JPH0425754A - Oxygen concentration sensor - Google Patents

Oxygen concentration sensor

Info

Publication number
JPH0425754A
JPH0425754A JP2130294A JP13029490A JPH0425754A JP H0425754 A JPH0425754 A JP H0425754A JP 2130294 A JP2130294 A JP 2130294A JP 13029490 A JP13029490 A JP 13029490A JP H0425754 A JPH0425754 A JP H0425754A
Authority
JP
Japan
Prior art keywords
layer
particle size
oxygen concentration
protective layer
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2130294A
Other languages
Japanese (ja)
Inventor
Shigeyoshi Nakagawa
中川 重義
Yuji Shimomura
下村 裕治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Unisia Automotive Ltd
Original Assignee
Japan Electronic Control Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Electronic Control Systems Co Ltd filed Critical Japan Electronic Control Systems Co Ltd
Priority to JP2130294A priority Critical patent/JPH0425754A/en
Publication of JPH0425754A publication Critical patent/JPH0425754A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the sensor which is free from deterioration of the initial characteristics and durability and has stable characteristics by constituting the protective layer of an electrode of a multilayer structure which becomes a layer of small particle size as it is provided toward the inside. CONSTITUTION:The protective layers 24, 25, 26 having the same thickness are provided in order on the outside electrode 23 consisting of a platinum catalytic layer in a zirconia tube 22. Particle size is made smaller as the layer is provided in the inside. Therefore a thermally-sprayed low material is comparted into three classes having prescribed particle size by a classifier. The outside electrode is coated with the protective layers in order from the first layer 24 having small particle size by plasma coating. Since the third layer 26 has large particle size, gas and impurities are passed through it. Gas is properly squeezed by the first layer 24 having small particle size and the impurities are not trapped. Thereby the initial characteristics and durability are stabilized.

Description

【発明の詳細な説明】 [発明の目的コ (産業上の利用分野) この発明は自動車の排気浄化のために用いられる酸素(
02)濃度センサに関する。
[Detailed Description of the Invention] [Purpose of the Invention (Industrial Application Field) This invention is directed to the use of oxygen (
02) Regarding concentration sensor.

(従来の技術) 酸素濃度センサは、自動車エンジンの排気浄化のために
用いられており、大気と排気中の酸素濃度の差により起
電力を発生させ、その信号により空燃比を適正にして排
気を浄化するのに約立っていることは、−船釣によく知
られている。
(Prior art) Oxygen concentration sensors are used to purify the exhaust gas of automobile engines. They generate an electromotive force based on the difference in oxygen concentration between the atmosphere and the exhaust gas, and use this signal to adjust the air-fuel ratio to the proper level to clean the exhaust gas. It is well known that - boat fishing is effective for purification.

この酸素濃度センサの構造を第7図により説明するに、
ジルコニウム(ZrO2)系陶磁器性るつぼのチューブ
本体1の内側に白金製の薄膜が真空蒸着又は無電解メツ
キ等により被覆されて触媒層を兼ねる電極2として形成
され、外側にも同様に電極3として形成されて、これら
によりチューブ4を構成しである。これらのうち排気側
の外側電極(触媒層)3の上にこれを覆う保護層を設け
ることは通常行なわれている。そしてこのチューブ4と
ハウジング5とを組合せて酸素センサ6を構成する。
The structure of this oxygen concentration sensor will be explained with reference to FIG.
A platinum thin film is coated on the inside of the tube body 1 of a zirconium (ZrO2) ceramic crucible by vacuum deposition or electroless plating to form an electrode 2 which also serves as a catalyst layer, and an electrode 3 is formed on the outside as well. These constitute the tube 4. Of these, it is common practice to provide a protective layer on the outer electrode (catalyst layer) 3 on the exhaust side to cover it. The tube 4 and housing 5 are combined to form an oxygen sensor 6.

チュー4の周囲をかこむようにスリット7を有するプロ
テクタ8がハウジング5に一体的に取付けられている。
A protector 8 having a slit 7 surrounding the chew 4 is integrally attached to the housing 5.

