JPH0425792B2 - - Google Patents

Info

Publication number
JPH0425792B2
JPH0425792B2 JP29639785A JP29639785A JPH0425792B2 JP H0425792 B2 JPH0425792 B2 JP H0425792B2 JP 29639785 A JP29639785 A JP 29639785A JP 29639785 A JP29639785 A JP 29639785A JP H0425792 B2 JPH0425792 B2 JP H0425792B2
Authority
JP
Japan
Prior art keywords
fermentation
alumina fiber
fiber wall
substrate
alumina
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP29639785A
Other languages
Japanese (ja)
Other versions
JPS62151176A (en
Inventor
Hiroaki Horitsu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP60296397A priority Critical patent/JPS62151176A/en
Publication of JPS62151176A publication Critical patent/JPS62151176A/en
Publication of JPH0425792B2 publication Critical patent/JPH0425792B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/04Bioreactors or fermenters specially adapted for specific uses for producing gas, e.g. biogas
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/20Material Coatings
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/34Internal compartments or partitions
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M25/00Means for supporting, enclosing or fixing the microorganisms, e.g. immunocoatings
    • C12M25/14Scaffolds; Matrices
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M27/00Means for mixing, agitating or circulating fluids in the vessel
    • C12M27/18Flow directing inserts
    • C12M27/24Draft tube
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/04Filters; Permeable or porous membranes or plates, e.g. dialysis

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Biomedical Technology (AREA)
  • Sustainable Development (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Clinical Laboratory Science (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • Alcoholic Beverages (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

PURPOSE:To provide an apparatus enabling continuous anaerobic fermentation without necessitating immobilization of microorganisms, by dividing a closed vessel with a porous alumina fiber partition wall adsorbed with suspension or microorganisms, supplying a substrate to one of the divided section and taking out the fermentation liquid out of the other section. CONSTITUTION:An alumina fiber wall 2 composed mainly of aluminum oxide and silicon oxide and having a number of pores of 30-300mu diameter and a prescribe thickness is adsorbed with a suspension of microorganisms and placed in a closable fermentation vessel 1 to divide the vessel into sections. A substrate supplying port 5 is opened in one section and a discharging port 6 of fermentation liquid is opened in the other section.

