JPH04258348A - Continuous casting and rolling method for bar and wire rod - Google Patents

Continuous casting and rolling method for bar and wire rod

Info

Publication number
JPH04258348A
JPH04258348A JP3018700A JP1870091A JPH04258348A JP H04258348 A JPH04258348 A JP H04258348A JP 3018700 A JP3018700 A JP 3018700A JP 1870091 A JP1870091 A JP 1870091A JP H04258348 A JPH04258348 A JP H04258348A
Authority
JP
Japan
Prior art keywords
rolling
casting
slab
mold
molten metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3018700A
Other languages
Japanese (ja)
Inventor
Shigenao Anzai
安斎 栄尚
Hirofumi Maede
前出 弘文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP3018700A priority Critical patent/JPH04258348A/en
Publication of JPH04258348A publication Critical patent/JPH04258348A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/46Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling metal immediately subsequent to continuous casting
    • B21B1/463Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling metal immediately subsequent to continuous casting in a continuous process, i.e. the cast not being cut before rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/08Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling structural sections, i.e. work of special cross-section, e.g. angle steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/16Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling wire rods, bars, merchant bars, rounds wire or material of like small cross-section
    • B21B1/18Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling wire rods, bars, merchant bars, rounds wire or material of like small cross-section in a continuous process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B13/00Metal-rolling stands, i.e. an assembly composed of a stand frame, rolls, and accessories
    • B21B2013/006Multiple strand rolling mills; Mill stands with multiple caliber rolls

Abstract

PURPOSE:To further improve the product yield and the productivity by making concentrical circular groove type mold size coincide with the product of casting speed regulated with each mold radius by each cross sectional area of cast billet in all lines. CONSTITUTION:In a small cross section continuous casting device for molten metal 2 rotating a ring mold with endless groove opening an upper part in a horizontal direction, plural lines of groove molds are provided on concentric circles on a table and plural cast billets are cast at the same time and directly rolled. In the concentric circular groove mold size, at the time of using V (m/min) the casting speed regulated with each mold radius and S (m<2>) each cross section of the cast billet, the casting set so as to coincide with the product VS (m<3>/min) in all lines, is executed. By this method, integrated continuous rolling at the time of casting in multi-streams can be executed and trouble caused by the difference in casting speed between streams, can be eliminated and further, the stable casting of molten metal and rolling can be executed, and the product yield and the productivity can be improved.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、溶融金属、主として溶
鋼の連続鋳造、特に小断面鋳片を鋳造する水平回転連続
鋳造装置による連続鋳造圧延方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to continuous casting of molten metal, mainly molten steel, and particularly to a continuous casting and rolling method using a horizontally rotating continuous casting apparatus for casting small-section slabs.

【0002】0002

【従来の技術】小断面鋳片を連続鋳造する方式に水平回
転溝型方式がある。この水平連鋳法は、断面の一辺が1
0〜100mm角程度の小断面ビレット鋳造に適し、設
備費が低廉で、生産性が高いことが特徴であり、例えば
、米国特許第3284859号、米国特許第34788
10号や特公昭63−13785号などが例示できる。 米国特許第3284859号には、梯型断面の環状の回
転鋳型冷却鋳型を備え、前記梯型の長辺が金属供給装置
に対面している連続鋳造装置が開示されている。この鋳
型には、溶融金属をゲート装置から供給する鋳造用溝が
形成されている。鋳型は垂直軸芯の回りに回転駆動され
る。
2. Description of the Related Art There is a horizontal rotating groove type method for continuously casting small cross-section slabs. In this horizontal continuous casting method, one side of the cross section is
It is suitable for casting billets with a small cross section of about 0 to 100 mm square, and is characterized by low equipment costs and high productivity.For example, U.S. Patent No. 3284859, U.S. Patent No.
10 and Japanese Patent Publication No. 63-13785. U.S. Pat. No. 3,284,859 discloses a continuous casting apparatus that includes an annular rotary mold cooling mold having a ladder-shaped cross section, and in which the long side of the ladder faces a metal supply device. This mold is formed with a casting groove into which molten metal is supplied from a gate device. The mold is driven to rotate around a vertical axis.

【0003】鋳型に注入された溶融金属を冷却するため
に、鋳型壁に対してほぼ直角に配置されたスプレーノズ
ルにより構成された強制冷却装置が設けられている。凝
固した鋳片は、注入点から200〜270°に位置する
点から鋳造用溝から連続的に引出されて連続ミル装置へ
供給される。
[0003] In order to cool the molten metal poured into the mold, forced cooling devices are provided which are constituted by spray nozzles arranged approximately at right angles to the mold walls. The solidified slab is continuously drawn out of the casting groove from a point located 200-270° from the injection point and fed to a continuous mill device.

