channels, can be formed symmetrically with respect to the substrate bonding layer 30. As shown in FIG. 9, on the grooved multilayer substrate 113, an electrode layer 40 is formed by vapor deposition on the inner surface of the channel 35, and after removing unnecessary electrode parts, a polyimide strip seal with ink liquid tightness is applied. The pressure generating chamber 5 was formed by bonding the alumina substrate 25 with a thickness of 400 μm using the bonding seal layer 45 consisting of the following.

【0022】(第3実施例)図10において、厚さ方向
に分極されたチタン酸ジルコン酸鉛の圧電物質からなる
、厚さ400μmの圧電基板20、23と厚さ600μ
mの圧電基板21、22をその分極方向50、51が接
合面において互いに反対方向で、ベース基板であるアル
ミナ基板26を挟んで対称になるようポリイミドの基板
接合層30で接着し、積層基板14を構成した。積層基
板14には、図11に示すように、ダイヤモンドカッテ
ィング円板を用いて、積層基板14の両面に深さ800
μm、幅100μmの平行溝を互いに平行に169μm
のピッチで、積層基板14の両面で1/2ピッチ位置を
ずらして多数加工し、多数の平行流路35を形成した。 溝を形成した積層基板114には、図12に示すように
、流路35の内面に電極層40を蒸着形成し、不要な電
極部を除去した後、インク液密性を持つポリイミドのス
トリップシールからなる接合シール層45を用いて、厚
さ400μmのアルミナ基板25を接合し、圧力発生室
5を形成した。本実施例のような積層基板114の両側
に圧力発生室5が形成される構成において、積層基板1
14の両側の圧力発生室5の間に圧電物質より十分に誘
電率の低い物質をベース基板26として積層することに
よって、ベース基板26の両側の圧力発生室5間の電気
的結合が小さくなり、クロストークを十分に小さくする
ことが可能となった。
(Third Embodiment) In FIG. 10, piezoelectric substrates 20 and 23 with a thickness of 400 μm and a piezoelectric substrate 23 with a thickness of 600 μm are made of a piezoelectric material of lead zirconate titanate polarized in the thickness direction.
m piezoelectric substrates 21 and 22 are bonded with a polyimide substrate bonding layer 30 so that their polarization directions 50 and 51 are opposite to each other at the bonding surface and are symmetrical across the alumina substrate 26 that is the base substrate, and the laminated substrate 14 was constructed. For the laminated substrate 14, as shown in FIG.
μm, parallel grooves with a width of 100 μm and a width of 169 μm parallel to each other.
A large number of parallel channels 35 were formed at a pitch of 1/2 pitch on both sides of the laminated substrate 14. As shown in FIG. 12, on the grooved multilayer substrate 114, an electrode layer 40 is formed by vapor deposition on the inner surface of the channel 35, and after removing unnecessary electrode parts, a polyimide strip seal with ink liquid tightness is applied. A 400 μm thick alumina substrate 25 was bonded using a bonding seal layer 45 consisting of the following, to form a pressure generating chamber 5. In the configuration in which the pressure generating chambers 5 are formed on both sides of the laminated substrate 114 as in this embodiment, the laminated substrate 1
By laminating a material having a sufficiently lower dielectric constant than the piezoelectric material as the base substrate 26 between the pressure generating chambers 5 on both sides of the base substrate 26, the electrical coupling between the pressure generating chambers 5 on both sides of the base substrate 26 is reduced. It has become possible to sufficiently reduce crosstalk.