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は発酵食品の製造方法及びその装置に関
する。 (従来の技術) 従来発酵食品の製造装置としては、アルギン酸
Na、K・カラギーナン或いは寒天等の多糖類や
光架橋性樹脂等の合成高分子をビーズ状の担体と
して、これらに菌体を包括法により固定化した固
定化菌体を、密閉された発酵槽内に必要量入れ、
この発酵槽内に基質を注入して、固定化菌体に基
質を嫌気的に接触させて発酵させ、これにより発
酵液を連続的に取出すようにしたものがあつた。 (発明が解決しようとする問題点) しかしながら、包括法により菌体が固定化され
る担体をビーズ状に多量に調製することは大変に
困難な作業であり、又、上述した担体は有機物よ
りなるため、担体自体の機械的強度が比較的小さ
く長時間反応させると破砕されやすいため長く使
用することができなかつた。更にこれら固定化菌
体は、菌体が担体によつて囲まれているため、物
質移動効率が低く菌体による反応効率が悪いとい
つた問題があつた。又、固定化菌体を発酵槽内に
入れる間に雑菌の侵入が避けられないことから、
製品の品質劣化、変敗等、又は固定化菌体の安全
性の点で問題があつた。 本発明は上記の点に鑑み鋭意研究の結果開発さ
れたもので、菌体を簡単に固定化することがで
き、長期の使用にも耐えることができ、反応効率
を高めることができ、しかも蒸気殺菌が可能のた
め殺菌することにより外部からの雑菌の侵入のな
い状態で連続的に嫌気性発酵ができる、発酵食品
の製造方法及びその装置を提供しようとするもの
である。 (問題点を解決するための手段) すなわち、発明者は、発酵原料の加水分解液
を、発酵用菌体をアルミナフアイバ壁に吸着固定
化させた固定化菌体と嫌気的条件下で接触、発酵
させることにより、菌体による発酵効率を飛躍的
に高め、以つて短期間に発酵液を長期間効率良く
得ることが出来ることを知り、本発明の発酵食品
及び醸造食品の製造方法及び装置を完成した。 この出願の第1の発明は、酸化アルミニウム
(Al2O3)と酸化珪素(SiO2)とを主成分とする
アルミナフアイバ相互を、30〜300ミクロンの孔
を形成するように結合してなるアルミナフアイバ
壁に菌体懸濁液を吸収させて菌体をアルミナフア
イバ壁の孔内に吸着固定した後、このアルミナフ
アイバ壁の孔内に嫌気的条件下で基質を通過させ
ることにより、基質を菌体に接触させ発酵させる
ようにした事を特徴とする、発酵食品の製造方法
であり、この出願の第2の発明は密閉した発酵容
器内を隔室するように取付けられる、菌体懸濁液
を吸収した酸化アルミニウム(Al2O3)と酸化珪
素(SiO2)とを主成分とするアルミナフアイバ
相互を、30〜300ミクロンの孔を形成するように
結合してなるアルミナフアイバ壁と、このアルミ
ナフアイバ壁により発酵容器内に形成された、基
質が注入される注入室と、同じくアルミナフアイ
バ壁により発酵容器内に形成された、前記アルミ
ナフアイバ壁の孔内を基質が嫌気的条件下で通過
して発酵した液を回収する回収室とを備えた事を
特徴とする、発酵食品の製造装置である。 以下これらの発明を詳述する。 まず、この出願の第1の発明の発酵食品の製造
方法について説明する。本発明の使用される発酵
原料としては、醤油、酒、ビール、ワイン、クエ
ン酸或いは乳酸等の発酵食品の製造に通常用いら
れるものである。そしてこれらの原料に対しては
常法による原料処理、即ち原料組織の軟化、蛋白
質の変性、澱粉のα化、殺菌等が行われる。 次に発酵原料の酵素による加水分解は、酵素剤
による方法、発酵原料を麹として加水分解する方
法等の何れでもよいが、加水分解操作の点からす
れば、前者が特に好適である。 次に上記発酵原料を酵素的もしくは化学的に加
水分解したものを、これがPH3〜7程度でない場
合は乳酸発酵させるか、もしくは酸を加えてPH3
〜7程度に調整する。 なお、乳酸発酵は、前記加水分解物、例えばペ
デイオコツカス・ソーエIAM1673
(ATCC13621)、ペデイオコツカス・ソーエ
IAM1681(ATCC13622)、ペデイオコツカス・ソ
ーエIAM1685(ATC13623)、ペデイオコツカ
ス・ハロフイルスIAN1693等、又はその培養液
を添加し、時々または連続して機械的に撹拌を行
ないながら嫌気的条件下で25〜35℃に保持して乳
酸発酵させる。 その際、乳酸菌菌体は常法又は繊維状セラミツ
クス、球状セラミツクス充填体に固定化された固
定化乳酸菌菌体を用いて、これと前記加水分解物
を接触させて乳酸発酵を行なつても良い。 また、前記乳酸発酵の代りに、発酵原料を加水
分解したものに乳酸、酢酸等の有機酸もしくは塩
酸、硫酸等の無機酸を加え、該加水分解物のPHを
3〜7程度に調整してもよい。 そして上記加水分解したものが分解残渣(固形
分)をほとんどもしくは全く含まない液体の状態
である場合はそのまま使用し、そうでない場合は
上記乳酸発酵もしくは酸を加えて、常法の圧搾、
濾過、遠心分離等の操作により固液分離して液汁
基質を得る。 次に上記の発酵原料を加水分解した液体の状態
のものを、菌体を常法により懸濁させた懸濁液を
アルミナフアイバ壁に吸収させ菌体を吸着固定化
させた固定化菌体に適温例えば20〜35℃程度嫌気
的条件下で接触させつつ酵母発酵を行なう。 アルミナフアイバ壁は、酸化アルミニウム
(Al2O3)と酸化珪素(SiO2)とを主成分とする
アルミナフアイバ相互を、コロイダルシリカや硫
酸バンド系のバインダーにより30〜300ミクロン
の孔を形成するように結合して壁状とし、700〜
1400℃で焼成してなるものであり、その主成分を
酸化アルミニウム(Al2O3)と酸化珪素(SiO2
とした理由はフアイバー状に成型しやすいこと、
酵母との親和性が良いこと等である。 又、その孔径は酵母約5ミクロンの菌体が通
過、固定化されやすいという理由から30〜300ミ
クロンという範囲に設けたのである。固定化用担
体として上述したアルミナフアイバ相互を、30〜
300ミクロンの孔を形成するように結合して壁状
としたアルミナフアイバ壁としたため、酵母の吸
着がされやすいという効果を得ることができる。 固定化される菌体として、例えば醤油製造の場
合、醤油酵母としては、例えばサツカロミセス・
ルキシーATCC13356、サツカロミセス・ルキシ
ーATCC14679、サツカロミセス・ルキシー
ATCC14680、トルロプシス・ノダエンシス
ATCC20189、トルロプシス・マグノリア
ATCC13782、トルロプシス・エチエルシ
ATCC20190、トルロプシス・スフエリカ
ATCC13193、トルロプシス・フエルサチリス
ATCC20191、トルロプシス・サケ、トルロプシ
ス・ハロフイルス、トルロプシス・アノラマ
ATCC20222等の1種もしくは2種以上の酵母が
好適に用いられる。 次に上記菌体の懸濁液を、アルミナフアイバ壁
に吸収させて菌体を吸着固定化させて固定化菌体
を得る手段について述べる。 先ず、上記菌体に、例えばグルコース・酵母エ
キス等の溶液を加え懸濁させた懸濁液を適当な手
段、例えばペリスタルポンプ等により送りこみア
ルミナフアイバ壁に吸収させて菌体を吸着固定化
させて上記固定化菌体を得る。 次に、上記操作により得られた固定化菌体を発
酵容器に入れ、これに前記の発酵原料を加水分解
したものを注入し、嫌気的条件下で該固定化菌体
と接触させつつ発酵させて発酵液を得る。 なお、上記発酵容器としては、例えばフイルム
反応槽、撹拌槽、円筒槽、セラミツク吸着板で仕
切られた槽、小形球状セラミツクス充填槽等、ど
んなものであつても良い。 又、上記嫌気的条件とは、特に通気を行なわな
い状態あるいは該発酵容器の空間部を炭酸ガス、
窒素ガス等で置換した状態を意味する。 そして、上記嫌気的条件下での発酵時間として
は、5時間以上、好ましくは20〜120時間程度、
接触、発酵させるのが望ましい。上記発酵形式と
しては、回分式、連続式等適宜選択して行なうこ
とが出来る。 又、上記菌体を吸着させた時点で、菌体数が不
足する場合には、予め該菌体の増殖に適した条件
のもとに前記菌体を適当時間前培養して菌体を増
殖させ、その後前記発酵原料を加水分解したもの
を接触させて発酵させてもよい。 次に、この出願の第2の発明の発酵食品の製造
装置について説明する。 第1図に示すように、円筒状の発酵容器1に
は、円筒状のアルミナフアイバ壁2が取付けら
れ、発酵容器1はこれによつて隔室され、このア
ルミナフアイバ壁2により発酵容器1内に基質が
注入される注入室15が形成され、同じくアルミ
ナフアイバ壁2により発酵容器1内に前記基質が
アルミナフアイバ壁2を通過して発酵した液を回
収する回収室16が形成されている。又、前記ア
ルミナフアイバ壁2の内側にはドラフトチユーブ
3が設けられており、その内側には発酵容器1上
部に設けられた電動機9で駆動される回転羽根4
が設けられている。 前記注入室15には基質の供給口5が設けら
れ、前記回収室16には発酵液の排出口6が設け
られている。又、発酵容器1の下部には蒸気取入
口12とその下方にドレンバルブ7とが設けられ
ている。 上記アルミナフアイバ壁2は酸化アルミニウム
(Al2O3)、酸化珪素(SiO2を主成分とするアルミ
ナフアイバ相互を、コロイダルシリカや硫酸バン
ド系のバインダーにより30〜300ミクロンの孔を
形成するように結合して壁状とし、700〜1400℃
で焼成してなるものであり、その主成分を酸化ア
ルミニウム(Al2O3)と酸化珪素(SiO2)とした
理由はフアイバー状に成型しやすこと、酵母との
親和性が良いこと等である。 又、その孔径は30〜300ミクロンで、使用する
菌体の大きさによつて適宜選定できるという理由
から30〜300ミクロンという範囲に設けたのであ
る。 アルミナフアイバ壁2には、その外周にその機
械的強度や押入、搬出等の容易性を増す為に網目
状の金属材8で保持されている。このアルミナフ
アイバ壁2が取付金具11により発酵容器1に固
定されている。 なお、アルミナフアイバ壁2自身の強度を増加
させるため、グラスフアイバ等を添加しても良
い。また発酵に使用する菌体が小さい場合には、
珪藻土やSiO2を混入すれば30ミクロン以下の孔
径を有する孔をもつアルミナフアイバ壁2を得る
ことができる。 次に上記説明した発酵容器1で例えばアルコー
ルを連続発酵する場合について説明する。 まず基質を発酵容器1に供給する前に、発酵容
器1の下部の蒸気取入口12から蒸気を供給し、
発酵容器1内を完全に殺菌する。 次にドレンバルブ7を開放し、発酵容器1内の
残物を排出する。次に供給口5から別装置で培養
された菌体、サツカロミセス・セルビツシ・エリ
プソイ・ジユース(S:cerevisiae
varellipsoideus.)にグルコースを加えて懸濁さ
せた菌体の懸濁液を注入する。この菌体の懸濁液
はアルミナフアイバ壁2中に吸収される。 次に基質(グルコース5%液)を供給口5から
注入室15に注入する。発酵容器1の注入室15
内に注入された基質は、アルミナフアイバ壁2を
通過し、アルミナフアイバ壁2により形成された
回収室16に浸出するが、この時基質がアルミナ
フアイバ壁2内に固定化された菌体と接触しアル
コール発酵がなされ菌体は増殖する。 そして排出口6から溢出する発酵液は、バイオ
センサにより糖濃度が測定され、糖濃度が所定の
値より低くなるまで再び供給口5へと戻されるよ
うになつている。糖濃度が目的値になつたとき
は、発酵液は供給口5へ戻さずアルコール貯溜槽
へ移送する。そして基質を連続して供給口5から
供給するようにする。この供給量はバイオセンサ
の測定値に応じて調整される。発酵中において、
アルミナフアイバ壁2内の菌体は増殖した分だけ
流出するが、常時必要量はアルミナフアイバ壁2
内に存在するようになつている。 なお、発酵容器1の外周には伝熱ヒータを包含
したジヤケツトで被覆し、発酵に最適な温度に制
御する。 なお、本実施例において、上記アルミナフアイ
バ壁2は円筒状のもので説明したが、板状のもの
を垂直壁として仕切つてもよく、また上下に容器
内を区画することも可能である。 (発明の効果) 以上詳述したように、この出願の第1の発明の
発酵食品の製造方法によれば、発酵過程において
活性化された菌体数は常時高く、長時間保持する
ことが出来、従つて発酵反応を著しく効率化させ
ることが出来る為、発酵液を常時効率良く、短時
間に得ることが出来るので、本発明は産業上極め
て有意義である。 又、この出願の第2の発明の発酵食品の製造装
置によれば、従来のように菌体を担体に包括固定
化しビーズ状にする必要がなく、また完全に発酵
容器内を殺菌でき外部から雑菌の侵入がないので
良質な発酵液が得られる。また本担体の原料はす
べて無機物であるので食品安全上も何ら問題はな
い。 さらにアルミナフアイバ壁は再度焼結すること
により繰返し使用でき、極めて経済的である。 (実施例) 以下、実施例を挙げてこれらの発明をさらに具
体的に説明する。 実施例 1 脱脂大豆6Kgと小麦1.3Kgの混合物に、水9.6
を加え、これを60容密閉容器に入れて1Kg/
cm2・gの水蒸気で30分間加熱後よくほぐし、さら
に1Kg/cm2・gの水蒸気で45分間加熱処理した
後、冷却した。 一方、3Kgの表皮にアスペルギルス・オリーゼ
ATCC20386を接種し、30〜35℃で42時間製麹し
て固体麹を得、該固体麹を5倍量の冷水で抽出し
て得た酵素液をフイルタープレスで予備濾過し、
さらにSA−451型無菌濾過機[日本濾水機工業(株)
製]で濾過し無菌酵素液を得た。 この無菌酵素液9.6を上記冷却原料全量に加
え、振盪させつつ40℃で64時間酵素分解した。 得られた加水分解物に食塩2Kgを加えた後(食
塩濃度9%w/v)、圧搾して酵素分解液汁20.1
を採取し、これを苛性ソーダでPH6.0に調整し
たものに、予め醤油乳酸菌ベデイオコツカス・ハ
ロフイルスIAM1693を乳酸菌培地(濃口生醤油
10%v/v、グルコース1%w/v、食塩8%
w/v、酢酸ナトリウム3.5%w/v、酵母エキ
ス0.3%w/v、PH7.0)で30℃、4日間培養した
乳酸菌培養液(生菌体数1.1×108/ml)100を加
え(初発乳酸菌の生菌体数5.9×105/ml)、嫌気
条件下で30℃、120時間乳酸発酵させた。 ついでこの乳酸発酵液を80℃で20分間加熱して
乳酸発酵を止め、生成した乳酸菌菌体等を常法に
より珪藻土で濾過し、酵素分解濾過液(液汁成分
値:TN2.05%w/v、RS8.83%w/v、
NaCl9.00%w/v、PH5.06、TA2.15)19.4を
得た。 一方、醤油酵母サツカロミセス・ルキシーNo.
IFO1877(saccharomyces rouxii)及びキヤンジ
ダ・バーサチルスNo.FRZ451(Candida
versatilis)それぞれを酵母培養液体培地(濃口
生醤油5−10%v/v、グルコース、5〜7%
w/v、食塩0〜8%w/v、燐酸1カリウム
0.1%w/v、硫酸マグネシウム0.05%w/v、
酵母エキス0.1〜0.5%w/v、塩化カルシウム
0.01%w/v、ポリペプトン0〜0.5%w/v、
PH5.0〜5.5)で30℃、48〜72時間振盪培養した
後、8000×Gで10分、遠心分離して得られた、そ
れぞれの酵母菌体を減菌水にて一度洗浄後、再び
遠心分離して菌体を分離後、それぞれの酵母菌体
を先に述べた酵母培養液体培地に加え良く混合
し、サツカロミセス・ルキシー及びキヤンジダ・
バーサチルスの酵母懸濁液とした。次に、上記し
たそれぞれの酵母懸濁液を第1図に示す嫌気性発
酵装置内の固定化用担体に吸収させた。 嫌気性発酵装置は2個を直列したもので、第1
発酵装置はサツカロミセス・ルキシーを固定化し
たもので主に醤油香味に必要なエタノール発酵に
用いる。第2発酵装置は主に2−エチル・グアヤ
コール等の醤油独自の香気を生成させるキヤンジ
ダ・バーサチルスを固定化した発酵装置である。
なお、固定化担体材料としては酸化アルミニウム
(Al2O3)と酸化珪素(SiO2)とを主成分とする
アルミナフアイバ相互を、30〜300ミクロンの孔
を形成するように結合してなるアルミナフアイバ
壁が適用される。また固定化担体の形状には、円
柱状、円筒状のものを始め、プレート状のもの、
また顆粒に成形し充填用に調製されたものを含
む。 次に反応については乳酸発酵終了液を第1の発
酵装置即ちサツカロミセス・ルキシーを固定化し
た担体に注入する。反応は回分式と連続式の2つ
になるが、前者については乳酸発酵液をペリスク
ルポンプで10〜100ml/hrの速度で担体をとおし
て循環し反応を促進する。発酵温度は20〜30℃で
行なう。回分法については48〜72時間で目的の生
成液が得られる。生成液を低温殺菌後、必要あれ
ば遠心分離を行ない上清液を得る。上清液につい
ては次に第2発酵装置に移す。即ちキヤンジダ・
バーサチルスをあらかじめ固定化した担体に対し
第1発酵装置の場合と同様回分式では第1発酵装
置発酵終了液を10〜100ml/hrの速度でペリスタ
ルポンプを用いて循環反応を行なう。反応温度は
25〜30℃である。第2発酵についても48〜72時間
で目的の生成液が得られる。第2発酵を完了した
発酵液については常法により火入処理を行ない製
品とする。 連続法については回分法と大きな違いはないが
第1及び第2発酵装置を直列で結び乳酸発酵液を
ペリスタルポンプで5〜20ml/hrの速度で第1発
酵装置へ連続的に注入し、その結果溶出される溶
出液を低温殺菌処理後、引続きペリスタルポンプ
にて5〜20ml/hrの速度で第2発酵装置へ注入、
溶出は回分法の場合と同様、常法による火入れを
行ない製品とする。 なお、サツカロミセス・ルキシーとキヤンジ
ダ・パーサチルスの細胞融合酵母をもちいた場合
には、第1発酵装置一基で製品が得られる。 実施例 2 この出願の第1の発明の製造方法を使用したビ
ール製造方法について説明する。 この実施例において菌体を吸着固定化する担体
としては、実施例1の醤油製造の場合と同じアル
ミナフアイバーの他、シリカ、アルミナ等の単独
又は混合物をコロイダルシリカ、硫酸バンドなど
のバインダーと共に焼成してアルミナフアイバ相
互を結合させた多孔質担体も使用した。その形状
としては円筒状、板状等で整形されたもののいず
れか1つ又は組合わせた固定化用担体である。本
実施例におけるビールの製造方法は、この担体に
ビール酵母を固定化する操作と、この固定化ビー
ル酵母を発酵容器内に装着した後、嫌気的条件下
でホツプ添加麦汁を回分法又は連続法により注
入、酵母固化層を通してエタノール発酵を低温で
行ないビールを製造させる操作とにより構成され
ている。ホツプ添化麦汁の調製については一般に
知られているものと同様な方法による。例えば、
発芽乾燥大麦1Kgを破砕機で粗く砕いた後、4
の水を加え、70℃で4時間糖化を行なつた後、沸
騰、冷却し、セライト添加で吸引濾過し清澄液3
(糖濃度10%)を得た。得られた麦汁に、0.4
%のホツプを加え1時間沸騰させた後、冷却、濾
過しホツプ添化麦汁を得た。一方、固定化用酵母
の培養については常法にもとづき5%グルコー
ス、0.5%酵母エキス、0.5%ポリペプトン、0.25
%マルトエキスPH5.5に調製された培養液を500ml
の振盪フラスコに100ml添加し、殺菌後、ビール
酵母又は、サツカロミセス・カルベルジエイシス
No.AHU3062(Saccharomyces Carlsbergensis)
を加えて48〜72時間30℃で振盪又は静地培養して
得られた酵母菌体を同じ培養液を500mlを2の
三角フラスコに入れ殺菌された培養液に添加、再
び、30℃で振盪又は静地培養を行なつた後、遠心
分離し酵母菌体を分離、減菌水にて水洗いした
後、酵母菌体を先に述べた麦汁1.5に加え酵母
懸濁液を調製した。同懸濁液をペリスタルポンプ
を使用し、担体に1分間20mlの速度で循環させ10
時間で担体にビール酵母を吸着させた。次いで、
循環清澄液をリアクターより取除いた後、担体を
装着した発酵容器へホツプ添加麦汁をペリスタル
ポンプにて循環、嫌気条件下で低温のもと、ビー
ル発酵を行なつた。この発酵容器を用い主発酵、
後発酵を同一発酵容器内で行ない約15日間でエタ
ノール濃度5%以上のビール製造を完成した。な
お、主発酵又は後発酵のみを発酵容器にて実施し
ても同様の結果が得られた。担体としては醤油製
造の際に用いたアルミナフアイバーの他にシリカ
とアルミナとを主成分としバインダーとしてコロ
イダルシリカ、硫酸バンド系をもちい焼成して得
られた孔径30〜300ミクロンの有孔なアルミナフ
アイバ壁が使用されている。なおその形状の1例
を挙げると外径75mm、内径55mm、高さ150mmの円
筒状担体を直径100mm、高さ250mmの円筒状リアク
ターに装着したものを使用した。その他、横125
mm、縦125mm、厚さ35mmの板状セラミツクスを中
央に1枚又は数板セツトした横130mm、縦130mm、
長さ250mmの直方体成型の発酵容器を用いても同
様な成果を得ている。上述の発酵容器を用いてビ
ールを製造した際のビール成分の経過を第4図に
示す。第4図より本法によるビール成分の経過は
常法によるビール製造と同じ結果が僅か15日とい
う短期間で得られる特徴がみられる。なおビール
の苦臭成分として嫌われているダイアセチル、総
アルデヒドの経過を第5図に示す。この結果正常
のビール製造と同じ経過が僅か15日間で得られて
おり、これも本製造方法の大きな特徴である。 実施例 3 次にこの出願の第1の発明の製造方法を使用し
た清酒製造法について説明する。 先ず担体調製が大切である。本実施例において
使用した担体は醤油製造の際使用したアルミナフ
アイバーの他、シリカ、アルミナの単独又は混合
物をコロイダルシリカ、硫酸バンドなどのバイン
ダーと共に焼成してアルミナフアイバ相互を結合
させた多孔質担体である。その形状については円
筒状、板状に成形されたもののいずれか1つの固
定化担体である。本実施例における清酒の製造方
法は、この担体に清酒酵母を固定化する操作と、
この固定化清酒酵母を発酵容器内に装着した後、
嫌気的条件下で発酵原液を回分法又は連続法によ
り注入、清酒酵母固定化層を通してエタノール発
酵を低温で行ない清酒を製造させる操作とより構
成されている。本発明に使用した糖化液(発酵原
液)は米麹及び糖化酵素でそれぞれ糖化された液
を混合したものである。すなわち、米麹糖化液は
常法により麹菌(Aspergillus oryzae)で調製し
た米麹300gに600mlの水を加えて50℃で12時間糖
化後、遠心分離し糖化液を得た。一方、酵素糖化
液については白米700gを水洗、水に浸漬、水切
り後、40分間蒸煮した後、1400mlの水をくわえ、
糖化酵素(グルク−100)0.7gを加え50℃で24時
間糖化後、遠心分離し、酵素糖化液を得た。かく
して得られた各糖化液を調製したものを発酵原液
(糖濃度23%)とした。 一方、固定化用清酒酵母の調製については常法
にもとづき、5%グルコース、0.5%酵母エキス、
0.5%ポリペプトン、0.25%モルトエキス、PH5.5
の培地100mlを500ml振盪フラスコに入れ殺菌後、
清酒酵母(協会7号、サツカロミセス・セルビツ
シ Saccharomyces cervisiae)を加え30℃で48
時間振盪培養した後、遠心分離により酵母菌体を
分離した。得られた酵母菌体を振盪培養の場合と
同じ培地500mlを2の三角フラスコに入れ、30
℃で静地又は振盪培養を48時間行なつた後、遠心
分離により酵母菌体を集め、減菌水にて洗浄後、
1.5の発酵原液に酵母を懸濁させた後、1時間
20mlの速度でペリスタルポンプを使用して発酵容
器内に装着させたセラミツク担体に10時間を要し
て固定化させた。次いで循環液を取除いた後、新
しく調製された発酵原液をペリスタルポンプにて
20〜60ml/hrの速度で循環させるか又は注入のみ