【0004】0004

【発明が解決しようとする課題】以上の開示例は、いず
れも鋳片を溝型水平回転連鋳機で鋳造する際に、一つの
鋳片を鋳造するもので1ストリーム鋳造である。一方、
鋳造生産性を向上させ生産コストを低減させる場合、鋳
造のみならず鋳造の顕熱を利用して直接圧延することが
有効である。更に、鋳造生産性を一層向上させるには鋳
造速度の増大もしくは1つの回転テーブルを用いて多ス
トリーム鋳造を行なうことが望まれる。勿論、多ストリ
ームであっても直接圧延することが最も理想的な製造形
態である。このような水平回転連鋳機は、凹型の無端溝
型を水平面内で回転させるものであることから、溶融金
属を鋳造する際に、溶融金属注入点を境にして、鋳造方
向とは逆方向に固定された溶融金属逆流防止堰(以後、
テール堰と呼ぶ)が用いられ、更に、注入点を境にして
鋳造方向には、ダミーバーまたは溶融金属流出防止部材
(以後、フロント堰と呼ぶ)が用いられる。従って、通
常鋳造開始は、溶融金属をテール堰とダミーバー先端ま
たはフロント堰によって形成された初期溶融金属注入空
間に注入し、湯面高さが所望の高さとなった時点で回転
を開始して行なわれる。鋳片高さは、溶融金属湯面の湯
面高さによって決定され、注入量と引抜き速度のバラン
スで調整される。勿論、初期溶融金属注入空間内の溶融
金属が十分充満しないまま鋳造を行なうことが可能では
あるが、鋳片サイズ変動が大きい上、歩留り低下や圧延
障害を招き賢明ではない。この基本的鋳造形態は、多ト
スリーム鋳造である場合一層深刻な問題を与える。すな
わち、鋳型回転駆動系を供用した同芯状多ストリーム鋳
造の場合、回転速度が同一であるので、ストリーム間の
鋳造速度が外周側と内周側では異なることになり、鋳片
断面積を同一とした場合各ストリーム間で生産量が異な
ることになる。これが、複数ストリーム鋳造と同時に直
接圧延をも行なうとすれば、更にそれらの相互調整が必
要になる。
In all of the above-disclosed examples, one slab is cast when a slab is cast using a groove-type horizontal rotary continuous casting machine, which is one-stream casting. on the other hand,
In order to improve casting productivity and reduce production costs, it is effective not only to perform casting but also to perform direct rolling using the sensible heat of casting. Furthermore, in order to further improve casting productivity, it is desirable to increase the casting speed or perform multi-stream casting using one rotary table. Of course, direct rolling is the most ideal manufacturing form even if it is multi-stream. Such a horizontal rotary continuous casting machine rotates a concave endless groove type in a horizontal plane, so when casting molten metal, it casts the molten metal in the opposite direction to the casting direction, with the molten metal injection point as the border. A molten metal backflow prevention weir (hereinafter referred to as
A dummy bar or a molten metal outflow prevention member (hereinafter referred to as a front weir) is used in the casting direction from the injection point. Therefore, casting is usually started by injecting molten metal into the initial molten metal injection space formed by the tail weir and the tip of the dummy bar or the front weir, and starting rotation when the molten metal level reaches the desired height. It will be done. The height of the slab is determined by the height of the molten metal surface, and is adjusted by balancing the injection amount and drawing speed. Of course, it is possible to carry out casting without the initial molten metal injection space being sufficiently filled with molten metal, but this is not advisable as it causes large fluctuations in the size of the slab and causes a decrease in yield and rolling failures. This basic casting configuration presents even more serious problems when multi-tooth-ream casting. In other words, in the case of concentric multi-stream casting using a mold rotation drive system, since the rotational speed is the same, the casting speed between the streams will be different on the outer and inner sides, making it difficult to keep the slab cross-sectional area the same. In this case, the production amount will differ between each stream. If direct rolling is performed at the same time as multi-stream casting, further mutual adjustment is required.

【0005】[0005]

【課題を解決するための手段】本発明は、上部が開放さ
れた無端溝付きリング鋳型を有した鋳型が水平方向に回
転する溶融金属の連続鋳造装置により、断面の一片が1
0〜100mm角程度の小断面鋳片鋳造を行なう際に、
その特徴である低設備費、高生産性を最大限に発揮すべ
く、多ストリーム鋳造でかつ直接圧延可能な鋳造圧延方
法であり、鋳型の半径差に基づく鋳造速度差に起因した
問題点を解決するものである。
[Means for Solving the Problems] The present invention provides a continuous casting apparatus for molten metal in which a mold having an endless grooved ring mold with an open upper part rotates in a horizontal direction.
When casting small cross-section slabs of about 0 to 100 mm square,
In order to maximize its characteristics of low equipment costs and high productivity, it is a casting and rolling method that allows for multi-stream casting and direct rolling, and solves the problems caused by differences in casting speed due to differences in mold radius. It is something to do.

【0006】即ち、本発明の要旨は、上部が開放された
無端溝付きリング鋳型が水平方向に回転する溶融金属の
小断面連続鋳造装置において1つのテーブルに複数列の
溝型を同芯円状に設け複数の鋳片を同時に鋳造し直接圧
延すること、特に、複数の鋳片を同時に鋳造し直接圧延
する場合であって該同芯円状溝型鋳型サイズをそれぞれ
の鋳型半径で規定される鋳造速度をV(m/min)、
それぞれの鋳片断面積をS(m2 )としその積VS(
m3 /min)を全ての列で一致させることを特徴と
する連続鋳造圧延方法、上部が開放された無端溝付きリ
ング鋳型が水平方向に回転する溶融金属の小断面連続鋳
造装置において1つのテーブルに複数列の溝型を同芯円
状に設け複数の鋳片を同時に鋳造し直接圧延する場合で
圧延装置をロールとし複数鋳片を同時に圧延する場合で
鋳型半径差に起因した鋳片速度差を圧延ロールの径を変
化させ周速度を鋳造速度と一致させ圧延することを特徴
とする連続鋳造圧延方法、鋳造圧延方法において鋳片サ
イズの統一を図る圧延機を設けるかおよび/または断面
サイズが一致するまで断面サイズの小さい鋳片を空パス
圧延することを特徴とする連続鋳造圧延方法、および上
部が開放された無端溝付きリング鋳型が水平方向に回転
する溶融金属の小断面連続鋳造装置において、1つのテ
ーブルに1つ以上の列からなる溝型を同芯円状に設け鋳
造後直接圧延する場合で、鋳造圧延過程で加熱手段を設
け鋳片を圧延温度まで加熱および/または高温保持する
ことを特徴とする連続鋳造圧延方法である。
That is, the gist of the present invention is that in a small-section continuous casting apparatus for molten metal in which a ring mold with an open top and an endless groove rotates horizontally, a plurality of rows of groove molds are formed concentrically on one table. to simultaneously cast and directly roll a plurality of slabs, especially when a plurality of slabs are cast simultaneously and directly rolled, and the size of the concentric groove mold is defined by the radius of each mold. Casting speed is V (m/min),
Let the cross-sectional area of each slab be S (m2), and its product VS (
m3/min) in all rows; a continuous casting machine for small cross-sections of molten metal in which an endless grooved ring mold with an open top rotates horizontally; When multiple rows of grooves are arranged concentrically and multiple slabs are simultaneously cast and directly rolled, the rolling equipment is used as a roll to reduce the slab speed difference caused by the difference in mold radius when rolling multiple slabs at the same time. Continuous casting and rolling method characterized by changing the diameter of the rolling roll and rolling with the circumferential speed matching the casting speed, and a casting and rolling method in which a rolling mill is provided to unify the slab size and/or the cross-sectional size is the same. A continuous casting and rolling method characterized by dry-pass rolling a slab with a small cross-sectional size until In the case where one or more rows of groove molds are arranged concentrically on one table and rolled directly after casting, a heating means is provided during the casting and rolling process to heat the slab to the rolling temperature and/or to maintain the slab at a high temperature. This is a continuous casting and rolling method characterized by the following.