【0023】(第4実施例)図13において、厚さ方向
に分極されたチタン酸ジルコン酸鉛の圧電物質からなる
厚さの等しい圧電基板20、21、22、23とベース
基板であるアルミナ基板26とを、その分極方向50、
51が圧電物質どうしの接合面において互いに反対方向
であるようにポリイミドの基板接合層30で接着し、積
層基板15を構成した。積層基板15には、図14に示
すように、ダイヤモンドカッティング円板を用いて、ア
ルミナ基板26に達する深さに、積層基板15の両面に
平行溝を互いに平行に、積層基板15の両面で1/2ピ
ッチ位置をずらして多数加工し、多数の平行流路35を
形成した。互いに接合された圧電物質からなる圧電基板
20、21、22、23の厚さを等しくし、圧電基板2
0、21、22、23の厚さにわたってカッティングす
ることにより、隣接する流路を区画する側壁の一部であ
る変形部36が基板接合層30に関して対称となるよう
形成できる。溝を形成した積層基板115には、図15
に示すように、流路の内面に電極層40を蒸着形成し、
不要な電極部を除去した後、インク液密性を持つポリイ
ミドのストリップシールからなる接合シール層45を用
いてアルミナ基板25を接合し、圧力発生室5を形成し
た。本実施例のような積層基板115の両側に圧力発生
室5が形成される構成において、ベース基板26の材料
を圧電物質より十分に誘電率の低いアルミナとすること
によって、ベース基板26の両側の圧力発生室5間の電
気的結合が小さくなり、クロストークを十分に小さくす
ることが可能となった。また、圧電物質が変形部36に
のみ使用されているため経済的で、強度と加工安定性を
もたらす事ができた。また、圧力発生室5の体積変化量
と独立に流路深さを設計できるため、流路抵抗設計の自
由度が増え、最適化設計が容易となった。
(Fourth Embodiment) In FIG. 13, piezoelectric substrates 20, 21, 22, and 23 of equal thickness made of a piezoelectric material of lead zirconate titanate polarized in the thickness direction and an alumina substrate serving as a base substrate are shown. 26, its polarization direction 50,
The laminated substrate 15 was constructed by bonding the piezoelectric materials using a polyimide substrate bonding layer 30 such that the bonding surfaces of the piezoelectric materials 51 were in opposite directions. As shown in FIG. 14, the laminated substrate 15 is made by using a diamond cutting disk to cut parallel grooves on both sides of the laminated substrate 15 parallel to each other to a depth that reaches the alumina substrate 26. A large number of parallel flow paths 35 were formed by shifting the positions by /2 pitches and performing a large number of processing operations. The piezoelectric substrates 20, 21, 22, and 23 made of piezoelectric materials bonded to each other have the same thickness, and the piezoelectric substrate 2
By cutting over the thicknesses of 0, 21, 22, and 23, the deformed portions 36, which are part of the side walls that partition adjacent flow channels, can be formed symmetrically with respect to the substrate bonding layer 30. The laminated substrate 115 in which grooves are formed is shown in FIG.
As shown in , an electrode layer 40 is deposited on the inner surface of the channel,
After removing unnecessary electrode parts, the alumina substrate 25 was bonded using a bonding seal layer 45 made of a polyimide strip seal having ink liquid tightness to form the pressure generating chamber 5. In the configuration in which the pressure generating chambers 5 are formed on both sides of the laminated substrate 115 as in this embodiment, by using alumina as the material of the base substrate 26, which has a sufficiently lower dielectric constant than the piezoelectric material, the pressure generation chambers 5 on both sides of the base substrate 26 are Electrical coupling between the pressure generating chambers 5 is reduced, making it possible to sufficiently reduce crosstalk. Furthermore, since the piezoelectric material is used only in the deformable portion 36, it is economical and provides strength and processing stability. Furthermore, since the flow path depth can be designed independently of the amount of volume change of the pressure generating chamber 5, the degree of freedom in flow path resistance design increases and optimization design becomes easy.

【0024】[0024]

【発明の効果】本発明によれば、厚さ方向に分極された
圧電基板を接合した後に、流路と電極層を形成すること
により、天部と底部の流路の相対的位置合わせと電極層
の結合が不要になるという効果が得られる。また、圧電
基板の接合時に接着層が流路を塞ぐことがない、さらに
、接合時に基板を破壊することがないという効果が得ら
れる。
According to the present invention, by forming a flow channel and an electrode layer after bonding piezoelectric substrates polarized in the thickness direction, it is possible to improve the relative positioning of the flow channel at the top and bottom and the electrode layer. The effect is that bonding of layers becomes unnecessary. Furthermore, the adhesive layer does not block the flow path when piezoelectric substrates are bonded, and the substrates are not destroyed during bonding.