で低速でエタノール発酵を行なつた。なお連続法
については注入速度を低下させて行なつた。担体
としては上述の担体の他シリカ、アルミナ等を主
成分としたものを単独又は混合し、コロイダルシ
リカ、硫酸バンド等をバインダーとして焼成して
得られた孔径が30〜300ミクロンの有効なアルミ
ナフアイバ壁である。その形状については例えば
外径75mm、内径55mm、高さ150mmの円筒状担体を
直径100mm、高さ250mmの円筒状発酵容器に装着さ
せたものを使用した。その他、横125mm、縦125
mm、厚さ35mmの板状セラミツクスを中央にセツト
したもの或いは複数枚をセツトした横130mm、縦
130mm、長さ250mmの直方体型の発酵容器も用いら
れた。 上述の方法で実施した清酒製造における糖濃度
の減少、エタノールの生成、酸度及びフオルモー
ル態窒素について時間経過との関係を初発糖濃度
24%及び30%の両者について定量した結果を第6
図、第7図、第8図及び第9図に示した。図面よ
り初発糖濃度24%、30%共に良好な結果が短期間
で得られていることが解る。すなわち初発糖濃度
24%では僅か10日間で、30%についても20日間と
短縮されている。次に本法により製造された清酒
について一般的成分、有機酸、芳香成分を定量し
た結果を表1に示す。表1より本法によつて製造
された清酒は従来法のものと差異がみられなかつ
た。
(Industrial Application Field) The present invention relates to a method for producing fermented foods and an apparatus therefor. (Conventional technology) Conventional fermented food manufacturing equipment uses alginic acid.
The immobilized microbial cells are immobilized on bead-shaped carriers using polysaccharides such as Na, K, carrageenan, or agar, and synthetic polymers such as photocrosslinkable resins by entrapment method, and then transferred to a sealed fermenter. Put the required amount inside,
In some fermenters, a substrate is injected into the fermenter, and the immobilized bacterial cells are brought into contact with the substrate in an anaerobic manner for fermentation, whereby the fermented liquid is continuously taken out. (Problems to be Solved by the Invention) However, it is a very difficult task to prepare a large amount of carriers in the form of beads on which bacterial cells are immobilized by the entrapment method, and the carriers mentioned above are made of organic substances. Therefore, the mechanical strength of the carrier itself is relatively low and it is likely to be crushed if reacted for a long time, so it could not be used for a long time. Furthermore, these immobilized microbial cells have the problem of low mass transfer efficiency and poor reaction efficiency due to the microbial cells being surrounded by a carrier. In addition, since the invasion of various bacteria is unavoidable while the immobilized bacterial cells are placed in the fermenter,
There were problems with product quality deterioration, spoilage, etc., or with the safety of immobilized bacterial cells. The present invention was developed as a result of intensive research in view of the above points, and it can easily immobilize bacterial cells, withstand long-term use, and increase reaction efficiency. It is an object of the present invention to provide a method for producing fermented foods and an apparatus therefor, in which sterilization is possible and continuous anaerobic fermentation can be carried out without invasion of germs from the outside. (Means for Solving the Problems) That is, the inventor brought a hydrolyzed solution of a fermentation raw material into contact with immobilized microbial cells obtained by adsorbing and immobilizing fermentation microbial cells on an alumina fiber wall under anaerobic conditions. Knowing that fermentation can dramatically increase the fermentation efficiency of bacterial cells and efficiently obtain fermented liquid for a long period of time in a short period of time, we have developed the method and apparatus for producing fermented foods and brewed foods of the present invention. completed. The first invention of this application is made by bonding alumina fibers mainly composed of aluminum oxide (Al 2 O 3 ) and silicon oxide (SiO 2 ) to form pores of 30 to 300 microns. After the bacterial cell suspension is absorbed into the alumina fiber wall and the bacterial cells are adsorbed and fixed in the pores of the alumina fiber wall, the substrate is passed through the pores of the alumina fiber wall under anaerobic conditions. A method for producing a fermented food, which is characterized in that the fermented food is brought into contact with bacterial cells and fermented. An alumina fiber wall formed by bonding alumina fibers mainly composed of aluminum oxide (Al 2 O 3 ) and silicon oxide (SiO 2 ) that have absorbed liquid so as to form pores of 30 to 300 microns; Under anaerobic conditions, the substrate passes through an injection chamber formed in the fermentation vessel by the alumina fiber wall, into which the substrate is injected, and a hole in the alumina fiber wall, which is also formed in the fermentation vessel by the alumina fiber wall. This is a fermented food manufacturing device characterized by comprising a recovery chamber for recovering the fermented liquid that passes through the device. These inventions will be described in detail below. First, the method for producing a fermented food according to the first invention of this application will be explained. Fermented raw materials used in the present invention include those commonly used in the production of fermented foods such as soy sauce, alcohol, beer, wine, citric acid, or lactic acid. These raw materials are subjected to conventional raw material processing, including softening of the raw material structure, denaturation of proteins, gelatinization of starch, and sterilization. Next, the fermentation raw material may be hydrolyzed by an enzyme using either an enzyme agent or a method in which the fermentation raw material is hydrolyzed using koji, but the former is particularly preferred from the viewpoint of the hydrolysis operation. Next, the above fermentation raw materials are enzymatically or chemically hydrolyzed, and if the pH is not around 3 to 7, either lactic acid fermentation is performed, or acid is added to raise the pH to 3.
Adjust to about 7. In addition, lactic acid fermentation is carried out using the above-mentioned hydrolyzate, for example, Pedeiococcus soae IAM1673.
(ATCC13621), Pedeiocoticus soae
IAM1681 (ATCC13622), Pedeiococcus soae IAM1685 (ATC13623), Pedeiococcus halovirus IAN1693, etc., or their culture solution is added and kept at 25-35℃ under anaerobic conditions with occasional or continuous mechanical stirring. and undergo lactic acid fermentation. In this case, the lactic acid bacteria cells may be prepared using a conventional method or by using immobilized lactic acid bacteria cells immobilized on fibrous ceramics or spherical ceramic packing bodies, and bringing this into contact with the hydrolyzate to perform lactic acid fermentation. . Alternatively, instead of the lactic acid fermentation described above, organic acids such as lactic acid and acetic acid or inorganic acids such as hydrochloric acid and sulfuric acid are added to the hydrolyzed fermentation raw material, and the pH of the hydrolyzed product is adjusted to about 3 to 7. Good too. If the hydrolyzed product is in a liquid state containing little or no decomposition residue (solid content), use it as is; if not, use the above-mentioned lactic acid fermentation or add acid and press in a conventional manner.
Solid-liquid separation is performed by operations such as filtration and centrifugation to obtain a liquid substrate. Next, the liquid state obtained by hydrolyzing the above-mentioned fermentation raw material is made into immobilized bacteria by adsorbing and immobilizing the bacteria by absorbing the suspension into the alumina fiber wall using a conventional method. Yeast fermentation is carried out under anaerobic conditions at an appropriate temperature, for example, about 20 to 35°C. The alumina fiber wall is made by forming pores of 30 to 300 microns between alumina fibers whose main components are aluminum oxide (Al 2 O 3 ) and silicon oxide (SiO 2 ) using a colloidal silica or sulfuric acid binder. Combined with wall shape, 700~
It is made by firing at 1400℃, and its main components are aluminum oxide (Al 2 O 3 ) and silicon oxide (SiO 2 ).
The reason for this is that it is easy to mold into a fiber shape,
It has good affinity with yeast, etc. In addition, the pore diameter was set in the range of 30 to 300 microns because yeast cells of approximately 5 microns can easily pass through and be immobilized. The above-mentioned alumina fiber was used as a carrier for immobilization, and
Since the alumina fiber wall is bonded to form a pore of 300 microns in the form of a wall, it is possible to obtain the effect of easily adsorbing yeast. For example, in the case of soy sauce production, the soy sauce yeast to be immobilized is, for example, Satucharomyces.
Ruxi ATCC13356, Satscharomyces ruxi ATCC14679, Satscharomyces ruxi
ATCC14680, Torulopsis nodaensis
ATCC20189, Torulopsis Magnolia
ATCC13782, Torulopsis ethiersii
ATCC20190, Torulopsis spheerica
ATCC13193, Torulopsis fuersatilis
ATCC20191, Torulopsis salmon, Torulopsis halophyllus, Torulopsis anorama
One or more types of yeast such as ATCC20222 are preferably used. Next, a method for obtaining immobilized microbial cells by absorbing the suspension of microbial cells into the alumina fiber wall and adsorbing and immobilizing the microbial cells will be described. First, a suspension obtained by adding, for example, a solution of glucose, yeast extract, etc. to the above-mentioned bacterial cells is sent by an appropriate means such as a peristaltic pump, and the bacterial cells are adsorbed and immobilized by being absorbed into the alumina fiber wall. to obtain the above-mentioned immobilized bacterial cells. Next, the immobilized bacterial cells obtained by the above operation are placed in a fermentation container, and the hydrolyzed fermentation raw material is poured into the container, and fermentation is carried out under anaerobic conditions while contacting with the immobilized bacterial cells. to obtain the fermentation liquid. The fermentation vessel may be of any type, such as a film reaction vessel, a stirring vessel, a cylindrical vessel, a vessel partitioned with ceramic adsorption plates, a vessel filled with small spherical ceramics, and the like. In addition, the above-mentioned anaerobic conditions refer to conditions where no aeration is performed or where the space of the fermentation vessel is exposed to carbon dioxide gas,
This means a state in which the gas has been replaced with nitrogen gas, etc. The fermentation time under the above anaerobic conditions is 5 hours or more, preferably about 20 to 120 hours.
