JPH04258367A - Method and device for cleaning powder and particles - Google Patents

Method and device for cleaning powder and particles

Info

Publication number
JPH04258367A
JPH04258367A JP22362591A JP22362591A JPH04258367A JP H04258367 A JPH04258367 A JP H04258367A JP 22362591 A JP22362591 A JP 22362591A JP 22362591 A JP22362591 A JP 22362591A JP H04258367 A JPH04258367 A JP H04258367A
Authority
JP
Japan
Prior art keywords
pressurized gas
powder
fluidized bed
container
nozzle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22362591A
Other languages
Japanese (ja)
Inventor
Hans-Klaus Schott
ハンス・クラウス・ショット
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuettner GmbH and Co KG
Original Assignee
Kuettner GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuettner GmbH and Co KG filed Critical Kuettner GmbH and Co KG
Publication of JPH04258367A publication Critical patent/JPH04258367A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C5/00Machines or devices specially designed for dressing or handling the mould material so far as specially adapted for that purpose
    • B22C5/18Plants for preparing mould materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Cleaning In General (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE: To clean the particle surfaces of contaminated powder and granular materials, particularly thermally reconditioned used molding sands without the particle destruction thereof although these surfaces contain undesirable particulates, such as carbonized resins, additives and chamotte. CONSTITUTION: The method is to load gas under superoverpressure (=pressurized gaseous flow) on the powder and granular materials to be cleaned or recleaned, putting the powder and granular materials 2 into a fluidized state by such loading of the pressurized gas, preventing the particles from receiving impact load or collision load by a fixedly arranged wall or movable wall and executing the cleaning only by the abrasive property or frictional surface stress of the particles. Or the apparatus is equipped with a vessel 3 having a powder and granular material inlet and a powder and granular material outlet. This vessel has a gas permeable inflow bottom 5 for the purpose of forming a fluidized layer 8. The apparatus is connected to a pressurized gas source arranged upper than the inflow bottom and has at least one nozzle 9 directing this pressurized gas stream toward the inside of the fluidized bed.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】本発明は、汚れた粉粒体の粒子表面(単・
複)の(機械式)清浄方法、特に熱的に(予備)再生し
た砂、特に鋳物古砂の(再)清浄方法に関する。本発明
は更に、粉粒体入口と粉粒体出口とを備えた容器を有し
、流動層を形成する目的で前記容器がガス透過性流入底
を備えており、該底に流動化ガス源から流動化ガスを負
荷することができるようになった前記方法を実施する装
置に関する。
[0001] The present invention aims to improve particle surfaces (single particles) of dirty powder particles.
The present invention relates to a (mechanical) cleaning method, in particular a (re)cleaning method for thermally (pre)regenerated sand, especially for used foundry sand. The invention further comprises a container having a granular material inlet and a granular material outlet, the container being provided with a gas permeable inlet bottom for the purpose of forming a fluidized bed, the bottom having a source of fluidizing gas. The present invention relates to an apparatus for carrying out the method, in which a fluidizing gas can be loaded from the source.

【0002】当該専門業界では十分に知られているよう
に、(例えば、そして特に砂等の)粉粒体を使用したき
わめてさまざまな技術プロセスにおいて当該プロセスの
実施後この粉粒体は一般に汚れた形で発生し、従ってこ
の場合以前は廃産物と判定されるだけでなく、塵捨て場
に投棄又はその他の方法で除去(そして場合によっては
一部再利用のため抽出)することにより、適宜に処理さ
れた。
As is well known in the professional field, in a wide variety of technical processes using granular materials (such as, for example, and in particular sand), this granular material is generally contaminated after carrying out the process. In this case, not only would they previously be classified as waste products, but they could also be disposed of, where appropriate, by being dumped in a dump or otherwise removed (and possibly partially extracted for reuse). It has been processed.

【0003】このことがあてはまるのは例えば、そして
特に、以前からそして益々大量に発生する鋳物古砂であ
り、これは成型材料として有機系粘結剤及び/又は無機
化学粘結剤で処理してあり、鋳造後には特に予め添加し
た粘結剤によって汚れ、鋳物古砂はかかるものとして(
即ち再生することなくしては)容易には再利用すること
ができない。汚れた粉粒体の再生、従って(少なくとも
部分的)回収は、前記例示の場合、実質的に石英からな
る砂粒子の粘結剤外被及びその他の不純物が砂粒子から
分離除去されることを前提とする。
This applies, for example, and especially to old foundry sand, which has been and is occurring in increasingly large quantities, and which has been treated as a molding material with organic binders and/or inorganic chemical binders. However, after casting, it gets dirty especially from the binder added in advance, and old casting sand gets dirty (
In other words, it cannot be easily reused (without recycling). The reclamation and therefore (at least partial) recovery of the contaminated granular material means that in the above example case the binder coat and other impurities of the sand particles consisting essentially of quartz are separated and removed from the sand particles. Assumed.

【0004】成型砂を有機的に結合した鋳物(古)砂の
場合かかる粘結剤外被を生じるのは特に、一般に成型物
質として添加されるベントナイトが──鋳造時の熱負荷
に依存して──シャモット化(オーライト化)により砂
粒子の表面に実質的に殻状に固着する理由からである。 更に光沢炭素及びこれを形成する添加剤が引き続き、鋳
造に使用した成型砂(=鋳物古砂)の不純物となる。
[0004] In the case of foundry (old) sand organically bound to molding sand, such a binder coating is caused especially by bentonite, which is generally added as a molding substance, depending on the heat load during casting. ---This is because chamotte (oleitization) causes it to adhere to the surface of sand particles in a substantially shell-like manner. Furthermore, the bright carbon and the additives that form it continue to become impurities in the molding sand used in casting (=old foundry sand).