このプロテクタ8は排気管9の内側、即ち排気中に位置
する。10は金属板11は接続管、12は出力端子、1
3は絶縁板14はデイスタンスピース、15はカバーで
ある。酸素濃度の高い空気は排気管9の外側(図中右側
)からチューブ4の内側に矢印Aのように進入し、又酸
素濃度の低い排気はチューブ4の外側に矢印Eのように
進入する。適度な触媒作用(半触媒作用)を営む白金電
極2及び3を介してチューブ本体】の管壁を内外酸素濃
度(分圧差)に基づき酸素が通過するとき、その内外電
極2及び3(電極3はハウジング5を介して接地される
)の間に起電力を生し、出力端子12から電圧信号が出
力される。
This protector 8 is located inside the exhaust pipe 9, that is, in the exhaust area. 10 is a metal plate 11 is a connecting pipe, 12 is an output terminal, 1
3 is an insulating plate 14 which is a distance piece, and 15 is a cover. Air with high oxygen concentration enters the inside of tube 4 as shown by arrow A from the outside of exhaust pipe 9 (right side in the figure), and exhaust gas with low oxygen concentration enters outside of tube 4 as shown by arrow E. When oxygen passes through the tube wall of the tube body through the platinum electrodes 2 and 3, which have an appropriate catalytic effect (semi-catalytic effect), based on the inner and outer oxygen concentration (partial pressure difference), the inner and outer electrodes 2 and 3 (electrode 3 is grounded via the housing 5), and a voltage signal is output from the output terminal 12.

エンジンの空燃比はこの信号により適正な値に制御され
排気浄化装置が最適に機能するようになっている。
The air-fuel ratio of the engine is controlled to an appropriate value by this signal, so that the exhaust purification device functions optimally.

(発明が解決しようとする課題) ところで、ジルコニアチューブ表面の白金触媒層を覆う
保護層は、排気熱から触媒層を保護する機能の他に、排
気ガス中のCo、HC,H2゜及びNOx等の酸素以外
のガスを絞るフィルタ機能と、排気ガス中の不純物Pb
、Si又はCarbon (炭素)等の物質を捕捉する
トラップ機能とをもっている。
(Problem to be Solved by the Invention) By the way, the protective layer covering the platinum catalyst layer on the surface of the zirconia tube has the function of protecting the catalyst layer from exhaust heat, and also protects against Co, HC, H2°, NOx, etc. in the exhaust gas. filter function that restricts gases other than oxygen, and impurity Pb in exhaust gas.
It has a trapping function to trap substances such as , Si or Carbon.

然るに、従来のものは、使用初期においてガス通過量に
バラツキを生じ、いわゆる初期特性が不安定になるとい
う問題点があり、又、長期使用後において、粗大不純物
の蓄積により機能か低下し、いわゆる耐久特性が悪化す
るという問題点があった。これは、従来は保護層を、多
孔質アルミナなどの溶射原料をプラズマ溶射により白金
触媒に溶射被覆して形成する際、溶射原料の粒度分布が
広いままのものを用いて溶射しているため、製品によっ
て保護層のボア即ち微細孔の大きさ又は数等にバラツキ
を生じ、このため、粗大不純物による目づまりなどによ
りガス透過量にバラツキを生することが原因であると思
われる。
However, conventional products have the problem that the amount of gas passing through them varies in the initial stage of use, making the so-called initial characteristics unstable.Furthermore, after long-term use, the performance deteriorates due to the accumulation of coarse impurities, so-called There was a problem that the durability characteristics deteriorated. This is because conventionally, when forming a protective layer by coating a platinum catalyst with a thermal spraying raw material such as porous alumina by plasma spraying, the thermal spraying raw material had a wide particle size distribution. This is thought to be due to variations in the size or number of bores (micropores) in the protective layer depending on the product, which causes variations in the amount of gas permeation due to clogging caused by coarse impurities.

そこで、この発明は、溶射原料の粒度分布調整により、
初期特性及び耐久性能が低下しない安定した特性を有す
る酸素濃度センサを提供し、もって前記問題点を解決す
ることを目的としている。
Therefore, the present invention aims to achieve
It is an object of the present invention to provide an oxygen concentration sensor having stable characteristics without deterioration of initial characteristics and durability performance, thereby solving the above-mentioned problems.