【0007】[0007]

【作用】以下、本発明について図面を用いて詳細に説明
する。図1は、本発明の無端溝型回転鋳型を用いた水平
回転連続鋳造装置の概要を示す平面図である。図2は、
図1の鋳造方向X−X断面を示す。図3は、鋳造用ダミ
ーバーを用いた場合の鋳造方向X−X断面図である。図
4は、2ストリームを同時に鋳込み直接圧延するプロセ
ス図である。図5は、2ストリーム鋳造でそれぞれの鋳
片をストリーム間同時圧延を行なうプロセス図である。 図6は、同時圧延する場合の粗圧延用ロール説明図であ
る。図7は、同時圧延する場合、鋳片サイズ違いによる
鋳片速度差を空パス圧延を行なって仕上同時圧延を行な
う方法図、およびロール説明図である。図8は、サイジ
ング用専用圧延機を前段に設ける圧延プロセスである。
[Operation] The present invention will be explained in detail below with reference to the drawings. FIG. 1 is a plan view showing an outline of a horizontal rotary continuous casting apparatus using an endless groove rotary mold according to the present invention. Figure 2 shows
2 shows a cross section taken along the casting direction XX in FIG. 1. FIG. 3 is a sectional view in the casting direction XX when a casting dummy bar is used. FIG. 4 is a process diagram of simultaneous casting and direct rolling of two streams. FIG. 5 is a process diagram in which each slab is simultaneously rolled between streams in two-stream casting. FIG. 6 is an explanatory diagram of a rough rolling roll in the case of simultaneous rolling. FIG. 7 is a method diagram and a roll explanatory diagram for performing finish simultaneous rolling by performing empty pass rolling to compensate for the difference in slab speed due to different slab sizes in the case of simultaneous rolling. FIG. 8 shows a rolling process in which a dedicated rolling mill for sizing is provided at the front stage.

【0008】次に、本発明の実施態様例を示す図1(a
)を用いて詳細に述べる。1は溶融金属取鍋、2は溶融
金属、3は溶融金属注入装置、4は中間容器、5は注入
量制御手段および注入ノズル、6は無端溝型回転鋳型、
7は凝固中鋳片、8はテール堰、9はテール堰支持手段
、10は鋳型回転手段、11は鋳片推進装置、12は鋳
片推進装置駆動手段、13はナイフエッジ保持手段、1
4は鋳片矯正ロール押し付け手段、15は鋳片矯正縦ロ
ール、16は鋳片検出器、17は鋳片矯正横ロール、1
8は鋳片で18aが外側鋳片、18bが内側鋳片、19
は鋳片案内ロール、20は鋳片矯正横ロール、21は鋳
片検出器、22は切断機、23はナイフエッジ、24は
ダミーバー、25はダミーバー収納装置、26はダミー
バー分割時の鋳片押し付け用ロール、27はダミーバー
分割スイングフレーム、28は搬出用ローラーテーブル
、29はローラーテーブル、30は注入点、31はスケ
ール除去手段、32は鋳片加熱/保温手段、33は圧延
ロール、34は製品切断機、35は製品冷却制御手段、
36はコイル状製品、37は直線状製品、38は同時圧
延ロール、39は異径粗圧延ロール、44は空パス圧延
ロール、50は専用サイジング圧延ロールである。
Next, FIG. 1(a) shows an embodiment of the present invention.
) will be described in detail. 1 is a molten metal ladle, 2 is a molten metal, 3 is a molten metal injection device, 4 is an intermediate container, 5 is an injection amount control means and an injection nozzle, 6 is an endless groove type rotary mold,
7 is a slab during solidification, 8 is a tail weir, 9 is a tail weir support means, 10 is a mold rotation means, 11 is a slab propulsion device, 12 is a slab propulsion device drive means, 13 is a knife edge holding means, 1
4 is a slab straightening roll pressing means, 15 is a slab straightening vertical roll, 16 is a slab detector, 17 is a slab straightening horizontal roll, 1
8 is a slab, 18a is an outside slab, 18b is an inside slab, 19
2 is a slab guide roll, 20 is a slab straightening horizontal roll, 21 is a slab detector, 22 is a cutting machine, 23 is a knife edge, 24 is a dummy bar, 25 is a dummy bar storage device, 26 is a slab pressing unit when dividing the dummy bar 27 is a dummy bar split swing frame, 28 is a roller table for carrying out, 29 is a roller table, 30 is an injection point, 31 is a scale removal means, 32 is a slab heating/warming means, 33 is a rolling roll, 34 is a product a cutting machine; 35 is a product cooling control means;
36 is a coiled product, 37 is a linear product, 38 is a simultaneous rolling roll, 39 is a rough rolling roll of different diameters, 44 is an empty pass rolling roll, and 50 is a dedicated sizing rolling roll.

【0009】図1(b)は、(a)の鋳型断面A−Aを
示す。鋳型断面は、鋳造速度が各ストリームの鋳型半径
に起因して不可避的に発生する。また、生産量は、鋳造
速度Vと鋳型断面積Sの堰V・Sで規定される。従って
、鋳型断面積を同一とする場合ストリーム間の生産量が
鋳造速度差によって生産量が異なる。鋳造以降に独立し
た圧延機を設ける場合技術的問題点は少ないものの多ス
トランド同時圧延を行なう場合には鋳造速度差を吸収す
る鋳型内周側断面積を大きくする必要がある。図1(b
)に内周側鋳型を大きくした例を示す。各ストリームの
断面積は、計算によって簡単に求まる。いま、目標生産
量をQ(m3 /min)、各ストリーム生産量をQ1
 ,Q2 、鋳型回転速度をN(rpm)、ストリーム
直径をD1 ,D2 (m)(D1 >D2 )、鋳造
速度をV1 ,V2 (m/min)、鋳型断面積をS
1 ,S2 (m2 )、円周率πとする。
FIG. 1(b) shows a cross section of the mold AA in FIG. 1(a). Mold cross-sections inevitably occur due to the casting speed and mold radius of each stream. Further, the production amount is defined by the casting speed V and the weir V·S of the mold cross-sectional area S. Therefore, when the cross-sectional area of the mold is the same, the production amount between streams differs depending on the difference in casting speed. Although there are few technical problems when an independent rolling mill is provided after casting, when multiple strands are rolled simultaneously, it is necessary to increase the cross-sectional area on the inner peripheral side of the mold to absorb the difference in casting speed. Figure 1(b)
) shows an example in which the inner mold is enlarged. The cross-sectional area of each stream can be easily determined by calculation. Now, the target production volume is Q (m3 /min), and the production volume of each stream is Q1.
, Q2, the mold rotation speed is N (rpm), the stream diameter is D1, D2 (m) (D1 > D2), the casting speed is V1, V2 (m/min), the mold cross-sectional area is S
1, S2 (m2), and pi.