【0005】そのかぎりでドイツ特許公開明細書第 4
 008 849号に要約して説明してあるように、ド
イツ特許公開明細書第 31 03 030号、第 3
8 15 877号、第 30 19 069号及び米
国特許明細書第 2 783 511号に既に鋳物古砂
を再生する技術が提案されているが、しかしそれらは技
術的観点の下でも経済的観点の下でも満足のゆく結果を
生じなかった。ドイツ特許公開明細書第 4 008 
849号自身にも鋳物古砂を再生する方法及び装置が提
案してあるが、これは先行技術に比べ著しい技術的向上
、従って又経済的向上をもたらすのであるが、この技術
も以下明らかとなるようになお改善の余地があることが
判明した:さまざまな成型法に(可能なかぎり)無制限
に再利用できるかどうかの点で再生物の品質はなかんず
く、そして特にパラメータ −pH値 −オーライト化 −スラッジ物質 −総炭素含量 −灼熱減量 −粒径<90μ によって特徴付けられ、これらのパラメータの(許容)
限界値は各成型法ごとにそれ相応の経験を基に定義し又
は確定してある。これらのパラメータ限界値を超えると
、再生した鋳物古砂の再利用が基本的にはやはり可能で
あり、但し適宜ないわゆる成型物質循環路においてのみ
可能である。
[0005] Insofar, German Patent Publication No. 4
008 849, German Patent Application No. 31 03 030, no.
No. 8 15 877, No. 30 19 069, and U.S. Patent No. 2 783 511 have already proposed techniques for regenerating old foundry sand, but these techniques are insufficient from both a technical and economic point of view. But it did not produce satisfactory results. German Patent Publication No. 4 008
No. 849 itself proposes a method and apparatus for regenerating old foundry sand, which brings significant technical and therefore economical improvements over the prior art, as will become clear below. It has been found that there is still room for improvement: the quality of the recycled product is particularly important in terms of its unrestricted reuse (as far as possible) in various molding methods, and in particular in the parameters - pH value - Ooliticization. - Sludge material - Total carbon content - Loss on ignition - Characterized by particle size <90μ and (acceptable) of these parameters
Limit values are defined or established for each molding method based on corresponding experience. Beyond these parameter limits, reuse of the regenerated old foundry sand is in principle still possible, but only in suitable so-called molding material circuits.

【0006】それ故、常に具体的課題を点検しなければ
ならず、若しくは具体的課題を考慮して具体的適用事例
でどの限界値を維持しなければならないのかを点検しな
ければならない。
[0006] Therefore, it is always necessary to check the concrete problems, or, taking the concrete problems into account, to check which limit values have to be maintained in the concrete application case.

【0007】鋳物古砂の熱的再生法から得た再生物は基
本的に、又は一般に、既に比較的高品質であるが、しか
しいまなお炭化樹脂の諸成分、添加物質及び/又は粒子
表面上のシャモット及び(障害となるので)望ましくな
い微粒分を含有している。それ故再生物のそれ自体望ま
しい又は必要な品質を最適に調整するには、再生物から
これらの不純物を少なくとも一部でも又は殆ど取り除く
ことが必要であり又はきわめて望ましいことであろう。 明らかにその他の再生法についても同様である。
[0007] The regenerated material obtained from thermal regeneration of old foundry sand is basically or generally already of relatively high quality, but still contains the components of the carbonized resin, the additives and/or the particle surface chamotte and undesirable particulate matter (because it is a nuisance). It may therefore be necessary or highly desirable to remove at least some or most of these impurities from the recycle product in order to optimally adjust the per se desirable or required quality of the recycle product. The same obviously applies to other regeneration methods.

【0008】かかる(再)清浄において機械式(再)清
浄を考えるとき確認しなければならない点として、粉粒
体の常に望ましい、粒子を保護した機械式清浄の場合清
浄効果が達成されるのは実質的に研磨効果又は摩擦効果
によってであり、つまり個々の粉粒体(つまり前記例の
場合砂粒子)が互いに研磨しつつ相対移動するときであ
ること自体は周知である。粉粒体の粒子相互の相対速度
或いはその他の清浄要素に対する相対速度が過度に大き
いことは、被(再)清浄粉粒体の粒子が過度に強く運動
すると粒径が低減し粒子が破壊され及び/又は粒子表面
が損傷するとともに又特にそれ相応の(過度に高い)パ
ルスエネルギーでの衝突効果により清浄部品がかなりの
磨耗性破壊を生じることがあるかぎり、危険である。
[0008] When considering mechanical (re)cleaning in such (re)cleaning, it must be confirmed that the cleaning effect is achieved in the case of mechanical cleaning that protects the particles, which is always desirable for powder and granular materials. It is well known that this is essentially due to an abrasive effect or a frictional effect, that is, when the individual powder particles (that is, the sand particles in the case of the above example) move relative to each other while abrading each other. Excessively high relative velocities between the particles of the granular material or relative to other cleaning factors means that if the particles of the granular material to be (re)cleaned move too strongly, the particle size will decrease and the particles will be destroyed. Dangerous, insofar as particle surfaces are damaged and/or the cleaning parts can undergo considerable abrasive destruction due to impact effects, especially at corresponding (too high) pulse energies.

【0009】かかる不純物の機械式除去を行う方法及び
装置が幾つか知られている。装置の固定部品又は可動部
品で起きるのと同様に砂粒子相互の衝突効果及び研磨効
果が引き起こされる。ここで例として挙げるならインパ
クトクラッシャ、ボールミル、振動容器、タンブラ、そ
して特に頻繁に使用されるヤコブ式、シンプソン式及び
ウェーバック式衝突清浄装置がある。粒子の破損や破壊
をできるだけ小さく抑えるため一般に好適な措置により
、例えば衝突面の斜位置等により、衝突力を低く押さえ
且つ研磨効果をより効果的にする試みがなされる。
Several methods and devices are known for mechanically removing such impurities. Impacting and abrasive effects of the sand particles on each other are caused, similar to what occurs with fixed or moving parts of the device. Examples here include impact crushers, ball mills, vibrating vessels, tumblers, and the particularly frequently used Jacob, Simpson and Weyback impact cleaners. In order to keep the breakage and destruction of the particles as small as possible, attempts are generally made to keep the impact forces low and to make the polishing effect more effective by suitable measures, such as the oblique position of the impact surfaces.