[発明の構成] (課題を解決するための手段) この発明は、前記目的を達成するため、ジルコニア等の
陶磁器製チューブ本体の内外表面に白金などを金属薄膜
を被覆して該金属薄膜を電極として形成すると共に、該
電極のいずれか一方を保護層で覆い、前記電極にチュー
ブ内外の酸素濃度に基づく起電力を発生させるようにチ
ューブとハウジングとを組合せてなる酸素濃度センサに
おいて、前記保護層を内側に向うほど小粒度の層となる
多層構造に構成したことを特徴とする。
[Structure of the Invention] (Means for Solving the Problems) In order to achieve the above object, the present invention coats the inner and outer surfaces of a tube body made of ceramics such as zirconia with a metal thin film such as platinum, and uses the metal thin film as an electrode. In the oxygen concentration sensor, the tube and the housing are combined so that one of the electrodes is covered with a protective layer and the electrode generates an electromotive force based on the oxygen concentration inside and outside the tube. It is characterized by having a multi-layered structure in which the particles become smaller toward the inside.

(作用) 保護層は外側が粒度大であるため、粗大不純物がこの外
側につまり、目づまりを起すことはない。従って、ガス
はスムーズにこの外側がら透過し、内側の粒度小の層で
絞られることになる。これにより初期特性及び耐久特性
が低下せず安定した機能を果す。
(Function) Since the outer side of the protective layer has a large particle size, coarse impurities will not clog the outer side and cause clogging. Therefore, gas smoothly permeates from the outside and is squeezed by the small particle size layer inside. As a result, the initial characteristics and durability characteristics do not deteriorate and stable functions are achieved.

(実施例) 以下、この発明の一実施例を第1図〜第6図により説明
する。まず、構成をチューブ先端の断面を誇張して示す
第1図及びその拡大部■を示す第2図により説明すると
、ジルコニアチューブ22の内側に、内側電極21があ
り、外側に外側電極(白金触媒層)23があり、この上
に順次、保護層(第1層)24、保護層(第2層)25
及び保護層(第3層)26がある。これら保護層24゜
25及び26は同じ厚さ100μ(ミクロン)である。
(Example) An example of the present invention will be described below with reference to FIGS. 1 to 6. First, the configuration will be explained with reference to FIG. 1, which shows an exaggerated cross-section of the tube tip, and FIG. There is a protective layer (first layer) 24 and a protective layer (second layer) 25 on top of this in order.
and a protective layer (third layer) 26. These protective layers 24, 25 and 26 have the same thickness of 100 microns.

そして、これら保護層は第2図から分るように、内側程
、粒度が小さく、外側へ行くほと粒度大に形成する。
As can be seen from FIG. 2, these protective layers are formed so that the particle size is smaller toward the inner side and larger toward the outer side.

次に、前記保護層の形成法を第3図〜第6図により説明
する。
Next, a method for forming the protective layer will be explained with reference to FIGS. 3 to 6.

まず、溶射原料の粒度分布調整を行なう。保護層原料(
パウダー状アルミナ)は第4図のように横軸に粒度(μ
)、縦軸は重量%をとって示すと30μが最大となるよ
うな山形分布となっているので、これを第5図の粒度集
団に分割するため、第3図の分級器を用いる。第3図に
おいて、31は上部渦巻室、32はガイドコーン、33
は分級室、34は分級室胴部壁、35は分級コーン、3
6はアジャストリング、37はメインシャフト、38は
2次エアガイド壁、39は2次エアスカート、40は2
次エア供給口、41は2次エア調節用バタフライバルブ
、42は支持台、43はポルテックスピン、44はブラ
ケット、45は分級器排出口、46は上部排気室、47
は原料供給口である。第4図に示す粒度分布の原料パウ
ダーを原料供給口47に供給し、工場エアを2次エア供
給口40に供給すると、アジャストリング36の調整に
より適宜の上下位置を占める分級コーン35により、中
間、微細粒子は上部排気室46に、粗い粒子は下部の排
出口45に区分される。そこで上部の中間、微細粒子(
2次エアを含む)を吸づファン48に吸引してバッグフ
ィルタ4つに微細粒子を捕捉し、そしてサイクロン5o
にて中間粒子を捕捉して、原料を所定の粒度範囲の3ク
ラス(第1層、第2層及び第3層)のものに区分する。
First, the particle size distribution of the thermal spray raw material is adjusted. Protective layer raw material (
As shown in Figure 4, the particle size (μ
), and the vertical axis shows a mountain-shaped distribution in terms of weight percent, with a maximum value of 30μ, so in order to divide this into the particle size groups shown in FIG. 5, the classifier shown in FIG. 3 is used. In FIG. 3, 31 is an upper spiral chamber, 32 is a guide cone, and 33 is a guide cone.
3 is the classification chamber, 34 is the body wall of the classification chamber, 35 is the classification cone, 3
6 is an adjustment ring, 37 is a main shaft, 38 is a secondary air guide wall, 39 is a secondary air skirt, 40 is 2
Secondary air supply port, 41 is a butterfly valve for secondary air adjustment, 42 is a support stand, 43 is a portex pin, 44 is a bracket, 45 is a classifier outlet, 46 is an upper exhaust chamber, 47
is the raw material supply port. When the raw material powder having the particle size distribution shown in FIG. , fine particles are separated into an upper exhaust chamber 46, and coarse particles are separated into a lower exhaust port 45. So, in the middle of the upper part, fine particles (
(including secondary air) is sucked into the fan 48, fine particles are captured by the four bag filters, and then the cyclone 5o
Intermediate particles are captured and the raw material is divided into three classes (first layer, second layer, and third layer) within a predetermined particle size range.