Contact and fermentation are preferable. The above-mentioned fermentation type can be suitably selected from batch type, continuous type, etc. In addition, if the number of bacteria is insufficient at the time of adsorption of the bacteria, the bacteria can be pre-cultured for an appropriate period of time under conditions suitable for the growth of the bacteria. After that, the fermentation raw material may be brought into contact with a hydrolyzed product for fermentation. Next, the fermented food manufacturing apparatus according to the second invention of this application will be explained. As shown in FIG. 1, a cylindrical alumina fiber wall 2 is attached to a cylindrical fermentation vessel 1, and the fermentation vessel 1 is partitioned by this. An injection chamber 15 is formed into which the substrate is injected, and a recovery chamber 16 is formed in the fermentation vessel 1 by the alumina fiber wall 2 in which the substrate passes through the alumina fiber wall 2 and recovers the fermented liquid. Further, a draft tube 3 is provided inside the alumina fiber wall 2, and a rotating blade 4 driven by an electric motor 9 provided on the upper part of the fermentation container 1 is installed inside the draft tube 3.
is provided. The injection chamber 15 is provided with a substrate supply port 5, and the recovery chamber 16 is provided with a fermentation liquid discharge port 6. Furthermore, a steam intake port 12 and a drain valve 7 are provided below the steam intake port 12 at the bottom of the fermentation vessel 1. The alumina fiber wall 2 is made of alumina fibers whose main components are aluminum oxide (Al 2 O 3 ) and silicon oxide (SiO 2 ) with colloidal silica or sulfuric acid binder to form pores of 30 to 300 microns. Combined to form a wall and heated to 700-1400℃
The main ingredients are aluminum oxide (Al 2 O 3 ) and silicon oxide (SiO 2 ) because they are easy to mold into fibers and have good affinity with yeast. be. Further, the pore diameter was set in the range of 30 to 300 microns because it could be appropriately selected depending on the size of the bacterial cells to be used. The alumina fiber wall 2 is supported by a mesh-like metal material 8 around its outer periphery in order to increase its mechanical strength and ease of insertion and removal. This alumina fiber wall 2 is fixed to the fermentation vessel 1 with a mounting bracket 11. Incidentally, in order to increase the strength of the alumina fiber wall 2 itself, glass fiber or the like may be added. Also, if the bacterial cells used for fermentation are small,
By mixing diatomaceous earth or SiO 2 , an alumina fiber wall 2 having pores with a pore diameter of 30 microns or less can be obtained. Next, a case will be described in which, for example, alcohol is continuously fermented in the fermentation vessel 1 described above. First, before supplying the substrate to the fermentation vessel 1, steam is supplied from the steam intake port 12 at the bottom of the fermentation vessel 1,
The inside of the fermentation container 1 is completely sterilized. Next, the drain valve 7 is opened and the residue inside the fermentation container 1 is discharged. Next, from the supply port 5, the bacterial cells cultured in a separate device, Saccharomyces cerevisiae ellipsoi (S: cerevisiae
varellipsoideus) with glucose added to suspend the cells. This suspension of bacterial cells is absorbed into the alumina fiber wall 2. Next, the substrate (5% glucose solution) is injected into the injection chamber 15 from the supply port 5. Injection chamber 15 of fermentation vessel 1
The substrate injected into the alumina fiber wall 2 passes through the alumina fiber wall 2 and leaches into the recovery chamber 16 formed by the alumina fiber wall 2. At this time, the substrate comes into contact with the bacterial cells immobilized within the alumina fiber wall 2. Alcohol fermentation takes place and the bacterial cells proliferate. The sugar concentration of the fermented liquid overflowing from the discharge port 6 is measured by a biosensor, and is returned to the supply port 5 until the sugar concentration becomes lower than a predetermined value. When the sugar concentration reaches the target value, the fermented liquid is not returned to the supply port 5 but is transferred to the alcohol storage tank. Then, the substrate is continuously supplied from the supply port 5. This supply amount is adjusted according to the measured value of the biosensor. During fermentation,
The bacterial cells inside the alumina fiber wall 2 flow out in proportion to their multiplication, but the amount always required is
It has come to exist within. The outer periphery of the fermentation vessel 1 is covered with a jacket containing a heat transfer heater to control the temperature to be optimal for fermentation. In this embodiment, the alumina fiber wall 2 has been described as having a cylindrical shape, but a plate-like wall may be used as a vertical wall to partition the container, and it is also possible to partition the inside of the container into upper and lower sections. (Effects of the Invention) As detailed above, according to the method for producing fermented foods of the first invention of this application, the number of bacterial cells activated during the fermentation process is always high and can be maintained for a long time. Therefore, the efficiency of the fermentation reaction can be significantly improved, and the fermentation liquid can always be obtained efficiently and in a short time, so the present invention is extremely significant industrially. In addition, according to the fermented food manufacturing apparatus of the second invention of this application, there is no need to comprehensively immobilize bacterial cells on a carrier and make them into beads as in the past, and it is possible to completely sterilize the inside of the fermentation container. Since there is no invasion of bacteria, a high-quality fermented liquid can be obtained. Furthermore, since all the raw materials for this carrier are inorganic, there is no problem in terms of food safety. Furthermore, the alumina fiber wall can be used repeatedly by sintering it again, making it extremely economical. (Examples) Hereinafter, these inventions will be described in more detail with reference to Examples. Example 1 Add 9.6 kg of water to a mixture of 6 kg of defatted soybeans and 1.3 kg of wheat.
and put it in a 60 volume airtight container to make 1kg/
After heating with cm 2 ·g of steam for 30 minutes, it was thoroughly loosened, further heat treated with 1 kg/cm 2 ·g of steam for 45 minutes, and then cooled. On the other hand, 3 kg of Aspergillus oryzae on the epidermis.
Inoculate ATCC20386 and make koji at 30 to 35°C for 42 hours to obtain solid koji, extract the solid koji with 5 times the amount of cold water, pre-filter the obtained enzyme solution with a filter press,
In addition, SA-451 type sterile filter [Nippon Roshiki Kogyo Co., Ltd.]
A sterile enzyme solution was obtained. 9.6 of this sterile enzyme solution was added to the total amount of the above-mentioned cooled raw material, and enzymatically decomposed at 40° C. for 64 hours while shaking. After adding 2 kg of salt to the obtained hydrolyzate (salt concentration 9% w/v), it was squeezed to obtain enzymatically decomposed juice 20.1 kg.
was collected and adjusted to pH 6.0 with caustic soda, and added to the soy sauce lactic acid bacterium Bedeiococcus halophyllus IAM1693 in a lactic acid bacteria medium (dark raw soy sauce).
10% v/v, glucose 1% w/v, salt 8%
Add 100 lactic acid bacteria culture solution (number of viable cells 1.1 x 10 8 /ml) that was cultured at 30°C for 4 days in w/v, sodium acetate 3.5% w/v, yeast extract 0.3% w/v, PH 7.0). (Number of viable lactic acid bacteria was 5.9×10 5 /ml), and lactic acid fermentation was carried out at 30° C. for 120 hours under anaerobic conditions. Next, this lactic acid fermentation liquid was heated at 80°C for 20 minutes to stop lactic acid fermentation, and the produced lactic acid bacteria cells were filtered through diatomaceous earth in a conventional manner to obtain an enzymatically decomposed filtrate (liquid component value: TN2.05% w/v). , RS8.83%w/v,
NaCl 9.00% w/v, PH 5.06, TA 2.15) 19.4 was obtained. On the other hand, soy sauce yeast Satsukaromyces luxii No.
IFO1877 (saccharomyces rouxii) and Candida versatilus No.FRZ451 (Candida
versatilis) respectively in yeast culture liquid medium (koikuchi raw soy sauce 5-10% v/v, glucose, 5-7%
w/v, salt 0-8% w/v, monopotassium phosphate
0.1%w/v, magnesium sulfate 0.05%w/v,
Yeast extract 0.1-0.5% w/v, calcium chloride
0.01% w/v, polypeptone 0-0.5% w/v,
After shaking culture at 30℃ for 48 to 72 hours (PH5.0 to 5.5), each yeast cell obtained by centrifugation at 8000 x G for 10 minutes was washed once with sterilized water and then cultured again. After separating the cells by centrifugation, each yeast cell was added to the above-mentioned yeast culture liquid medium and mixed well.
It was made into a yeast suspension of Versatilus. Next, each of the yeast suspensions described above was absorbed into an immobilization carrier in the anaerobic fermentation apparatus shown in FIG. The anaerobic fermentation device consists of two devices connected in series, the first
The fermentation equipment has immobilized Saccharomyces luxii and is mainly used for ethanol fermentation, which is necessary for flavoring soy sauce. The second fermentation device is a fermentation device in which Candida versatilus, which produces the unique aroma of soy sauce such as 2-ethyl guaiacol, is immobilized.
The immobilization carrier material is alumina made by bonding alumina fibers mainly composed of aluminum oxide (Al 2 O 3 ) and silicon oxide (SiO 2 ) to form pores of 30 to 300 microns. Fiber walls are applied. In addition, the shape of the immobilization carrier includes cylindrical, cylindrical, plate-shaped,
It also includes those formed into granules and prepared for filling. Next, for the reaction, the lactic acid fermentation finished liquid is injected into the first fermentation device, that is, the carrier on which Saccharomyces luxii is immobilized. The reaction can be carried out either batchwise or continuously; in the former case, the lactic acid fermentation liquid is circulated through the carrier at a rate of 10 to 100 ml/hr using a pellicle pump to promote the reaction. Fermentation temperature is 20-30℃. In the batch method, the desired product solution can be obtained in 48 to 72 hours. After pasteurizing the product liquid, centrifugation is performed if necessary to obtain a supernatant liquid. The supernatant liquid is then transferred to a second fermenter. In other words,