【0010】これらの装置又はこれで実施する方法の全
てに共通する著しい欠点として粒子の破壊が比較的大き
く、この破壊は再生物に要求される品質条件が厳しけれ
ば厳しいほど一般に大きい。なぜなら品質条件が比較的
厳しいと、より論理的に、従ってそれ自体一貫して衝突
速度がそれ相応に高く設定され又は清浄装置に通す回数
が高まり、だがその際同時に不可避的に、清浄効果が比
較的良好となる他、粒子破壊の度合いが高まるからであ
る。
A significant drawback common to all of these devices or the methods carried out with them is the relatively large degree of particle destruction, which is generally greater the more stringent the quality conditions required for the regeneration. This is because the more stringent the quality conditions, the more logically and therefore consistently the impingement speed will be set correspondingly higher or the number of passes through the cleaning device will be increased, but at the same time inevitably the cleaning effect will be comparatively This is because, in addition to improving the accuracy, the degree of particle destruction also increases.

【0011】そこで本発明の課題は、粉粒体の汚れた粒
子表面を効果的にそして尚且つ粒子を保護して(機械式
に)清浄又は再清浄することのできる冒頭述べた種類の
方法及びそれを実施するのに適し又そのために指定され
た装置を提供することである。
SUMMARY OF THE INVENTION The object of the present invention is therefore to provide a method of the type mentioned at the outset, which makes it possible to clean or reclean (mechanically) dirty particle surfaces of granular materials effectively and while protecting the particles. It is to provide equipment suitable and designated for carrying out the same.

【0012】上記課題の方法に係わる部分の解決策とし
て本発明によれば、清浄又は再清浄にすべき粉粒体に超
過圧下のガス流が負荷され、このガスの負荷により粉粒
体が流動状態とされ、固定配置した壁又は可動壁で粒子
が衝撃荷重又は衝突荷重を受けるのを防止して粒子の研
磨性又は摩擦性(表面)応力のみによって清浄が行われ
、他方この課題の装置に係わる部分の解決策は前記方法
を実施する類概念による装置において、流入底より上に
配置して加圧ガス源と接続し、その加圧ガス流を流動層
の内部に向けた少なくとも1個のノズルを特徴としてい
る。
According to the present invention, as a solution to the part related to the method of the above-mentioned problem, a gas flow under excessive pressure is applied to the granular material to be cleaned or recleaned, and the granular material is caused to flow due to this gas load. cleaning is carried out solely by the abrasive or abrasive (surface) stress of the particles, preventing the particles from being subjected to impact or collision loads on fixedly arranged or movable walls; The solution in question is a device according to a similar concept for carrying out the method, comprising at least one unit arranged above the inflow bottom and connected to a source of pressurized gas, directing the pressurized gas flow into the interior of the fluidized bed. It features a nozzle.

【0013】従って本発明はいわばドイツ特許公開明細
書第 40 08 849号(特に例2及びこの印刷物
にこれに関連して記載された技術参照)に記載された熱
的再生のきわめて有利な補足物として、本発明により、
以下なお詳しく述べるように被清浄粉粒体又は被再清浄
粉粒体を流動層状態にするよう提案する。
The present invention is thus, as it were, a very advantageous complement to the thermal regeneration described in German Patent Application No. 40 08 849 (see in particular Example 2 and the technology described in connection therewith in this publication). According to the present invention,
As will be described in more detail below, it is proposed to bring the granular material to be cleaned or the granular material to be recleaned into a fluidized bed state.

【0014】その際、ノズル前の前圧が絶対圧約2.3
barのとき(流動層の背圧が絶対圧約1.15 ba
rのとき)ノズル内でガス音速が既に達成され、前圧の
上昇に伴い流入速度(=音速)が一定し、他方圧力の上
昇に伴い流入するガス質量(従ってパルス)が(尚且つ
)上昇することを指摘しておく。
[0014] At that time, the front pressure in front of the nozzle is about 2.3 absolute pressure.
bar (back pressure of the fluidized bed is approximately 1.15 bar absolute)
r) the gas sonic velocity has already been achieved in the nozzle, the inflow velocity (=sonic velocity) remains constant as the prepressure increases, and on the other hand, as the pressure increases, the incoming gas mass (and therefore the pulse) increases (and) I would like to point out that.

【0015】その際特に重要な点として、前述の先行技
術の方法とは異なり、この摩擦効果が有効となる滞留時
間は事実上任意に延長することができる。そのことから
わかるように本発明方法によれば、求める理想的種類の
機械式砂再生が専ら付着した粘結剤の殻又はその他の不
純物の摩擦により達成される。
It is of particular importance here that, in contrast to the prior art methods mentioned above, the residence time during which this frictional effect is effective can be extended virtually arbitrarily. It can be seen that, according to the method of the invention, the ideal type of mechanical sand regeneration sought is achieved exclusively by abrasion of adhering binder shells or other impurities.

【0016】本発明の1構成では、逆向きの空気噴流に
より加速された砂流の衝突が起きないようノズルが上下
方向及び/又は横方向でずらして配置しておくことがで
きる。
[0016] In one embodiment of the invention, the nozzles can be arranged vertically and/or laterally offset to avoid impingement of sand streams accelerated by opposing air jets.

【0017】本発明方法は更に清浄プロセスを熱中でも
経過させる可能性を提供する。これにより例えば合成樹
脂系粘結剤の残留物から有機成分を熱的に除去すること
ができる。こうして、流動層から排気と一緒に排出され
る粉塵を汚染するかかる有機化合物を燃焼させて無害な
残留物質とすることも可能である。つまり本発明方法は
、この変種により、根本的砂再生の熱的工程と機械的工
程を単一の工程に組合せる可能性を提供する。
The method according to the invention also offers the possibility of carrying out the cleaning process even in the heat. This makes it possible, for example, to thermally remove organic components from the residue of a synthetic resin binder. In this way, it is also possible to burn off such organic compounds that contaminate the dust discharged from the fluidized bed with the exhaust gas into harmless residual substances. With this variant, the method of the invention thus offers the possibility of combining the thermal and mechanical steps of radical sand regeneration into a single step.