【0010】V1 =πD1 N V2 =πD2 N Q1 =V1 S1 =πD1 NS1Q2 =V2 
S2 =πD2 NS2Q=Q1 =Q2 の条件より
、断面積は、S2 =S1 (D1 /D2 ) 従って、内周側の鋳型断面積S2 は、D1 >D2 
より直径比(D1 /D2 )に応じて大きくすれば良
い。
V1 = πD1 N V2 = πD2 N Q1 = V1 S1 = πD1 NS1Q2 = V2
From the conditions of S2 = πD2 NS2Q = Q1 = Q2, the cross-sectional area is S2 = S1 (D1 /D2) Therefore, the cross-sectional area of the mold on the inner circumferential side S2 is D1 > D2
It is sufficient to increase the diameter according to the diameter ratio (D1/D2).

【0011】次に、溶融金属2が鋳造される過程を図1
(a)および図2を用いて具体的に示す。溶融金属2を
取鍋1から溶融金属注入装置3を用いて中間容器4に注
入し、注入量制御手段および注入ノズル5を介して無端
溝型鋳型6に設けた鋳型溝7に注入する。鋳型内には、
テール堰8が設けてあり溶融金属は紙面上右回転で鋳造
され凝固が進行しつつ鋳片は外周側18a、内周側18
bで凝固し鋳片となる。この際、必要に応じて溶融金属
の大気露出領域を非酸化性雰囲気に保持することで品質
劣化を防止することも有効である。溶融金属は無端溝型
鋳型7内で側面及び底面側から優先的に冷却され凝固が
進む。やがて上面側も主に輻射伝熱により冷却され凝固
し凝固殻が形成され鋳片推進装置11に至る。鋳片は、
推進装置11により溝型鋳型および推進装置により周囲
から推進力が加えられ、ナイフエッジ13上に送られ、
やがて鋳片矯正手段14〜17に到達する。鋳片18は
、次の鋳片矯正手段19〜21によって直線に矯正され
、切断機22によって所望の長さに切断される。勿論、
鋳造装置後段に圧延機を配して切断後または切断なしに
直接圧延を行なうことも可能である。図2は、図1(a
)のX−X断面を示す図で、鋳片の鋳型外への引出し矯
正過程を示した。
Next, the process of casting the molten metal 2 is shown in FIG.
This will be specifically shown using FIG. 2(a) and FIG. Molten metal 2 is injected from a ladle 1 into an intermediate container 4 using a molten metal injection device 3, and is injected into a mold groove 7 provided in an endless groove mold 6 via an injection amount control means and an injection nozzle 5. Inside the mold,
A tail weir 8 is provided, and the molten metal is cast by rotating clockwise on the paper, and as the solidification progresses, the cast pieces are separated into the outer circumferential side 18a and the inner circumferential side 18.
It solidifies in step b and becomes a slab. At this time, it is also effective to prevent quality deterioration by maintaining the area of the molten metal exposed to the atmosphere in a non-oxidizing atmosphere, if necessary. The molten metal is cooled preferentially from the side and bottom sides in the endless groove mold 7, and solidification progresses. Eventually, the upper surface side is also cooled mainly by radiation heat transfer and solidified to form a solidified shell, which reaches the slab propulsion device 11. The slab is
The propulsion device 11 applies propulsion force from the surroundings by the groove mold and the propulsion device, and sends it onto the knife edge 13,
Eventually, the slab straightening means 14 to 17 are reached. The slab 18 is straightened into a straight line by the following slab straightening means 19 to 21, and cut into a desired length by a cutting machine 22. Of course,
It is also possible to arrange a rolling mill downstream of the casting apparatus and to perform rolling directly after or without cutting. Figure 2 is similar to Figure 1 (a
) is a diagram illustrating the XX cross section of the slab, showing the straightening process of drawing the slab out of the mold.

【0012】図3は、ダミーバーを用いた場合の鋳片と
の分割方法をX−X断面で示した。ダミーバー分割用ス
イングフレーム27、鋳片押し付け用ロール26、ロー
ラーテーブル28およびダミーバー収納装置25などか
ら構成される。鋳片が鋳造されダミーバー先端が、ダミ
ーバー分割スイングフレーム27に到達した時点で鋳片
と分離され収納される。一方、鋳片は、搬出用ローラー
テーブル29を直進し必要に応じて切断され次工程に搬
出され所望の長さの鋳片となる。ダミーバーは2自由度
以上を有するリンク構造体であれば良く、材質は特殊な
材料を用いる必要は全くなく炭素鋼などで製作すれば良
い。
FIG. 3 shows a method of dividing the cast slab using a dummy bar, taken along the line X--X. It is composed of a swing frame 27 for dividing dummy bars, a roll 26 for pressing slabs, a roller table 28, a dummy bar storage device 25, and the like. The slab is cast, and when the tip of the dummy bar reaches the dummy bar split swing frame 27, it is separated from the slab and stored. On the other hand, the slab goes straight through the roller table 29 for carrying out, is cut as necessary, and is carried out to the next process to become a slab of desired length. The dummy bar may be a link structure having two or more degrees of freedom, and there is no need to use any special material; it may be made of carbon steel or the like.

【0013】図4は、鋳造圧延のプロセスを示す図であ
る。このプロセスでは、連続鋳造機のストリーム数に応
じて圧延設備をストリーム毎に設けたものである。注入
点30より注入された溶融金属は、鋳型6の回転に伴っ
て凝固し、外周側18a、内周側18bの鋳片となる。 鋳造後の鋳片は、必要に応じて切断機22によって切断
した後、更に必要に応じて鋳片加熱/保温手段32によ
り高温に維持し、圧延機33により連続的に圧延製品と
なる。製品は、必要に応じて設けた冷却制御手段35に
より同時に高品質化が行なわれコイル状製品36や直線
状製品37として製造される。冷却制御手段とは、水冷
等の急冷、焼き入れ、温水冷却、スプレー冷却、焼き鈍
し、焼き戻し、鉛浴処理、高温変態処理、溶体化処理、
ブルーイングなどを意図したものである。また、特に限
定されるものではないが、鋳片は高温状態にあることか
ら必要に応じて酸化物除去手段であるスケール除去手段
31によって浄化し、製品品質を向上させることも有効
である。
FIG. 4 is a diagram showing the casting and rolling process. In this process, rolling equipment is provided for each stream depending on the number of streams in the continuous casting machine. The molten metal injected from the injection point 30 solidifies as the mold 6 rotates, and becomes slabs on the outer peripheral side 18a and the inner peripheral side 18b. The cast slab is cut by a cutter 22 as necessary, then maintained at a high temperature by a slab heating/insulating means 32 as necessary, and continuously rolled into a rolled product by a rolling mill 33. The products are simultaneously improved in quality by a cooling control means 35 provided as needed, and manufactured into coiled products 36 and linear products 37. Cooling control means include rapid cooling such as water cooling, quenching, hot water cooling, spray cooling, annealing, tempering, lead bath treatment, high temperature transformation treatment, solution treatment,
It is intended for brewing, etc. Further, although not particularly limited, since the slab is in a high temperature state, it is effective to purify it as necessary using scale removing means 31, which is an oxide removing means, to improve product quality.