As in the case of the first fermenter, in a batch method, the fermented liquid of the first fermenter is circulated using a peristaltic pump at a rate of 10 to 100 ml/hr on carriers on which Versatilus has been immobilized in advance. The reaction temperature is
The temperature is 25-30℃. Regarding the second fermentation, the desired product liquid can be obtained in 48 to 72 hours. The fermented liquid that has completed the second fermentation is subjected to pasteurization treatment in a conventional manner to produce a product. The continuous method is not much different from the batch method, but the first and second fermenters are connected in series and the lactic acid fermentation liquid is continuously injected into the first fermenter at a rate of 5 to 20 ml/hr using a peristaltic pump. After pasteurizing the resulting eluate, it is subsequently injected into the second fermentation device at a rate of 5 to 20 ml/hr using a peristaltic pump.
For elution, as in the case of the batch method, the product is made by pasteurization using the conventional method. In addition, when using the cell fusion yeast of Satucharomyces ruxii and Candida persacillus, the product can be obtained with a single first fermentation device. Example 2 A beer manufacturing method using the manufacturing method of the first invention of this application will be described. In this example, the carrier for adsorbing and immobilizing bacterial cells includes alumina fiber, which is the same as in the case of soy sauce production in Example 1, as well as silica, alumina, etc., singly or in combination, calcined with a binder such as colloidal silica, sulfuric acid band, etc. A porous support made of alumina fibers bonded together was also used. The immobilization carrier may have a cylindrical shape, a plate shape, etc., or a combination thereof. The beer production method in this example involves immobilizing brewer's yeast on this carrier, installing the immobilized brewer's yeast in a fermentation vessel, and then adding hops to the wort under anaerobic conditions either batchwise or continuously. The process consists of the following steps: injection, ethanol fermentation at low temperature through a yeast solidification layer, and beer production. The hop-added wort is prepared by a generally known method. for example,
After coarsely crushing 1 kg of germinated and dried barley with a crusher,
of water was added and saccharified at 70℃ for 4 hours, then boiled, cooled, and filtered with suction by adding celite to obtain clear liquid 3.
(sugar concentration 10%) was obtained. In the resulting wort, add 0.4
% of hops were added and boiled for 1 hour, then cooled and filtered to obtain hops-added wort. On the other hand, regarding the culture of yeast for immobilization, 5% glucose, 0.5% yeast extract, 0.5% polypeptone, 0.25%
% malto extract 500ml of culture solution adjusted to pH5.5
Add 100 ml to a shaking flask, and after sterilization, brewer's yeast or Satucharomyces calbergiasis
No.AHU3062 (Saccharomyces Carlsbergensis)
Add 500 ml of the same culture solution to the sterilized culture solution by shaking or static culture at 30℃ for 48 to 72 hours, add to the sterilized culture solution, and shake again at 30℃. Alternatively, after performing static culture, the yeast cells were separated by centrifugation, washed with sterilized water, and then added to the above-mentioned wort 1.5 to prepare a yeast suspension. The same suspension was circulated through the carrier at a rate of 20 ml for 1 minute using a peristaltic pump for 10 minutes.
Brewer's yeast was adsorbed onto the carrier over a period of time. Then,
After removing the circulating clarified liquid from the reactor, the hop-added wort was circulated with a peristal pump into a fermentation vessel equipped with a carrier, and beer fermentation was carried out under anaerobic conditions at a low temperature. Main fermentation using this fermentation container,
Post-fermentation was carried out in the same fermentation vessel, and beer with an ethanol concentration of over 5% was completed in about 15 days. Note that similar results were obtained even when only the main fermentation or post-fermentation was performed in the fermentation vessel. In addition to the alumina fibers used in the production of soy sauce, the carriers are alumina fibers with pores of 30 to 300 microns in pore diameter obtained by firing with silica and alumina as the main components, colloidal silica and sulfuric acid band system as binders. walls are used. As an example of the shape, a cylindrical carrier with an outer diameter of 75 mm, an inner diameter of 55 mm, and a height of 150 mm was attached to a cylindrical reactor with a diameter of 100 mm and a height of 250 mm. Others, horizontal 125
mm, length 125mm, thickness 35mm plate ceramic plate set in the center, width 130mm, height 130mm,
Similar results were obtained using a fermentation vessel shaped like a rectangular parallelepiped with a length of 250 mm. FIG. 4 shows the progress of beer components when beer was produced using the above-mentioned fermentation vessel. From FIG. 4, it can be seen that the progress of the beer components produced by this method is characterized by the same results as those obtained by conventional beer production in a short period of only 15 days. Figure 5 shows the progress of diacetyl and total aldehyde, which are disliked as bitter-odor components of beer. As a result, the same process as normal beer production was achieved in just 15 days, which is another major feature of this production method. Example 3 Next, a sake manufacturing method using the manufacturing method of the first invention of this application will be described. First, carrier preparation is important. In addition to the alumina fibers used in the production of soy sauce, the carriers used in this example were porous carriers made by firing silica and alumina alone or in combination with binders such as colloidal silica and sulfuric acid to bond the alumina fibers together. be. Regarding the shape, the immobilization carrier is either cylindrical or plate-shaped. The method for producing sake in this example includes immobilizing sake yeast on this carrier;
After installing this immobilized sake yeast in the fermentation container,
The process consists of injecting a fermentation stock solution under anaerobic conditions using a batch method or a continuous method, and then passing through a sake yeast immobilization layer to perform ethanol fermentation at low temperatures to produce sake. The saccharification liquid (fermentation stock solution) used in the present invention is a mixture of liquids saccharified with rice malt and a saccharifying enzyme. That is, the saccharified rice malt solution was obtained by adding 600 ml of water to 300 g of rice malt prepared using Aspergillus oryzae in a conventional manner and saccharifying the mixture at 50° C. for 12 hours, followed by centrifugation to obtain the saccharified solution. On the other hand, for the enzymatic saccharification solution, wash 700g of white rice, soak it in water, drain it, steam it for 40 minutes, add 1400ml of water,
0.7 g of saccharifying enzyme (Gluc-100) was added and the mixture was saccharified at 50°C for 24 hours, followed by centrifugation to obtain an enzyme saccharified solution. Each of the saccharified solutions thus obtained was prepared as a fermentation stock solution (sugar concentration 23%). On the other hand, regarding the preparation of sake yeast for immobilization, 5% glucose, 0.5% yeast extract,
0.5% polypeptone, 0.25% malt extract, PH5.5
After sterilizing 100ml of the culture medium in a 500ml shaking flask,
Add sake yeast (Saccharomyces cervisiae, No. 7, Saccharomyces cervisiae) and heat to 48°C at 30°C.
After culturing with shaking for an hour, yeast cells were separated by centrifugation. Pour 500 ml of the same medium as in the case of shaking culture of the obtained yeast cells into an Erlenmeyer flask, and incubate for 30
After 48 hours of static or shaking culture at ℃, yeast cells were collected by centrifugation, washed with sterile water,
After suspending the yeast in the fermentation stock solution of 1.5, for 1 hour.
It took 10 hours to immobilize on the ceramic carrier installed in the fermentation vessel using a peristaltic pump at a rate of 20 ml. Next, after removing the circulating fluid, the newly prepared fermentation stock solution is pumped into the peristaltic pump.
Ethanol fermentation was performed at low speed with circulation at a rate of 20-60 ml/hr or injection only. In the continuous method, the injection rate was lowered. As a carrier, in addition to the above-mentioned carriers, an effective alumina fiber with a pore size of 30 to 300 microns is obtained by baking a mixture of materials mainly composed of silica, alumina, etc., and using colloidal silica, sulfuric acid bandate, etc. as a binder. It's a wall. Regarding its shape, for example, a cylindrical carrier with an outer diameter of 75 mm, an inner diameter of 55 mm, and a height of 150 mm was attached to a cylindrical fermentation container with a diameter of 100 mm and a height of 250 mm. Others: width 125mm, height 125
mm, 35mm thick plate-shaped ceramics set in the center, or multiple ceramics set in width 130mm and length
A cuboid-shaped fermentation vessel measuring 130 mm and 250 mm in length was also used. The relationship between the decrease in sugar concentration, the production of ethanol, acidity, and formol nitrogen over time during the sake production conducted using the method described above is summarized as the initial sugar concentration.
The results of quantifying both 24% and 30% are shown in the sixth section.
7, 8 and 9. From the drawing, it can be seen that good results were obtained in a short period of time for both initial sugar concentrations of 24% and 30%. In other words, initial sugar concentration
For 24%, it took just 10 days, and for 30%, it took just 20 days. Next, Table 1 shows the results of quantifying the general components, organic acids, and aromatic components of the sake produced by this method. As shown in Table 1, there was no difference between the sake produced by this method and that by the conventional method.