【0018】この経済的にきわめて肯定的な可能性が幾
つかのなお重要な利点によって補足される。つまりここ
で特に注意しなければならない点として流動層は空気圧
搬送とは異なる別の法則に従う。そのことから本質的に
好ましい運転様式が生じる。というのも固形物の流動化
に比較的小さなエネルギー支出が必要であるにすぎない
からである。横から流入する空気量にとって、上述の流
れ現象を流動層内で生成するのにはやはり僅かなエネル
ギーで十分である。そのことから全体として本発明方法
にとって生じるエネルギー支出は従来の空気圧法に必要
なエネルギー消費量の約20%にすぎない。これらの経
済的利点が、僅かな粒子損失で質的に貴重な再生砂が多
く生産される利点によって補足される。
[0018] This economically very positive possibility is complemented by several still important advantages. In other words, it is important to note here that fluidized beds follow different laws from those of pneumatic conveyance. This results in an essentially favorable mode of operation. This is because only relatively small energy expenditures are required for fluidizing the solids. For air quantities entering from the side, a small amount of energy is still sufficient to produce the above-mentioned flow phenomena in the fluidized bed. Overall, the energy expenditure resulting from the method according to the invention is therefore only about 20% of that required for the conventional pneumatic method. These economic advantages are complemented by the advantage that a large amount of qualitatively valuable recycled sand is produced with low particle losses.

【0019】他方、大きな利点は粒子破壊が少なく、従
って運搬、新砂、廃棄の経費が少ない点にある。破壊さ
れる粒子は約15重量%少ない。平均粒径>0.09の
割合は清浄時間1時間の場合清浄の過程で約10%低下
する。
On the other hand, a major advantage is that there is less particle breakage and therefore less transportation, fresh sand and disposal costs. Approximately 15% fewer particles are destroyed by weight. The proportion of average particle size >0.09 decreases by about 10% during the cleaning process for a cleaning time of 1 hour.

【0020】方法の点で好ましくは加圧ガス流を少なく
とも1つの負荷箇所で被清浄粉粒体の表面/内部に案内
するようになっており、その際特に好ましくは前記少な
くとも1つの負荷箇所が各被清浄粉粒体量の縁範囲に配
置され、但しわかるようにその内部にも設けることがで
きる。
[0020] In terms of method, it is preferred that the pressurized gas stream is guided onto the surface/inside of the granular material to be cleaned at at least one load point, with particular preference being given to the at least one load point being They are arranged in the edge area of each granular mass to be cleaned, but it is understood that they can also be provided inside it.

【0021】更に、──場合によっては複数箇所又は複
数の「原因箇所」で引き起こされて──被清浄粉粒体が
(少なくとも)第2の実質的に逆向きのガス流の範囲に
位置し又従って特に強力に(再)清浄にされるよう少な
くとも1つの第1加圧ガス負荷箇所に少なくとも1つの
第2加圧ガス負荷箇所を実質的に対向配置するのが望ま
しいことが判明した。その際、(多かれ少なかれ弛緩し
た)層の流動状態とガス噴流パルス(ノズル前の前圧)
を単に層中へのさまざまな浸透深さに応じて選択するこ
とにより(壁や組込機構でではなく)粒子間の(正確に
)配量することのできる衝突効果が研磨効果又は摩擦効
果に重ね合わされる。
[0021] Furthermore, if the granular material to be cleaned is located within the range of (at least) a second substantially opposite gas flow--in some cases caused by multiple locations or multiple "source locations"-- It has therefore also turned out to be desirable to arrange at least one second pressurized gas loading point substantially opposite to the at least one first pressurized gas loading point in order to ensure particularly intensive (re)cleaning. In this case, the flow state of the (more or less relaxed) bed and the gas jet pulse (prepressure in front of the nozzle)
The impact effect can be (accurately) metered between particles (rather than by walls or built-in mechanisms) by simply selecting them according to different penetration depths into the layer, resulting in an abrasive or frictional effect. are superimposed.

【0022】更に本発明の1構成で特別望ましいと判明
したのは、加圧ガスを少なくとも1つの加圧ガス負荷箇
所で被清浄粉粒体の外面に実質的に接線方向で案内する
ときであり、これにより──特にこの措置を2箇所以上
で実現するとき──被清浄粉粒体は求める効果に肯定的
に影響する回転運動を行わせることができ、これに適し
た磨耗壁又は磨耗組込機構で研磨効果を強めることがで
きる。
Furthermore, one embodiment of the invention has proven particularly advantageous when the pressurized gas is guided substantially tangentially to the outer surface of the granular material to be cleaned at at least one pressurized gas loading point. In this way, especially when this measure is implemented in two or more places, the granules to be cleaned can be subjected to rotational movements that positively influence the desired effect, and suitable wear walls or wear assemblies can be used for this purpose. The polishing effect can be strengthened with the embedding mechanism.

【0023】加圧ガスの負荷をその都度の技術的課題に
最適に適合できるよう少なくとも1つの(好ましくは全
ての)加圧ガス負荷箇所の負荷強度が設定可能であると
、きわめて望ましいことが判明した。更に、加圧ガス・
圧縮空気を用いるときもそうであり、これは、ここで問
題にしている課題を最も望ましい仕方で解決するだけで
なく、更には安価に提供されており又は提供することが
できる。
It has proven to be extremely desirable if the load intensity of at least one (preferably all) pressurized gas loading points can be set in order to optimally adapt the pressurized gas loading to the respective technical task. did. Furthermore, pressurized gas
This is also the case when using compressed air, which not only solves the problem in question here in the most desirable way, but also is or can be provided inexpensively.

【0024】従って本発明装置では好ましくは少なくと
も1個の第1ノズルに対し流動層又は被清浄粉粒体の反
対側に少なくとも1個の第2ノズルが配置してあり、そ
の際少なくとも1個の(好ましくは全ての)ノズルの流
れの強さは設定可能、即ち調整可能又は調節可能とする
ことができる。
Therefore, in the apparatus of the present invention, at least one second nozzle is preferably arranged on the opposite side of the fluidized bed or the granular material to be cleaned with respect to at least one first nozzle. The flow strength of (preferably all) nozzles may be configurable, i.e. adjustable or adjustable.

【0025】既に先にプロセス技術的観点の下で述べた
ように本発明装置では好ましくは複数個のノズルを設け
ておくことができ、該ノズルはそれぞれ好ましくは対を
成して実質的に対向配置してあり、しかもノズルの中心
軸が平行線を成し、互いに角度を成し、だか又共通線上
にある。
As already mentioned above under the process-technical point of view, the device according to the invention can preferably be provided with a plurality of nozzles, each nozzle preferably arranged in pairs and arranged substantially oppositely. Moreover, the central axes of the nozzles form parallel lines, form an angle with each other, and are also on a common line.