【0014】図5は、圧延装置の設備費低減を達成する
ことを指向し、多ストランド鋳片を圧延機38により圧
延を行なうプロセスである。図6は、多ストランド同時
圧延を行なう際の粗圧延ロールを示す。多ストランド鋳
造の場合には、ストランド間の速度が異なる。そこで、
圧延機のロール径を軸方向に変化させた粗圧延ロール3
9により周速度を一致させ、内周側圧延材40および外
周側圧延材41を同時圧延行なうものである。この際、
内外周で生産量が異なったままである。図7は、異径圧
延ロールを用いないで同時圧延を行なう方法を示すプロ
セス図である。多ストリーム鋳造の欠点である生産量差
を、鋳片サイズの変更により補償する場合でかつ同時圧
延を行なう場合に適用するもので、圧延機の初段から必
要に応じて即ち圧延パススケジュールに応じて1段以上
空パス圧延ないしは極軽圧延を行なうロールを設けるこ
とを特徴とする。この圧延により内周側鋳片即ち断面の
大きい鋳片を優先的に圧延しストランド間のサイズが揃
った段階以降は同じ形状の圧延ロールを用いて仕上圧延
する。
FIG. 5 shows a process in which a multi-strand slab is rolled by a rolling mill 38, with the aim of reducing equipment costs for rolling equipment. FIG. 6 shows a rough rolling roll when performing multi-strand simultaneous rolling. In the case of multi-strand casting, the speeds between the strands are different. Therefore,
Rough rolling roll 3 in which the roll diameter of the rolling mill is changed in the axial direction
9, the circumferential speeds are matched, and the inner circumferential side rolled material 40 and the outer circumferential side rolled material 41 are simultaneously rolled. On this occasion,
The production amount remains different between the inner and outer circumferences. FIG. 7 is a process diagram showing a method of performing simultaneous rolling without using rolling rolls of different diameters. This is applied when the difference in production volume, which is a drawback of multi-stream casting, is compensated for by changing the slab size and simultaneous rolling is performed. It is characterized by providing rolls that perform one or more stages of empty pass rolling or very light rolling. By this rolling, the inner circumferential slab, that is, the slab with a large cross section is preferentially rolled, and after the stage when the sizes of the strands are uniform, finish rolling is performed using rolling rolls of the same shape.

【0015】圧延ロール38は、その形状が初段側44
と仕上側47では異なる。即ち、外周側鋳片18aは初
段では46として、内周側鋳片18bは45として圧延
される。その後仕上圧延47では48,49共に同じサ
イズに圧延される。この一連の過程での鋳片の断面積変
化を外周側42、内周側43に示した。圧延は紙面の左
から右に向って進行し、3段目以降同じ圧延条件で仕上
げられる。本図では、8段の圧延を示したが勿論この圧
延スタンド数に限定されるものではない。
The shape of the rolling roll 38 is on the first stage side 44.
This is different on the finishing side 47. That is, the outer slab 18a is rolled at 46 in the first stage, and the inner slab 18b is rolled at 45. Thereafter, in finish rolling 47, both 48 and 49 are rolled to the same size. Changes in the cross-sectional area of the slab during this series of processes are shown on the outer circumferential side 42 and on the inner circumferential side 43. Rolling progresses from left to right in the paper, and finishing is performed under the same rolling conditions from the third stage onwards. Although this figure shows eight rolling stands, the number of rolling stands is of course not limited to this.

【0016】この方法は、ストランド間に圧延機を設置
する十分なスペースがない場合に特に有効である。図8
は、図7と同じ思想であるが、ストランド間に圧延機を
設ける十分なスペースがある場合に適用できるものであ
る。この場合、ストランド間の鋳片サイズを揃えるサイ
ジング圧延機50を設けたものである。圧延機数は特に
限定されるものではなく少なくとも1台以上設置すれば
良い。これにより、より確実に以降の同時圧延を可能と
することができる。
This method is particularly effective when there is not enough space between the strands to install a rolling mill. Figure 8
The concept is the same as that of FIG. 7, but it can be applied when there is sufficient space between the strands to install a rolling mill. In this case, a sizing rolling mill 50 is provided to equalize the size of the slab between the strands. The number of rolling mills is not particularly limited, and at least one or more rolling mills may be installed. Thereby, subsequent simultaneous rolling can be performed more reliably.

【0017】[0017]

【実施例】以下実施例、比較例を説明する。鋳造に用い
た金属成分は以下に示す炭素鋼である。即ち、Cが0.
30〜0.32重量%、Siが0.3〜0.32重量%
、Mnが0.98〜1.02重量%、Pが0.010重
量%以下、Sが0.015重量%以下およびAlが0.
046〜0.050重量%の炭素鋼である。
[Example] Examples and comparative examples will be explained below. The metal component used for casting was the carbon steel shown below. That is, C is 0.
30-0.32% by weight, Si 0.3-0.32% by weight
, Mn is 0.98 to 1.02% by weight, P is 0.010% by weight or less, S is 0.015% by weight or less, and Al is 0.
046-0.050% by weight carbon steel.

【0018】鋳造、圧延条件を以下に示す。鋳造は、無
端溝型水平連続鋳造機を用い、外周側鋳型半径1500
(mm)、外周側鋳造サイズ49mm角、外周側鋳造速
度10.4(m/min 、1.1rpm)とし、内周
側鋳型半径1000(mm)、内周側鋳造サイズ60m
m角、内周側鋳造速度7.0(m/min 、1.1r
pm)とした2ストリーム鋳造、溶鋼過熱度36℃の条
件の下で溶鋼量300kgを鋳造した。2ストリーム鋳
造、テール堰に窒化硼素(BN)を用い、鋳造機の後段
には8段の連続熱間圧延機および巻取装置を配した。最
終仕上寸法は、内外周鋳片共にφ25mmである。ダミ
ーバーの材質は、S10Cで行なった。フロント堰とし
てAl2 O3 繊維の成型体を用いた。更に、溶鋼注
入量制御は、油圧シリンダ駆動のストッパー方式である
The casting and rolling conditions are shown below. Casting was carried out using an endless groove type horizontal continuous casting machine, with an outer mold radius of 1500 mm.
(mm), outer casting size is 49 mm square, outer casting speed is 10.4 (m/min, 1.1 rpm), inner mold radius is 1000 (mm), inner casting size is 60 m.
m square, inner peripheral casting speed 7.0 (m/min, 1.1r
pm), 300 kg of molten steel was cast under the conditions of two-stream casting and a molten steel superheating degree of 36°C. Two-stream casting was used, boron nitride (BN) was used for the tail weir, and an 8-high continuous hot rolling mill and a winding device were arranged downstream of the casting machine. The final finished dimension is φ25 mm for both the inner and outer circumference of the slab. The material of the dummy bar was S10C. A molded body of Al2O3 fibers was used as the front weir. Further, the molten steel injection amount is controlled by a stopper system driven by a hydraulic cylinder.