【0025】また、厚さの異なる圧電基板を接合し、厚
い圧電基板の流路の深さが薄い圧電基板の厚さと等しく
なるよう薄い圧電基板側から流路を形成する、あるいは
、ベース基板上に厚さの等しい圧電基板2枚を積層し、
圧電基板の表面からベース基板に到達する深さに流路を
形成することにより、圧力発生室となる流路を区画する
側壁の圧電物質が、接合部に関して対称である構造を容
易に形成できる。
It is also possible to bond piezoelectric substrates with different thicknesses and form a flow path from the thinner piezoelectric substrate side so that the depth of the flow path in the thicker piezoelectric substrate is equal to the thickness of the thinner piezoelectric substrate, or Two piezoelectric substrates of equal thickness are stacked on the
By forming the flow path at a depth that reaches the base substrate from the surface of the piezoelectric substrate, it is possible to easily form a structure in which the piezoelectric material of the side wall that defines the flow path that becomes the pressure generation chamber is symmetrical with respect to the joint portion.

【0026】さらに、ベース基板の材料を圧電物質より
誘電率の低い絶縁物質とすることにより、各圧力発生室
に形成される電極間の電気的結合を押さえることができ
るという効果が得られる。
Furthermore, by using an insulating material having a lower dielectric constant than the piezoelectric material as the material of the base substrate, it is possible to suppress electrical coupling between the electrodes formed in each pressure generating chamber.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明によるインクジェットヘッド及びその製
造方法の第1実施例を示す工程図。
FIG. 1 is a process diagram showing a first embodiment of an inkjet head and a method for manufacturing the same according to the present invention.

【図2】同じく工程図。FIG. 2 is a process diagram as well.

【図3】同じく工程図。FIG. 3 is a process diagram as well.

【図4】同じく工程図。FIG. 4 is a process diagram as well.

【図5】本発明によるインクジェットヘッドの作動原理
説明図。
FIG. 5 is an explanatory diagram of the operating principle of the inkjet head according to the present invention.

【図6】同じく作動原理説明図。FIG. 6 is a diagram explaining the principle of operation.

【図7】本発明によるインクジェットヘッド及びその製
造方法の第2実施例を示す工程図。
FIG. 7 is a process diagram showing a second embodiment of an inkjet head and a method for manufacturing the same according to the present invention.

【図8】同じく工程図。FIG. 8 is a process diagram as well.

【図9】同じく工程図。FIG. 9 is a process diagram as well.

【図10】本発明によるインクジェットヘッド及びその
製造方法の第3実施例を示す工程図。
FIG. 10 is a process diagram showing a third embodiment of an inkjet head and a method for manufacturing the same according to the present invention.

【図11】同じく工程図。FIG. 11 is a process diagram as well.

【図12】同じく工程図。FIG. 12 is a process diagram as well.

【図13】本発明によるインクジェットヘッド及びその
製造方法の第4実施例を示す工程図。
FIG. 13 is a process diagram showing a fourth embodiment of an inkjet head and a method for manufacturing the same according to the present invention.

【図14】同じく工程図。FIG. 14 is a process diagram as well.

【図15】同じく工程図。FIG. 15 is a process diagram as well.

【図16】従来のインクジェットヘッド及びその製造方
法を示す工程図。
FIG. 16 is a process diagram showing a conventional inkjet head and its manufacturing method.

【図17】同じく工程図。FIG. 17 is a process diagram as well.

【図18】同じく工程図。FIG. 18 is a process diagram as well.

【符号の説明】[Explanation of symbols]

2  ノズルプレート 3  ノズル 5  圧力発生室 9  インク供給手段 20、21、22、23  圧電基板 26  ベース基板 30  基板接合層 35  流路 36  側壁(変形部) 40  電極層 50、51  分極方向 2 Nozzle plate 3 Nozzle 5 Pressure generation chamber 9 Ink supply means 20, 21, 22, 23 Piezoelectric substrate 26 Base board 30 Substrate bonding layer 35 Flow path 36 Side wall (deformed part) 40 Electrode layer 50, 51 Polarization direction