【0026】本発明のその他の好ましい諸構成が(方法
に関しても装置に関しても)従属請求項に明示してある
。以下図面を参考に1実施例を基に本発明を更に説明す
る。
Further preferred embodiments of the invention (both in terms of the method and in terms of the device) are specified in the dependent claims. The present invention will be further described below based on one embodiment with reference to the drawings.

【0027】図1は熱的に(予備)再生した鋳物古砂2
を機械式に再清浄にする全体に符号1とした装置を示し
、この装置は詳しくは図示していない粉粒体入口と粉粒
体出口とを備えた容器3を有し、該容器は垂直な対称軸
4を中心に実質的に長方形又は円錐形である。
Figure 1 shows thermally (preliminarily) regenerated foundry sand 2.
A device, generally designated 1, for mechanically recleaning is shown, which comprises a container 3 with a powder inlet and a powder outlet, not shown in detail, which container is arranged vertically. It has a substantially rectangular or conical shape about an axis of symmetry 4.

【0028】再清浄すべき鋳物古砂2の範囲に流動層を
形成するため容器3がガス透過性流入底5を備えており
、この底は例えば球体床からなり、図示省略した圧縮空
気源から矢印7の方向に導管6を介し下から流動化渦空
気が負荷される。
In order to form a fluidized bed in the area of the old foundry sand 2 to be recleaned, the vessel 3 is equipped with a gas-permeable inflow bottom 5, which consists of a spherical bed, for example, and which is supplied from a compressed air source (not shown). Fluidized vortex air is applied from below via conduit 6 in the direction of arrow 7.

【0029】流入底5より上で流動層8の範囲に配置さ
れたノズル9はそれぞれ対を成して実質的に対向し、図
示省略した加圧ガス源から矢印10の方向に共通の絞り
部材11を介し供給され、該部材は圧縮空気供給管12
内に配置してあり、ノズル9と接続してある環状管13
に供給する。圧縮空気供給管12、従って環状管13は
、被清浄鋳物古砂2の負荷強度をどのノズル9でも均一
に設定できるよう個々の/単一の絞り部材11と接続し
ておくことができる。しかし図2に示すように圧縮空気
供給管12’から複数の(図2の例では平面図で示して
ある)圧縮空気供給管12”を分岐させ、それらのなか
に各1個の絞り部材11を配置しておくこともでき、こ
うして再清浄にする鋳物古砂2の負荷強度を流動層のさ
まざまな帯域で適宜に別様に設定することができる。見
てわかるように適宜な適合可能性は──図2に示す実施
例の場合のように──流動層のさまざまな帯域に設けて
おくことができるだけでなく、当業者にとって容易に認
めることができるように又従って明白であるように各ノ
ズル9の前に「独自の」絞り部材11を直接設けるとき
場合によっては1帯域内にさまざまな負荷強度を設ける
こともできる。
The nozzles 9 arranged in the region of the fluidized bed 8 above the inlet bottom 5 are arranged substantially opposite each other in pairs and are connected to a common throttle member in the direction of the arrow 10 from a pressurized gas source (not shown). 11, the member is supplied via compressed air supply pipe 12
an annular tube 13 located inside and connected to the nozzle 9;
supply to. The compressed air supply pipe 12, and therefore the annular pipe 13, can be connected to individual/single throttle elements 11 in order to set the load strength of the old foundry sand 2 to be cleaned uniformly on all nozzles 9. However, as shown in FIG. 2, a plurality of compressed air supply pipes 12'' (shown in a plan view in the example of FIG. 2) are branched from the compressed air supply pipe 12', and one throttle member 11 is inserted into each of the compressed air supply pipes 12''. can also be arranged in such a way that the load strength of the old foundry sand 2 to be recleaned can be set appropriately differently in different zones of the fluidized bed.As can be seen, there are suitable adaptation possibilities. not only can be provided in different zones of the fluidized bed--as in the case of the embodiment shown in FIG. When each nozzle 9 is provided directly with its own diaphragm element 11, it is possible to provide different load intensities within one band.

【0030】ここで指摘しておくなら容器3は横断面が
必ずしも長方形/円錐形でなくてもよく、例えば円形で
あってもよい。容器3の(少なくとも流動層8の範囲で
の)円形横断面が最も望ましいのは、特に、ノズル9の
少なくとも一部を、被清浄粉粒体2(又は流動層8)が
運転中例えば、そして特に、しばしば格別望ましいこと
があるが容器3の回転対称軸4を中心に回転運動を行う
よう配置してあるときである。
It should be pointed out here that the container 3 does not necessarily have to have a rectangular/conical cross section, but may have a circular cross section, for example. A circular cross-section of the container 3 (at least in the area of the fluidized bed 8) is most preferred, especially when the granular material 2 to be cleaned (or the fluidized bed 8) is in operation, e.g. This is particularly the case when the container 3 is arranged to perform a rotational movement about the axis of rotational symmetry 4, which is often particularly desirable.

【0031】なお指摘しておくなら、本発明の1構成に
おいて容器3内に、鎮静空間3’内で始まり流動層8の
流入底5の直前にまで達して容器内部の自由空間を少な
くとも2つ(場合によってはそれ以上)の部分に仕切る
仕切壁を配置しておくことができる。これでもって、既
に殆ど清浄にされた粉粒体と新たに装入された材料との
逆混合が防止されるはずである。同時にいわば複数の流
動層が相前後して設けられる。
It should be pointed out that in one embodiment of the invention, there are at least two free spaces inside the container 3 starting in the calming space 3' and extending immediately before the inflow bottom 5 of the fluidized bed 8. Partition walls can be placed to separate (or in some cases more) parts. This should prevent back-mixing of the already mostly cleaned powder with the newly charged material. At the same time, so to speak, several fluidized beds are provided one after the other.