【0019】熱間圧延機前には、高周波誘導加熱による
鋳片温度を1150℃に保持している。実験の結果、鋳
片温度が1130〜1150℃で加熱装置前に到達した
ので、実質的には加熱装置電力は、10〜20kW程度
の電力を付与するのみで圧延温度を十分確保可能であっ
た。これにより、鋳造〜製品の一貫製造を行ない評価を
行なった。各ストランド毎に圧延機を設けた場合には、
それぞれの鋳造〜製品の一貫歩留りは、外側鋳片99.
8%および内側鋳片99.5%であった。歩留り差は、
内外周の鋳片サイズが異なるためで鋳造のクロップ落ち
に起因する。しかし、内外周共に高レベルの歩留りであ
ることは明らかである。一方、両ストランドを一系列の
圧延機により同時圧延した場合には、外周側を約3段空
パスすることによって実施した。この際の製品歩留りは
、各ストランドを独立に圧延した場合と全く同じ結果で
あった。
Before the hot rolling mill, the slab temperature is maintained at 1150° C. by high-frequency induction heating. As a result of the experiment, the temperature of the slab reached 1130 to 1150°C before the heating device, so it was practically possible to secure the rolling temperature by applying only about 10 to 20 kW of power to the heating device. . As a result, integrated manufacturing from casting to products was performed and evaluated. If a rolling mill is provided for each strand,
The consistent yield of each casting to product is 99.
8% and the inner slab was 99.5%. The yield difference is
This is due to the difference in the size of the slab on the inner and outer circumferences, resulting in crop drop during casting. However, it is clear that the yield is at a high level on both the inner and outer circumferences. On the other hand, when both strands were rolled at the same time using one series of rolling mills, the rolling was carried out by making about three empty passes on the outer peripheral side. The product yield at this time was exactly the same as when each strand was rolled independently.

【0020】次に、異径ロール圧延を行なった場合には
、鋳型内外周共に鋳片サイズを49mm角として行なっ
た。この場合、製品歩留りは99.6%以上を達成した
。しかし、異径ロール圧延は、構造上真円精度が落ちる
ので前段ほど圧下率を大きくし、仕上圧延では圧下率を
小さくして真円精度を向上させることで行なった。即ち
、49mm角からφ25mmの製品を製造するに当り、
粗圧延に相当する初段1,2段は2段圧延出側で圧延比
(断面積比)2.1、中間3,4段は4段圧延出側で圧
延比1.8、5,6段目の仕上圧延は6段出側で1.2
とし、7,8段目の最終仕上では8段出側で1.08で
行なった。これにより、真円度は良好となり真円精度5
0μmを達成した。尚、こうした手段は通常圧延でも仕
上程加工率を低くし精度を向上させることは本発明法の
特別な手段でなく行なわれるものである。また、この異
径ロール圧延は、鋳片内外周の鋳片サイズを各ストリー
ムの生産量をバランスさせるべく変更した場合でもなん
ら問題なく適用可能であることは記するまでもなく明ら
かである。
Next, when rolling with rolls of different diameters was carried out, the slab size was set to 49 mm square for both the inner and outer circumferences of the mold. In this case, the product yield was 99.6% or more. However, since rolling with different diameter rolls reduces the roundness accuracy due to its structure, the rolling reduction was increased in the earlier stages, and the rolling reduction was decreased in the finish rolling to improve the roundness accuracy. In other words, when manufacturing a product with a diameter of 25 mm from a 49 mm square,
The first 1st and 2nd stages, which correspond to rough rolling, are the 2nd rolling exit side with a rolling ratio (cross-sectional area ratio) of 2.1, and the middle 3rd and 4th stages are the 4th rolling exit side with a rolling ratio of 1.8, 5th and 6th stages. The finish rolling of the mesh is 1.2 on the 6th stage exit side.
The final finishing of the 7th and 8th stages was performed at 1.08 on the exit side of the 8th stage. As a result, the roundness is good and the roundness accuracy is 5.
Achieved 0 μm. It should be noted that such means are not special means of the method of the present invention, but are used to lower the processing rate in the finishing process and improve accuracy even in normal rolling. It goes without saying that this rolling with different diameter rolls can be applied without any problems even when the sizes of the slab on the inner and outer circumferences of the slab are changed in order to balance the production volume of each stream.

【0021】更に、同時圧延を行なう際に、内周側鋳片
の専用サイジング圧延機を用いた場合の実施例を示す。 鋳片は、内周側60mm角、外周側49mm角としサイ
ジング圧延機として2段使用した。専用サイジング圧延
では圧延比約1.5を採用して内外周鋳片サイズを約4
9mm角に統一を図った。以降粗圧延、仕上圧延には合
計6段の連続圧延を行ない、最終仕上寸法φ25mmの
線材を製造した。対溶鋼製品歩留りは、99.6%以上
をクリアした。
Furthermore, an example will be shown in which a special sizing mill for the inner slab is used during simultaneous rolling. The slab was 60 mm square on the inner circumferential side and 49 mm square on the outer circumferential side, and was used as a two-stage sizing rolling mill. In special sizing rolling, a rolling ratio of approximately 1.5 is adopted, and the size of the inner and outer slabs is approximately 4.
We tried to unify the size to 9mm square. Thereafter, continuous rolling was carried out in a total of 6 stages for rough rolling and finish rolling to produce a wire rod with a final finished size of φ25 mm. The product yield for molten steel exceeded 99.6%.