そして、粒度小の第1層のものから順次第2層そして第
3層を被覆形成させるべく、第6図に示すプラズマ溶射
にてコーティングを行なう。
Then, coating is performed by plasma spraying as shown in FIG. 6 in order to sequentially form the second and third layers starting with the first layer having the smallest particle size.

第6図において、51はパウダーノズル、52は溶射原
料、53はプラズマガン、54はプラズマ炎、55はジ
ルコニアチューブである。かくして、保護層は第1図及
び第2図に示す多層構成のものとなる。
In FIG. 6, 51 is a powder nozzle, 52 is a thermal spraying raw material, 53 is a plasma gun, 54 is a plasma flame, and 55 is a zirconia tube. The protective layer thus has a multilayer structure as shown in FIGS. 1 and 2.

次に、前記実施例の作用を、本実施例を示す第2図と、
従来方法によるものを示す第8図〜第11図との比較に
より説明する。
Next, the operation of the above embodiment will be explained with reference to FIG. 2 showing this embodiment.
This will be explained by comparing with FIGS. 8 to 11 which show the conventional method.

まず、本実施例の場合は、第2図に示すように外側、第
3層26が粒度大であるため、ガス、不純物共にこの第
3層26を通り抜け、粒度小の第3層23でガスが適度
に絞られ、また不純物は捕捉される。この結果、初期特
性及び耐久特性が安定したものとなる。
First, in the case of this embodiment, as shown in FIG. 2, since the outer third layer 26 has large particles, both gas and impurities pass through this third layer 26, and gas and is moderately squeezed and impurities are captured. As a result, initial characteristics and durability characteristics become stable.

これに対して、従来のものは、第8図に示すように、保
護層60はボア(微細孔)61を有する一層のみで形成
され、粒度分布未調整のため、第9図のように保護層6
0のボアは粒度粗の場合は大きなボア61aとなってガ
ス透過量を大としたり、又は、第10図のように粒度微
小の場合は小さなボア61bとなってガス透過量を小と
するようにガス透過量にバラツキを生じさせるものであ
る。又、第11図に示すように、ボア61bが小さいと
、粗大不純物Pb、Si、Cなどがこのボア61bの空
隙に詰まり、目づまりを起して適度の絞りを与えられる
べきCo、H2などのガス透過ができなくなるといった
欠点を有するものである。
On the other hand, in the conventional case, as shown in FIG. 8, the protective layer 60 is formed of only one layer having bores (micropores) 61, and the particle size distribution is not adjusted. layer 6
If the grain size is coarse, the bore 0 becomes a large bore 61a to increase the amount of gas permeation, or if the grain size is minute, as shown in FIG. 10, it becomes a small bore 61b to reduce the amount of gas permeation. This causes variations in the amount of gas permeation. In addition, as shown in FIG. 11, if the bore 61b is small, coarse impurities such as Pb, Si, and C will clog the voids of the bore 61b, causing clogging to prevent the formation of Co, H2, and other substances that should be moderately restricted. This has the disadvantage that gas permeation is not possible.

なお、この発明は、前記実施例に限定されるものではな
く、例えば層の数は2層は又は4層或いはそれ以上でも
よいものである。
Note that the present invention is not limited to the above-mentioned embodiments, and the number of layers may be two, four, or more, for example.