【0032】円形横断面の流動層の場合この仕切りは同
心範囲により、又は上下に配置した流動層により行うこ
とができる。更に指摘しておくなら、前記実施例の場合
ノズル9の吐出径は3.4 mmであるが、それより小
又は大であってもよい。
In the case of fluidized beds of circular cross section, this separation can be achieved by concentric areas or by fluidized beds arranged one above the other. It should be further pointed out that in the case of the above embodiment, the discharge diameter of the nozzle 9 is 3.4 mm, but it may be smaller or larger.

【0033】ちなみになお指摘しておくなら、容器3は
流動層9の範囲に周方向ゴム内張り14を備えておくこ
とができ、流動層8の上側範囲、容器3のノズルより上
に単数又は複数の図示省略した熱交換器を配置しておく
ことができ、これでもって、特に熱的流動層の後段に再
清浄流動層が設けてあるとき、再清浄プロセスから再利
用可能又は継続利用可能な熱を獲得(回収)することが
できる。
By the way, it should be pointed out that the container 3 can be provided with a circumferential rubber lining 14 in the region of the fluidized bed 9, one or more circumferential rubber linings 14 in the upper region of the fluidized bed 8, above the nozzle of the container 3. A heat exchanger (not shown) can be arranged, which makes it possible to reuse or continue to use from the recleaning process, especially when a recleaning fluidized bed is provided after the thermal fluidized bed. Heat can be acquired (recovered).

【0034】矢印7又は10に従って、導管6又は12
又は12’を通して装置1内に導入されたガスは流動層
8から、従って被再清浄古砂2から進出した後、容器3
の部分3’で上昇し、最後には矢印15に従って装置1
から進出する。
According to arrows 7 or 10, conduit 6 or 12
Or the gas introduced into the device 1 through 12' advances from the fluidized bed 8 and therefore from the old sand 2 to be recleaned, and then enters the container 3.
3' and finally, according to arrow 15, device 1
Expanding from

【0035】最後に図2を参考になお指摘しておくなら
この図は好ましい構成の側面図(平面図ではなく)も示
すことができる。本発明でもって、一般に既に事前に技
術的に利用された被清浄粉粒体を最も望ましい仕方で、
しかも信じられないほど効果的な清浄効果で粒子を極端
に(調整可能に)保護して(機械式に)清浄にし又は再
清浄することができる方法及びそれを実施するのに最も
望ましい装置が提供されたのであり、本発明の対象は特
に、事前に熱的に(だが場合によっては別の)再生処理
された鋳物古砂の再清浄にとってもきわめて望ましいも
のであることを実証した。
Finally, with reference to FIG. 2, it should be noted that this figure can also show a side view (rather than a top view) of the preferred arrangement. With the present invention, the granules to be cleaned, which have generally already been used technically in advance, can be cleaned in the most desirable manner.
Moreover, a method and the most desirable apparatus for carrying out the same are provided, which can be cleaned or recleaned (mechanically) with extremely (adjustable) protection of particles with an incredibly effective cleaning effect. The object of the present invention has also proven to be highly desirable, in particular, for the recleaning of old foundry sands that have been previously thermally (but possibly otherwise) reprocessed.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明装置の概略側面図である。FIG. 1 is a schematic side view of the device of the present invention.

【図2】特に加圧ガスの経路を明確に示す概略回路図で
ある。
FIG. 2 is a schematic circuit diagram showing clearly the path of the pressurized gas;

【符号の説明】[Explanation of symbols]

1  装置 2  鋳物古砂(予備再生済み) 3  容器 3’部分(3の) 4  対称軸 5  流入底(3の) 6  導管 7  矢印 8  流動層 9  ノズル 10  矢印 11  絞り部材 12,12’  圧縮空気供給管 13  環状管 14  ゴム内張り 15  矢印 1 Device 2 Old foundry sand (preliminarily recycled) 3 Container 3’ part (3’s) 4 Axis of symmetry 5 Inflow bottom (3) 6 Conduit 7 Arrow 8 Fluidized bed 9 Nozzle 10 Arrow 11 Aperture member 12, 12' Compressed air supply pipe 13 Annular tube 14 Rubber lining 15 Arrow

Claims (20)