【0022】[0022]

【発明の効果】以上、示したように、本発明によれば上
部が開放された無端溝付きリング鋳型を有した鋳型が水
平方向に回転する溶融金属の小断面連続鋳造装置におい
て、多ストリーム鋳造時の一貫連続圧延が可能でありま
た、ストリーム間の鋳造速度差に起因した問題点を解決
できる。更に、本発明方法によって安定した溶融金属の
鋳造、圧延が可能であり、製品歩留り、生産性が一層向
上する。従って、本発明は、製造コストを大幅に低減で
きる等、産業上極めて有益な発明である。
As described above, according to the present invention, multi-stream casting is possible in a small-section continuous casting apparatus for molten metal in which a mold having an endless grooved ring mold with an open top rotates in the horizontal direction. It is possible to perform consistent continuous rolling at different times, and it is also possible to solve problems caused by differences in casting speed between streams. Furthermore, the method of the present invention enables stable casting and rolling of molten metal, further improving product yield and productivity. Therefore, the present invention is an industrially extremely useful invention that can significantly reduce manufacturing costs.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の無端溝型回転鋳型を用いた水平回転連
続鋳造装置の概要を示す平面図である。
FIG. 1 is a plan view showing an outline of a horizontal rotary continuous casting apparatus using an endless groove rotary mold of the present invention.

【図2】図1の鋳造方向X−X断面を示す。FIG. 2 shows a cross section taken along the line XX in the casting direction of FIG. 1;

【図3】鋳造用ダミーバーを用いた場合の鋳造方向X−
X断面図である。
[Figure 3] Casting direction X- when using a casting dummy bar
It is an X sectional view.

【図4】2ストリームを同時に鋳込み直接圧延するプロ
セス図である。
FIG. 4 is a process diagram of simultaneous casting and direct rolling of two streams.

【図5】2ストリーム鋳造でそれぞれの鋳片をストリー
ム間同時圧延を行なうプロセス図である。
FIG. 5 is a process diagram in which each slab is simultaneously rolled between streams in two-stream casting.

【図6】同時圧延する場合の粗圧延用ロール説明図であ
る。
FIG. 6 is an explanatory diagram of a rough rolling roll in the case of simultaneous rolling.

【図7】同時圧延する場合、鋳片サイズ違いによる鋳片
速度差を空パス圧延を行なって仕上同時圧延を行なう方
法図、およびロール説明図である。
FIG. 7 is a method diagram and a roll explanatory diagram for performing finish simultaneous rolling by performing blank pass rolling to compensate for the difference in slab speed due to the difference in slab size in the case of simultaneous rolling.

【図8】サイジング用専用圧延機を前段に設ける圧延プ
ロセス図である。
FIG. 8 is a rolling process diagram in which a dedicated rolling mill for sizing is provided at the front stage.

【符号の説明】[Explanation of symbols]

1      溶融金属取鍋 2      溶融金属 3      溶融金属注入装置 4      中間容器 5      注入量制御手段および注入ノズル6  
    無端溝型回転鋳型 6a    冷却媒体流路 7      凝固中鋳片 8      テール堰 9      テール堰支持装置 10    鋳型回転手段 11    鋳片推進装置 11a  鋳片推進装置押しつけ手段 12    鋳片推進装置駆動手段 13    ナイフエッジ保持手段 14    鋳片矯正ロール押しつけ手段15    
鋳片矯正縦ロール 16    鋳片検出器 17    鋳片矯正横ロール 18    鋳片 18a  外側鋳片 18b  内側鋳片 19    鋳片案内ロール 20    鋳片矯正横ロール 20a  ロール押しつけ手段 21    鋳片検出器 22    切断機 23    ナイフエッジ 24    ダミーバー 25    ダミーバー収納装置 26    鋳片押しつけ用ロール 27    ダミーバー分割スイングフレーム28  
  搬出用ローラーテーブル 29    ローラーテーブル 30    注入点 31    スケール除去手段 32    鋳片加熱/保温手段 33    圧延ロール 34    製品切断機 35    製品冷却制御手段 36    コイル状製品 37    直線状製品 38    同時圧延ロール 38a  同時圧延ロール側面 39    異径粗圧延ロール 40    圧延材(太い:内周側材料)41    
圧延材(細い:外周側材料)42    外周側圧延材
断面積変化 43    内周側圧延材断面積変化 44    空パス圧延ロール 45    サイジング材(太い:内周側材料)46 
   空パス材(細い:外周側材料)47    同時
圧延ロール正面図 48    サイジング後の圧延材 49    空パス後の圧延材
1 Molten metal ladle 2 Molten metal 3 Molten metal injection device 4 Intermediate container 5 Injection amount control means and injection nozzle 6
Endless groove rotary mold 6a Cooling medium channel 7 Solidifying slab 8 Tail weir 9 Tail weir support device 10 Mold rotation means 11 Slab propulsion device 11a Slab propulsion device pressing means 12 Slab propulsion device driving means 13 Knife edge holding Means 14 Slab straightening roll pressing means 15
Slab straightening vertical roll 16 Slab detector 17 Slab straightening horizontal roll 18 Slab 18a Outer slab 18b Inner slab 19 Slab guide roll 20 Slab straightening horizontal roll 20a Roll pressing means 21 Slab detector 22 Cutting machine 23 Knife edge 24 Dummy bar 25 Dummy bar storage device 26 Slab pressing roll 27 Dummy bar split swing frame 28
Unloading roller table 29 Roller table 30 Injection point 31 Scale removal means 32 Slab heating/warming means 33 Rolling roll 34 Product cutting machine 35 Product cooling control means 36 Coiled product 37 Straight product 38 Simultaneous rolling roll 38a Simultaneous rolling roll side 39 Different diameter rough rolling roll 40 Rolled material (thick: inner peripheral side material) 41
Rolled material (thin: outer circumferential side material) 42 Outer circumferential side rolled material cross-sectional area change 43 Inner circumferential side rolled material cross-sectional area change 44 Empty pass rolling roll 45 Sizing material (thick: inner circumferential side material) 46
Empty pass material (thin: outer peripheral side material) 47 Front view of simultaneous rolling rolls 48 Rolled material after sizing 49 Rolled material after empty pass