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】  ノズルの並び方向に互いに間隔を有す
る多数の平行な流路を有し、これら流路の側壁の一部ま
たは全表面に電極が形成され、前記側壁はその一部また
は全体が圧電物質で構成され、この側壁の電気的アクチ
ュエート手段による変形により前記流路内の圧力を変化
させて、流路の一端に形成されたノズルからインク滴を
噴射せしめるインクジェットヘッドであって、厚さ方向
に分極された圧電物質からなる圧電基板同士を、接合部
を挟んで分極方向が互いに反対方向となるように対称に
接合して、積層基板を形成した後、この積層基板に流路
及び電極を形成したことを特徴とするインクジェットヘ
ッド。
Claim 1: A large number of parallel flow channels spaced apart from each other in the direction in which the nozzles are arranged, electrodes are formed on a part or the entire surface of the side walls of these flow channels, and the side wall is partially or entirely An inkjet head made of a piezoelectric material and configured to eject ink droplets from a nozzle formed at one end of the flow path by changing the pressure within the flow path by deforming the side wall by electrical actuating means, the head having a thickness of Piezoelectric substrates made of piezoelectric materials polarized in the transversal direction are symmetrically bonded to each other so that the polarization directions are opposite to each other across the bonded portion to form a laminated substrate. An inkjet head characterized by forming electrodes.
【請求項2】  前記積層基板の前記圧電基板が、厚さ
の異なる圧電基板であり、薄い圧電基板側から前記流路
が形成され、厚い圧電基板における流路の深さが前記薄
い圧電基板の厚さに等しいことを特徴とする、請求項1
記載のインクジェットヘッド。
2. The piezoelectric substrates of the laminated substrate are piezoelectric substrates having different thicknesses, the flow path is formed from the thin piezoelectric substrate side, and the depth of the flow path in the thick piezoelectric substrate is equal to that of the thin piezoelectric substrate. Claim 1 characterized in that the thickness is equal to
The inkjet head described.
【請求項3】  前記積層基板が、ベース基板上に厚さ
の等しい圧電基板2枚を分極方向が互いに反対方向とな
るように積層してなり、前記流路が、前記圧電基板の表
面からベース基板に到達する深さに形成されていること
を特徴とする、請求項1記載のインクジェットヘッド。
3. The laminated substrate is formed by laminating two piezoelectric substrates having the same thickness on a base substrate such that polarization directions are opposite to each other, and the flow path extends from the surface of the piezoelectric substrate to the base substrate. The inkjet head according to claim 1, wherein the inkjet head is formed to a depth that reaches the substrate.
【請求項4】  前記ベース基板が、前記圧電物質より
誘電率の低い絶縁物質よりなることを特徴とする請求項
3記載のインクジェットヘッド。
4. The ink jet head according to claim 3, wherein the base substrate is made of an insulating material having a lower dielectric constant than the piezoelectric material.
【請求項5】  ノズルの並び方向に互いに間隔を有す
る多数の平行な流路を有し、これら流路の側壁の一部ま
たは全表面に電極が形成され、前記側壁はその一部また
は全体が圧電物質で構成され、この側壁の電気的アクチ
ュエート手段による変形により前記流路内の圧力を変化
させて、流路の一端に形成されたノズルからインク滴を
噴射せしめるインクジェットヘッドの製造方法であって
、厚さ方向に分極された圧電物質からなる圧電基板同士
を、接合部を挟んで分極方向が互いに反対方向となるよ
うに接合し、積層基板を形成する工程と、前記積層基板
表面へ、互いに間隔を有する多数の平行な流路を形成す
る工程と、前記積層基板に形成された流路の内面に、電
極層を形成する工程と、前記流路及び電極層が形成され
た前記積層基板の表面へ、基板を接合する工程とからな
ることを特徴とする、請求項1又は2又は3又は4記載
のインクジェットヘッドの製造方法。
5. A large number of parallel flow channels spaced apart from each other in the direction in which the nozzles are arranged, electrodes are formed on a part or the entire surface of the side walls of these flow channels, and the side wall is partially or entirely A method for manufacturing an inkjet head comprising a piezoelectric material, in which the pressure within the channel is changed by deformation of the side wall by electrical actuating means, and ink droplets are ejected from a nozzle formed at one end of the channel. a step of bonding piezoelectric substrates made of piezoelectric materials polarized in the thickness direction so that the polarization directions are opposite to each other across the bonding portion to form a laminated substrate; a step of forming a large number of parallel channels having intervals from each other; a step of forming an electrode layer on the inner surface of the channel formed in the laminated substrate; and a step of forming the multilayer substrate on which the channel and the electrode layer are formed. 5. The method for manufacturing an inkjet head according to claim 1, further comprising the step of bonding a substrate to the surface of the inkjet head.
JP1984591A 1991-02-13 1991-02-13 Ink jet head and method of manufacturing the same Expired - Lifetime JP3087315B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1984591A JP3087315B2 (en) 1991-02-13 1991-02-13 Ink jet head and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1984591A JP3087315B2 (en) 1991-02-13 1991-02-13 Ink jet head and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH04259563A true JPH04259563A (en) 1992-09-16
JP3087315B2 JP3087315B2 (en) 2000-09-11