【特許請求の範囲】[Claims] 【請求項1】  汚れた粉粒体の粒子表面(単・複)の
清浄方法、特に熱的に(予備)再生した砂、特に鋳物古
砂の(再)清浄方法において、清浄又は再清浄すべき粉
粒体に超過圧下のガス(=加圧ガス流)を負荷し、この
(加圧)ガスの負荷により粉粒体を流動状態とし、固定
配置した壁又は可動壁で粒子が衝撃荷重又は衝突荷重を
受けるのを防止して粒子の研磨性又は摩擦性(表面)応
力のみによって清浄を行うことを特徴とする方法。
Claim 1: A method for cleaning particle surfaces (single or multiple) of contaminated powder or granules, especially a method for (re)cleaning thermally (pre)regenerated sand, especially old foundry sand, for cleaning or recleaning. Gas under excess pressure (= pressurized gas flow) is applied to the powder and granules to be processed, and the powder and granules are brought into a fluid state by the load of this (pressurized) gas, and the particles are subjected to impact loads or A method characterized in that cleaning is carried out solely by the abrasive or abrasive (surface) stress of the particles, avoiding exposure to impact loads.
【請求項2】  加圧ガス流を少なくとも1つの負荷箇
所で被清浄粉粒体の表面/内部に案内することを特徴と
する請求項1記載の方法。
2. A method as claimed in claim 1, characterized in that the pressurized gas stream is guided onto the surface/inside of the granular material to be cleaned at at least one load point.
【請求項3】  前記少なくとも1つの負荷箇所を各被
清浄粉粒体量の縁範囲に配置することを特徴とする請求
項2記載の方法。
3. A method as claimed in claim 2, characterized in that the at least one loading point is arranged in the edge region of each granular mass to be cleaned.
【請求項4】  少なくとも1つの第1加圧ガス負荷箇
所に少なくとも1つの第2加圧ガス負荷箇所が対向し、
それらの軸線が角度を成し、平行線を形成し又は共通線
上に配置してあることを特徴とする先行請求項のいずれ
か1項又は複数項記載の方法。
4. At least one second pressurized gas loading point faces the at least one first pressurized gas loading point,
Method according to one or more of the preceding claims, characterized in that their axes are angular, form parallel lines or are arranged on a common line.
【請求項5】  加圧ガスを少なくとも1つの加圧ガス
負荷箇所で被清浄粉粒体/被清浄粉粒体量の外面/外側
範囲部分に実質的に接線方向で案内することを特徴とす
る先行請求項のいずれか1項又は複数項記載の方法。
5. The pressurized gas is guided substantially tangentially to the outer surface/external region of the granular material/volume to be cleaned at at least one pressurized gas loading point. A method according to any one or more of the preceding claims.
【請求項6】  加圧ガスとして圧縮空気を用いること
を特徴とする先行請求項のいずれか1項又は複数項記載
の方法。
6. A method as claimed in claim 1, characterized in that compressed air is used as the pressurized gas.
【請求項7】  加圧ガスの負荷強度が設定可能である
ことを特徴とする先行請求項のいずれか1項又は複数項
記載の方法。
7. Method according to claim 1, characterized in that the load intensity of the pressurized gas is adjustable.
【請求項8】  汚れた粉粒体の粒子表面(単・複)の
清浄装置、特に熱的に(予備)再生した砂、特に鋳物古
砂の(再)清浄装置であって、粉粒体入口と粉粒体出口
とを備えた容器を有し、流動層を形成する目的で前記容
器がガス透過性流入底を備えており、該底に流動化ガス
源から流動化ガスを負荷することができるようになった
先行請求項のいずれか1項又は複数項記載の方法を実施
する装置において、流入底(5) より上に配置して加
圧ガス源と接続し、その加圧ガス流を流動層(8) の
内部に向けた少なくとも1個のノズル(9) を特徴と
する装置。
8. A device for cleaning particle surfaces (single or multiple) of dirty powder or granules, especially (re)cleaning device for thermally (pre)regenerated sand, especially old foundry sand, which comprising a container with an inlet and a powder outlet, said container having a gas-permeable inlet bottom for the purpose of forming a fluidized bed, said bottom being loaded with a fluidizing gas from a fluidizing gas source; An apparatus for carrying out the method according to one or more of the preceding claims, which is arranged above the inlet bottom (5) and connected to a source of pressurized gas, the pressurized gas flow being 1. A device characterized by at least one nozzle (9) directing the fluidized bed (8) into the interior of the fluidized bed (8).
【請求項9】  少なくとも1個の第1ノズル(9) 
に対向して流動層(8) 又は被清浄粉粒体(2) の
反対側に少なくとも1個の第2ノズル(9) が割り当
ててあることを特徴とする請求項8記載の装置。
9. At least one first nozzle (9)
9. Device according to claim 8, characterized in that at least one second nozzle (9) is assigned on the opposite side of the fluidized bed (8) or of the granular material to be cleaned (2).
【請求項10】  少なくとも1個のノズル(9) の
流れの強さが設定可能であることを特徴とする請求項8
又は9記載の装置。
10. Claim 8, characterized in that the flow strength of at least one nozzle (9) is adjustable.
or the device according to 9.
【請求項11】  全てのノズル(9) の流れの強さ
が設定可能であることを特徴とする請求項9記載の装置
11. Device according to claim 9, characterized in that the flow strength of all nozzles (9) is adjustable.
【請求項12】  複数個のノズル(9) が設けてあ
り、これがそれぞれ対をなして実質的に対向配置してあ
り又はそれらの中心線が平行線を成すことを特徴とする
請求項8〜11のいずれか1項又は複数項記載の装置。
12. A plurality of nozzles (9) are provided, each of which is arranged in pairs substantially opposite each other, or whose center lines form parallel lines. 11. The device according to any one or more of 11.
【請求項13】  流入底(8) がそれ自体知られて
いる如く球体床等からなることを特徴とする請求項8〜
12のいずれか1項又は複数項記載の装置。
13. Claim 8, characterized in that the inlet bottom (8) consists of a spherical bed or the like, as is known per se.
12. The device according to any one or more of 12.
【請求項14】  容器(3) が少なくとも流動層(
8) の範囲では実質的に円形横断面であることを特徴
とする請求項8〜13のいずれか1項又は複数項記載の
装置。
14. The container (3) comprises at least a fluidized bed (
14. Device according to one or more of claims 8 to 13, characterized in that it has a substantially circular cross-section in the region of 8).
【請求項15】  ノズル(9) の少なくとも一部を
、被清浄粉粒体(2) が運転中特に容器(3) の回
転対称軸(4) を中心に回転運動を行うことができる
よう配置したことを特徴とする請求項8〜14のいずれ
か1項又は複数項記載の装置。
15. At least a part of the nozzle (9) is arranged so that the granular material (2) to be cleaned can perform a rotational movement during operation, particularly around the axis of rotational symmetry (4) of the container (3). The apparatus according to any one or more of claims 8 to 14, characterized in that:
【請求項16】  容器(3) が少なくとも流動層(
8) の範囲では長方形横断面であることを特徴とする
請求項8〜13のいずれか1項又は複数項、場合によっ
ては請求項15記載の装置。
16. The container (3) comprises at least a fluidized bed (
8) Device according to one or more of claims 8 to 13, optionally according to claim 15, characterized in that it has a rectangular cross section in the region of .
【請求項17】  容器(3) 内の少なくとも流動層
(8) の範囲に仕切壁等が配置してあり、これが容器
内部の自由空間を少なくとも2つの部分に仕切ることを
特徴とする請求項8〜16のいずれか1項又は複数項記
載の装置。
17. Claim 8, characterized in that a partition wall or the like is arranged within the container (3) at least in the region of the fluidized bed (8), which partitions the free space inside the container into at least two parts. 17. The device according to any one or more of items 16 to 16.
【請求項18】  ノズル(9) の直径が約1〜2m
mであることを特徴とする請求項8〜17のいずれか1
項又は複数項記載の装置。
[Claim 18] The diameter of the nozzle (9) is approximately 1 to 2 m.
Any one of claims 8 to 17, characterized in that m.
The device described in one or more of the following paragraphs.
【請求項19】  容器(3) の少なくとも流動層(
8) の範囲を例えばゴム等の緩衝材(14)で内張り
したことを特徴とする請求項8〜18のいずれか1項又
は複数項記載の装置。
19. At least the fluidized bed (
19. The device according to claim 8, wherein the area of 8) is lined with a cushioning material (14) such as rubber.
【請求項20】  清浄範囲より上に少なくとも1つの
熱交換器を配置したことを特徴とする請求項8〜19の
いずれか1項又は複数項記載の装置。
20. Device according to claim 8, characterized in that at least one heat exchanger is arranged above the clean area.
JP22362591A 1990-11-02 1991-08-09 Method and device for cleaning powder and particles Pending JPH04258367A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4035263. 1990-11-02
DE19904035263 DE4035263C2 (en) 1990-11-02 1990-11-02 Method and device for cleaning bulk goods