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】  上部が開放された無端溝付きリング鋳
型が水平方向に回転する溶融金属の小断面連続鋳造装置
において、1つのテーブルに複数列の溝型を同芯円状に
設け複数の鋳片を同時に鋳造し直接圧延する場合であっ
て、該同芯円状溝型鋳型サイズをそれぞれの鋳型半径で
規定される鋳造速度をV(m/min)、それぞれの鋳
片断面積をS(m2 )としその積VS(m3/min
)を全ての列で一致させることを特徴とする棒線材の連
続鋳造圧延方法。
Claim 1: A continuous casting device for small cross-sections of molten metal in which a ring mold with an open top and an endless groove rotates horizontally. In the case where pieces are simultaneously cast and directly rolled, the concentric groove mold size is defined by the casting speed defined by the radius of each mold as V (m/min), and the cross-sectional area of each slab as S (m2). ) and its product VS (m3/min
) is made to match in all rows.
【請求項2】  上部が開放された無端溝付きリング鋳
型が水平方向に回転する溶融金属の小断面連続鋳造装置
において、1つのテーブルに複数列の溝型を同芯円状に
設け複数の鋳片を同時に鋳造し直接圧延する場合で、圧
延装置をロールとし、複数鋳片を同時に圧延する場合で
鋳型半径差に起因した鋳片速度差を圧延ロールの径を変
化させ周速度を鋳造速度と一致させ圧延することを特徴
とする棒線材の連続鋳造圧延方法。
2. In a small-section continuous casting device for molten metal in which an endless grooved ring mold with an open top rotates horizontally, a plurality of rows of groove molds are provided concentrically on one table, and a plurality of casting molds are formed. When slabs are simultaneously cast and directly rolled, the rolling equipment is a roll, and when rolling multiple slabs at the same time, the diameter of the rolling roll is changed to compensate for the slab speed difference caused by the difference in mold radius, and the circumferential speed is adjusted to the casting speed. A method for continuous casting and rolling of rods and wires, characterized by matching rolling.
【請求項3】  請求項1の鋳造圧延方法において、鋳
片サイズの統一を図る圧延機を設けるかおよび/または
断面サイズが一致するまで断面サイズの小さい鋳片を空
パス圧延することを特徴とする棒線材の連続鋳造圧延方
法。
3. The casting and rolling method according to claim 1, characterized in that a rolling mill is provided to unify the slab size, and/or slabs with small cross-sectional sizes are blank-pass rolled until the cross-sectional sizes match. Continuous casting and rolling method for rods and wire rods.
【請求項4】  上部が開放された無端溝付きリング鋳
型が水平方向に回転する溶融金属の小断面連続鋳造装置
において、1つのテーブルに1つ以上の列からなる溝型
を同芯円状に設け鋳造後直接圧延する場合で、鋳造圧延
過程で加熱手段を設け鋳片を圧延温度まで加熱および/
または高温保持することを特徴とする棒線材の連続鋳造
圧延方法。
4. In a small-section continuous casting apparatus for molten metal in which an endless grooved ring mold with an open top rotates horizontally, one table has one or more rows of groove molds arranged concentrically. In the case of direct rolling after casting, a heating means is provided during the casting and rolling process to heat and/or heat the slab to the rolling temperature.
Or a method for continuous casting and rolling of rods and wires characterized by maintaining high temperatures.
JP3018700A 1991-02-12 1991-02-12 Continuous casting and rolling method for bar and wire rod Withdrawn JPH04258348A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3018700A JPH04258348A (en) 1991-02-12 1991-02-12 Continuous casting and rolling method for bar and wire rod

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3018700A JPH04258348A (en) 1991-02-12 1991-02-12 Continuous casting and rolling method for bar and wire rod

Publications (1)

Publication Number Publication Date
JPH04258348A true JPH04258348A (en) 1992-09-14

Family

ID=11978912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3018700A Withdrawn JPH04258348A (en) 1991-02-12 1991-02-12 Continuous casting and rolling method for bar and wire rod

Country Status (1)

Country Link
JP (1) JPH04258348A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2554281A1 (en) * 2011-08-01 2013-02-06 Siemens Aktiengesellschaft Method and apparatus for a continuous rolling
CN104889162A (en) * 2015-06-19 2015-09-09 石家庄中利锌业有限公司 Multi-wire-path continuous casting and rolling zinc wire production line

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2554281A1 (en) * 2011-08-01 2013-02-06 Siemens Aktiengesellschaft Method and apparatus for a continuous rolling
WO2013017444A1 (en) * 2011-08-01 2013-02-07 Siemens Aktiengesellschaft Method and plant for producing metal rolled products
CN103764305A (en) * 2011-08-01 2014-04-30 西门子公司 Method and plant for producing metal rolled products
US9352368B2 (en) 2011-08-01 2016-05-31 Siemens Aktiengesellschaft Method and plant for producing metal rolled products
RU2618979C2 (en) * 2011-08-01 2017-05-11 Прайметалз Текнолоджиз Джермани Гмбх Method and device for production of metal rolling goods
CN104889162A (en) * 2015-06-19 2015-09-09 石家庄中利锌业有限公司 Multi-wire-path continuous casting and rolling zinc wire production line

Similar Documents

Publication Publication Date Title
US3333624A (en) Casting wheel cooling method
RU2410173C2 (en) Procedure for production of hot-rolled steal strip and combined installation for implementation of this procedure
US4675974A (en) Method of continuous casting and rolling strip
US3416222A (en) Manufacture of elongate articles
US3483915A (en) Method of forming continuously-cast metal strand into integral billets
RU2004124250A (en) METHOD AND PRODUCTION LINE FOR PRODUCING ULTRA THIN HOT ROLLED STRIPES FROM THIN SLABS
US5765626A (en) Continous casting process and continous casting/rolling process for steel
US6763561B2 (en) Continuous casting and hot rolling apparatus for parallel production of multiple metal shapes
JP2002292401A (en) Vertical rolling stand for hot rolling equipment parallely and concurrently manufacturing bar material or wire material
US3209452A (en) Method of producing bars or sections by continuous casting
KR20030064758A (en) Method and device for continuous casting and subsequent forming of a steel billet, especially a billet in the form of an ingot or a preliminary section
JPH04258348A (en) Continuous casting and rolling method for bar and wire rod
SU1225475A3 (en) Method of continuous casting of steel billet
CN111659863B (en) Retrofitting of continuous casting installations for billets or blooms
US7025118B2 (en) Method and device for continuously casting ingots, slabs or thin slabs
RU1839682C (en) Method of manufacture of metal band
CN113333697A (en) Three-roller thin belt continuous casting machine with stripping roller
JPS5825850A (en) Improved continuously cast steel rod and production thereof
JPH0839219A (en) Method for continuously casting steel and continuous casting and rolling method
JP2000326060A (en) Method and apparatus for producing continuously cast steel material
JP2002301552A (en) Improved continuous casting and hot-rolling apparatus for parallel and simultaneously producing bar or wire rod
US20040079512A1 (en) Installation for producing a hot-rolled strip
JP2002346710A (en) Continuous casting and rolling method
JPS61199554A (en) Method and device for continuous casting
US3435879A (en) Continuous casting method

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980514