【表】 実施例 4 次に、この出願の第2の発明の製造装置につい
て第2図および第3図を使用して更に詳細に説明
する。 発酵容器1は内径90mmのステンレス製のもので
あり、この発酵容器1内に30〜300ミクロンのア
ルミナフアイバ壁2がその中心部に配設されてい
る。アルミナフアイバ壁2の寸法は外径75mm、内
径55mm、長さ150mmであり、インペリアルケミカ
ル インダストリー(Imperial Chemical
Industries)社のものを使用した。 まず500mlの振糖フラスコに100mlのグルコース
を入れ、菌体(サツカロミセス セルビツシエリ
プソイジユース)を1白金耳接種して24〜48時間
振盪培養する。こうして懸濁された菌体の懸濁液
を予め、完全殺菌しておいた発酵容器1のアルミ
ナフアイバ壁2内側にポンプ21にてこれ注入
し、菌体を含んだ懸濁液はアルミナフアイバ壁2
に吸収されて菌体が吸着固定化される。次に(基
質5%グルコース溶液)をポンプ21でアルミナ
フアイバ壁2内側の注入室15へ注入する。基質
がアルミナフアイバ壁2を通過してアルミナフア
イバ壁2の外側の回収室16へ浸出し、排出口6
近くになつたらバルブ22を閉鎖し、同時にバル
ブ23を開放する。これにより基質は発酵容器1
内を循環する。基質の糖濃度がほぼ零になつた
ら、バルブ23を閉鎖してバルブ22を開放し基
質を注入室15へ注入する。回収室16へ浸出し
た液は排出口6より受入器24に取出される。 第3図は基質の注入量を変化させてアルコール
発酵の状態を測定した結果を図に示したものであ
る。 当初の発酵容器内の循環は4時間経過すると基
質の糖濃度は零になり、アルコール濃度は約2%
となつた。 基質の注入量を55ml/hr、80ml/hr、100ml/
hr、120ml/hrと変化させてみたが、図から解る
ように100ml/hrでも完全なアルコール発酵がな
されている。 また120ml/hrの場合は基質の注入速度が大き
すぎることが解る。 なお、その後発酵容器内の液をそのままにして
10日近く放置した後に再び基質を供給してみたが
菌体は充分に生存しており、直ちに発酵が行なわ
れた。
[Table] Example 4 Next, the manufacturing apparatus of the second invention of this application will be explained in more detail using FIGS. 2 and 3. The fermentation vessel 1 is made of stainless steel and has an inner diameter of 90 mm, and an alumina fiber wall 2 of 30 to 300 microns is disposed in the center of the fermentation vessel 1. The dimensions of the alumina fiber wall 2 are an outer diameter of 75 mm, an inner diameter of 55 mm, and a length of 150 mm.
Industries) was used. First, 100 ml of glucose is placed in a 500 ml sugar shaking flask, one platinum loop of bacterial cells (Saccharomyces cerevisiae ellipsoideuse) is inoculated, and cultured with shaking for 24 to 48 hours. The thus-suspended bacterial cell suspension is injected into the inside of the alumina fiber wall 2 of the fermentation container 1, which has been completely sterilized in advance, using the pump 21. 2
The bacterial cells are adsorbed and immobilized. Next, (substrate 5% glucose solution) is injected into the injection chamber 15 inside the alumina fiber wall 2 using the pump 21. The substrate passes through the alumina fiber wall 2 and leaches into a collection chamber 16 outside the alumina fiber wall 2 and is discharged through the outlet 6.
When it gets close, valve 22 is closed and valve 23 is opened at the same time. This allows the substrate to be transferred to fermentation vessel 1.
circulate within. When the sugar concentration of the substrate becomes approximately zero, the valve 23 is closed, the valve 22 is opened, and the substrate is injected into the injection chamber 15. The liquid leached into the recovery chamber 16 is taken out from the outlet 6 to the receiver 24. FIG. 3 shows the results of measuring the state of alcohol fermentation by varying the amount of substrate injected. After 4 hours of initial circulation in the fermentation vessel, the sugar concentration of the substrate becomes zero and the alcohol concentration is approximately 2%.
It became. Adjust the substrate injection volume to 55ml/hr, 80ml/hr, or 100ml/hr.
hr, I tried changing it to 120ml/hr, but as you can see from the figure, complete alcoholic fermentation was achieved even at 100ml/hr. It can also be seen that the substrate injection rate is too high in the case of 120ml/hr. Note that after that, leave the liquid in the fermentation container as it is.
After leaving it for about 10 days, I tried supplying the substrate again, but the bacteria were sufficiently viable and fermentation started immediately.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の発酵食品の製造装置の一実施
例を示す断面図、第2図は第1図の装置を用いた
実験例を示す模式図、第3図は基質の供給量を変
化させたときのアルコール発酵の状態を測定した
結果を示すグラフ、第4図は各時間におけるビー
ル成分の経過を示したグラフ、第5図は各時間に
おける総アルデヒドとダイアセチルの成分経過を
示したグラフ、第6〜9図は固定化清酒酵母リア
クターにおける成分と時間との関係を示したグラ
フであり、第6図は初発酵濃度24%における酸度
及びフオルモール態窒素と時間経過との関係を示
したグラフ、第7図は初発酵濃度24%における糖
濃度及びエタノールと時間経過との関係を示した
グラフ、第8図は初発酵濃度30%における酸度及
びフオルモール態窒素と時間経過との関係を示し
たグラフ、第9図は初発酵濃度30%における糖濃
度及びエタノールと時間経過との関係を示したグ
ラフである。 符号の説明、1……発酵容器、2……アルミナ
フアイバ壁、3……ドラフトチユーブ、4……回
転羽根、5……供給口、6……排出口、12……
蒸気取入口。
Figure 1 is a cross-sectional view showing an embodiment of the fermented food manufacturing apparatus of the present invention, Figure 2 is a schematic diagram showing an experimental example using the apparatus shown in Figure 1, and Figure 3 is a diagram showing varying the amount of substrate supplied. Figure 4 is a graph showing the progress of beer components over time, and Figure 5 is a graph showing the progress of total aldehyde and diacetyl components over time. Graphs 6 to 9 are graphs showing the relationship between components and time in the immobilized sake yeast reactor, and Figure 6 shows the relationship between acidity and formol nitrogen at an initial fermentation concentration of 24% and the passage of time. Figure 7 is a graph showing the relationship between sugar concentration and ethanol over time at an initial fermentation concentration of 24%, and Figure 8 is a graph showing the relationship between acidity and formol nitrogen over time at an initial fermentation concentration of 30%. The graph shown in FIG. 9 is a graph showing the relationship between sugar concentration and ethanol over time at an initial fermentation concentration of 30%. Explanation of symbols, 1...Fermentation vessel, 2...Alumina fiber wall, 3...Draft tube, 4...Rotary vane, 5...Supply port, 6...Discharge port, 12...
Steam intake.