Publications (1)

Publication Number Publication Date
JPH04258367A true JPH04258367A (en) 1992-09-14

Family

ID=6417741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22362591A Pending JPH04258367A (en) 1990-11-02 1991-08-09 Method and device for cleaning powder and particles

Country Status (7)

Country Link
EP (1) EP0483933A3 (en)
JP (1) JPH04258367A (en)
BR (1) BR9103860A (en)
CA (1) CA2053184A1 (en)
DE (1) DE4035263C2 (en)
MX (1) MX9101506A (en)
RU (1) RU2044576C1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4239611A1 (en) * 1992-11-25 1994-05-26 Werner Dipl Ing Brosowski Light bulk solids grains graded in fluid bed from heavy grains through raising-lowering extraction cone - reduces energy requirement for grading grains such as cement and ore
DE102016225338A1 (en) * 2016-12-16 2018-06-21 Deutsches Zentrum für Luft- und Raumfahrt e.V. Heat exchanger for heat transfer between a particulate heat transfer medium and a second medium
CN108575849B (en) * 2018-05-07 2021-09-17 滨州市北海新区海缘养殖科技有限公司 Feeding method of amplitude-variable sectional operation unmanned automatic feeding boat
CN110124996A (en) * 2019-06-14 2019-08-16 潍坊天洁环保科技有限公司 Energy-saving air-flow powder concentrator

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2553318A (en) * 1949-05-20 1951-05-15 Herbert S Simpson Method of reclaiming sand
US2783511A (en) * 1954-02-01 1957-03-05 Hydro Blast Corp Method for reclaiming used foundry sand
US2958650A (en) * 1955-07-28 1960-11-01 Houdry Process Corp Removing contaminants from catalyst particles
FR2213094B1 (en) * 1972-08-29 1975-03-28 Heurtey Ind
DE2708961A1 (en) * 1977-03-02 1978-09-07 Freier Grunder Eisen Metall METHOD AND DEVICE FOR REDUCING THE RESIN CONTENT OF USED FOUNDRY SAND
DE3103030C2 (en) * 1981-01-30 1984-05-03 Klöckner-Humboldt-Deutz AG, 5000 Köln Process for the extraction of foundry sand from used foundry sand
DE3400656A1 (en) * 1984-01-11 1985-07-18 Delta Engineering Beratung und Vermittlung Gesellschaft mbH, Irdning Process for the regeneration of waste foundry sands
EP0149876A1 (en) * 1984-01-20 1985-07-31 Wheelabrator-Frye Inc. Method of and apparatus for reclaiming casting sand
DE3735113A1 (en) * 1986-10-16 1988-04-21 Kloeckner Humboldt Deutz Ag Fluidised-bed furnace for regenerating used foundry sands of varying compositions
JPH07104105B2 (en) * 1987-03-17 1995-11-13 株式会社小松製作所 Flow homogenization method for long-axis fluidized bed furnace
DE3815877C1 (en) * 1988-05-09 1989-08-31 Uraphos Chemie Gmbh, 6370 Oberursel, De A process for separating off inorganic binder systems in the regeneration of used foundry sands
BR9105097A (en) * 1990-03-20 1992-06-02 Kuettner Gmbh & Co Kg Dr PROCESS FOR THE REGENERATION OF SAND USED FOUNDATION
DE4022339A1 (en) * 1990-07-13 1992-01-16 Kloeckner Humboldt Deutz Ag Surface cleaning of fine-grained material esp. used foundry sand - passes sand down inclined pipe into which are is blown to remove crust etc.

Also Published As

Publication number Publication date
EP0483933A3 (en) 1994-08-17
DE4035263C2 (en) 1994-08-11
DE4035263A1 (en) 1992-05-07
MX9101506A (en) 1992-07-08
RU2044576C1 (en) 1995-09-27
BR9103860A (en) 1992-08-04
EP0483933A2 (en) 1992-05-06
CA2053184A1 (en) 1992-05-03

Similar Documents

Publication Publication Date Title
US4700766A (en) Process and apparatus for reclaiming foundry scrap sands
DE3103030C2 (en) Process for the extraction of foundry sand from used foundry sand
CA2135869A1 (en) Method and apparatus for shot blasting materials
JPH0735021B2 (en) Blast media recovery and purification system
US3716947A (en) Abrasive blast cleaning system
US5207034A (en) Pliant media blasting device
DK2377649T3 (en) Particle blasting medium and the blasting process
JP2004532129A (en) Process for recovering sand and bentonite clay used in foundries
JP2007245310A (en) Picking-apart device for blasting medium
US3694964A (en) Abrasive blast cleaning system
JPH04258367A (en) Method and device for cleaning powder and particles
US3848815A (en) Granulating apparatus
US6817927B2 (en) Method of removing material from an external surface using core/shell particles
JP7011112B2 (en) Abrasive regeneration method and its equipment
US4449566A (en) Foundry sand reclamation
US3829029A (en) Abrasive blast cleaning system
CA2020333C (en) Pliant media blasting method and apparatus
JPH0550178A (en) Method and device for treating bulk material
US3738415A (en) Method of molding articles and reclaiming the foundry sand used
US3690066A (en) Abrasive blast cleaning system
US5259434A (en) Method of regenerating used foundry sands
US3764078A (en) Apparatus for regenerating foundry sand
US5217170A (en) Method for both cooling and pneumatically scrubbing a calcined, particulate material
WO2019202376A1 (en) A method of regenerating foundry sand
CA1209784A (en) Process for the reclamation of foundry sands