Family

ID=12010595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1984591A Expired - Lifetime JP3087315B2 (en) 1991-02-13 1991-02-13 Ink jet head and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3087315B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05338156A (en) * 1991-08-16 1993-12-21 Compaq Computer Corp High density ink jet printhead
WO1999046127A1 (en) * 1998-03-11 1999-09-16 Xaar Technology Limited Droplet deposition apparatus and method of manufacture
WO2005082629A1 (en) 2004-02-26 2005-09-09 Xaar Technology Limited Droplet deposition apparatus
US7290868B2 (en) 2003-03-11 2007-11-06 Sharp Kabushiki Kaisha Inkjet head with formed external circuit connecting electrodes
EP2055486A1 (en) * 2007-10-31 2009-05-06 SII Printek Inc Inkjet head, manufacturing method for the same, and inkjet recording apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02150355A (en) * 1988-10-13 1990-06-08 Am Internatl Inc Electric pulse type droplet deposition device having high-density multiple groove array

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02150355A (en) * 1988-10-13 1990-06-08 Am Internatl Inc Electric pulse type droplet deposition device having high-density multiple groove array

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05338156A (en) * 1991-08-16 1993-12-21 Compaq Computer Corp High density ink jet printhead
WO1999046127A1 (en) * 1998-03-11 1999-09-16 Xaar Technology Limited Droplet deposition apparatus and method of manufacture
US6505918B1 (en) 1998-03-11 2003-01-14 Xaar Technology Limited Piezoelectric material and method of polarizing the same
US7290868B2 (en) 2003-03-11 2007-11-06 Sharp Kabushiki Kaisha Inkjet head with formed external circuit connecting electrodes
WO2005082629A1 (en) 2004-02-26 2005-09-09 Xaar Technology Limited Droplet deposition apparatus
EP2055486A1 (en) * 2007-10-31 2009-05-06 SII Printek Inc Inkjet head, manufacturing method for the same, and inkjet recording apparatus
US7909436B2 (en) 2007-10-31 2011-03-22 Sii Printek Inc. Inkjet head, manufacturing method for the same, and inkjet recording apparatus

Also Published As

Publication number Publication date
JP3087315B2 (en) 2000-09-11

Similar Documents

Publication Publication Date Title
JP4243850B2 (en) Multilayer piezoelectric element and ink jet recording head including the same
JP5752906B2 (en) Method for manufacturing liquid jet head
JP3163878B2 (en) Ink jet device
JP2000094679A (en) Piezoelectric oscillation unit, manufacture thereof, and ink jet recording head
JPH07232431A (en) Ink jet device
JP2014087949A (en) Liquid jet head, liquid jet device and liquid jet head manufacturing method
JPH04259563A (en) Ink jet head and its manufacture
JP2004106267A (en) Liquid pressure generating mechanism and its manufacturing process and liquid drop ejector
JP4138155B2 (en) Method for manufacturing liquid discharge head
JPH04182138A (en) Ink-jet head and manufacture thereof
JP3186379B2 (en) Ink jet device
JP3298755B2 (en) Method of manufacturing inkjet head
JPH10217466A (en) Ink jet head
JPH07205422A (en) Ink jet device
JP3067239B2 (en) Inkjet head
JP3211769B2 (en) Ink jet device
JPH08258261A (en) Ink jet device
JP6049323B2 (en) Inkjet head
JP3471969B2 (en) Ink ejecting apparatus and manufacturing method thereof
JP3173189B2 (en) Inkjet head
JP2000117971A (en) Multilayer piezoelectric driver, production thereof, and ink jet head
JP3201103B2 (en) Ink jet device
JP4345137B2 (en) Inkjet head manufacturing method
JPH08174822A (en) Ink spouting device and its manufacture
JP2003211661A (en) Ink jet head

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080714

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090714

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100714

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110714

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110714

Year of fee payment: 11