Claims (1)

【特許請求の範囲】 1 酸化アルミニウム(Al2O3)と酸化珪素
(SiO2)とを主成分とするアルミナフアイバ相互
を、30〜300ミクロンの孔を形成するように結合
してなるアルミナフアイバ壁に菌体懸濁液を吸収
させて菌体をアルミナフアイバ壁の孔内に吸着固
定化した後、このアルミナフアイバ壁の孔内に嫌
気的条件下で基質を通過させることにより、基質
を菌体に接触させ発酵させるようにした事を特徴
とする、発酵食品の製造方法。 2 嫌気的条件下での発酵時間が20〜120時間で
ある特許請求の範囲第1項記載の発酵食品の製造
方法。 3 密閉した発酵容器内を隔室するように取付け
られる、菌体懸濁液を吸収した酸化アルミニウム
(Al2O3)と酸化珪素(SiO2)とを主成分とする
アルミナフアイバ相互を、30〜300ミクロンの孔
を形成するように結合してなるアルミナフアイバ
壁と、このアルミナフアイバ壁により発酵容器内
に形成された、基質が注入される注入室と、同じ
くアルミナフアイバ壁により発酵容器内に形成さ
れた、前記アルミナフアイバ壁の孔内を基質が嫌
気的条件下で通過して発酵した液を回収する回収
室とを備えた事を特徴とする、発酵食品の製造装
置。
[Claims] 1. An alumina fiber made by bonding alumina fibers mainly composed of aluminum oxide (Al 2 O 3 ) and silicon oxide (SiO 2 ) to form pores of 30 to 300 microns. After the bacterial cell suspension is absorbed into the wall and the bacterial cells are adsorbed and immobilized within the pores of the alumina fiber wall, the substrate is passed through the pores of the alumina fiber wall under anaerobic conditions. A method for producing a fermented food, characterized in that it is brought into contact with the body and fermented. 2. The method for producing a fermented food according to claim 1, wherein the fermentation time under anaerobic conditions is 20 to 120 hours. 3 Alumina fibers containing aluminum oxide (Al 2 O 3 ) and silicon oxide (SiO 2 ) as main components that have absorbed a bacterial cell suspension, which are installed so as to separate the inside of a sealed fermentation container, are An alumina fiber wall bonded to form ~300 micron pores, an injection chamber formed within the fermentation vessel by the alumina fiber wall into which the substrate is injected, and an injection chamber formed within the fermentation vessel by the alumina fiber wall. An apparatus for producing a fermented food, comprising a recovery chamber in which a substrate passes through the holes in the alumina fiber wall under anaerobic conditions and recovers a fermented liquid.
JP60296397A 1985-12-25 1985-12-25 Anaerobic fermentation apparatus Granted JPS62151176A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60296397A JPS62151176A (en) 1985-12-25 1985-12-25 Anaerobic fermentation apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60296397A JPS62151176A (en) 1985-12-25 1985-12-25 Anaerobic fermentation apparatus

Publications (2)

Publication Number Publication Date
JPS62151176A JPS62151176A (en) 1987-07-06
JPH0425792B2 true JPH0425792B2 (en) 1992-05-01

Family

ID=17833013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60296397A Granted JPS62151176A (en) 1985-12-25 1985-12-25 Anaerobic fermentation apparatus

Country Status (1)

Country Link
JP (1) JPS62151176A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106350358A (en) * 2016-08-30 2017-01-25 覃淑兰 Household wine maker

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01191679A (en) * 1988-01-28 1989-08-01 Hiroaki Horitsu Protoplast-fused yeast, its preparation and production of seasoning

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106350358A (en) * 2016-08-30 2017-01-25 覃淑兰 Household wine maker

Also Published As

Publication number Publication date
JPS62151176A (en) 1987-07-06

Similar Documents

Publication Publication Date Title
US4587127A (en) Process for producing liquid seasoning
KR101426062B1 (en) A method of porducing a bright, yeast fermente beverage
JP2009161448A (en) Extract from malt root, method of producing the same, and fermentation promoter for microorganism comprising the same
JPH0673445B2 (en) Liquor manufacturing method
JPS6239994B2 (en)
JPH0361427B2 (en)
CN1058051C (en) Sparkling rice wine and production thereof
JPH0425792B2 (en)
JP3773933B2 (en) Method to produce vinegar from shochu distilled spirit only
CN1435479A (en) Method for making yellow rice wine by plurility of bioenzymes
JPH0568529A (en) Production of low-alcohol beer
JPS6358552B2 (en)
Unger et al. Continuous aerobic process for distiller's yeast
JPS586469B2 (en) Sake manufacturing method
CN110643446A (en) Sweet beer and preparation method thereof
JPS606182B2 (en) Seasoning liquid manufacturing method
JPH06319515A (en) Method and device for production of nonalcoholic beer
JPH0234589B2 (en)
JPH0685703B2 (en) Fast-brewing equipment for seasoning liquid
JPH02291264A (en) Membrane having immobilized enzyme
SU1118671A1 (en) Method of preparing yeast autolyzates for production of wines
CN1258452A (en) Method of producing low-lactose milk with solid thermophilic bacteria lactase
JPH06197749A (en) Production of liquors
JPS606184B2 (en) Seasoning liquid manufacturing method
JPH0522500B2 (en)