[発明の効果コ 以上に説明したように、この発明によれば、酸素濃度セ
ンサの保護層として溶射原料の粒度分布調整により安定
した特性を有する保護層を得ることができるという効果
を生ずる。
[Effects of the Invention] As explained above, according to the present invention, it is possible to obtain a protective layer having stable characteristics as a protective layer of an oxygen concentration sensor by adjusting the particle size distribution of the thermal spray raw material.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例を示す酸素濃度センサの要
部先端の断面図、第2図は第1図のn部拡大図、第3図
は分級器の断面図、第4図は溶射原料の粒度分布図、第
5図は粒度集団分別図、第6図は溶射原理図、第7図は
酸素濃度センサの断面図、第8図は従来のものの保護層
部分の断面図、第9図は同じくボア大のものの断面図、
第10図は同じくボア小のものの断面図、第11図はボ
ア小のものの目づまり状態を示す断面図である。 1・・・チューブ本体 2・・・電極(内側被覆層)3
・・電極(外側被覆層) 4・・・チューブ5・・・ハ
ウジング 6・・・酸素濃度センサ7・・・スリット 
8・・・プロテクタ9・・・排気管 21・・・内側電
極 22・・・ジルコニアチューブ 23・・・外側電極(白金触媒層) 24・・・保護層(第1層) 25・・・保護層(第2層) 26・・・保護層(第3層) 代理人 弁理士  三 好 秀 和 21 内側電極 22・ジルコニアチューブ 23 白金触媒層 1図 第2図 第4図 第5図 第6図 菓8図 第10図 第9図 1111図
Fig. 1 is a sectional view of the tip of the main part of an oxygen concentration sensor showing an embodiment of the present invention, Fig. 2 is an enlarged view of the n part of Fig. 1, Fig. 3 is a sectional view of the classifier, and Fig. 4 is Figure 5 is a particle size distribution diagram of thermal spray raw materials, Figure 5 is a particle size group classification diagram, Figure 6 is a diagram of the principle of thermal spraying, Figure 7 is a cross-sectional view of an oxygen concentration sensor, Figure 8 is a cross-sectional view of a conventional protective layer, Figure 9 is a cross-sectional view of the same large bore.
FIG. 10 is a cross-sectional view of the small-bore type, and FIG. 11 is a cross-sectional view of the small-bore type showing a clogging state. 1...Tube body 2...Electrode (inner coating layer) 3
... Electrode (outer coating layer) 4 ... Tube 5 ... Housing 6 ... Oxygen concentration sensor 7 ... Slit
8... Protector 9... Exhaust pipe 21... Inner electrode 22... Zirconia tube 23... Outer electrode (platinum catalyst layer) 24... Protective layer (first layer) 25... Protection Layer (2nd layer) 26... Protective layer (3rd layer) Agent Patent attorney Hidekazu Miyoshi 21 Inner electrode 22/zirconia tube 23 Platinum catalyst layer 1 Figure 2 Figure 4 Figure 5 Figure 6 Figure 8 Figure 10 Figure 9 Figure 1111

Claims (1)

【特許請求の範囲】[Claims] (1)ジルコニア等の陶磁器製チューブ本体の内外表面
に白金などを金属薄膜を被覆して該金属薄膜を電極とし
て形成すると共に、該電極のいずれか一方を保護層で覆
い、前記電極にチューブ内外の酸素濃度に基づく起電力
を発生させるようにチューブとハウジングとを組合せて
なる酸素濃度センサにおいて、前記保護層を内側に向う
ほど小粒度の層となる多層構造に構成したことを特徴と
する酸素濃度センサ。
(1) The inner and outer surfaces of a tube body made of ceramics such as zirconia are coated with a metal thin film of platinum or the like, and the metal thin film is formed as an electrode, and either one of the electrodes is covered with a protective layer. An oxygen concentration sensor comprising a tube and a housing in combination to generate an electromotive force based on the oxygen concentration, characterized in that the protective layer has a multilayer structure in which the particles become smaller toward the inside. Concentration sensor.
JP2130294A 1990-05-22 1990-05-22 Oxygen concentration sensor Pending JPH0425754A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2130294A JPH0425754A (en) 1990-05-22 1990-05-22 Oxygen concentration sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2130294A JPH0425754A (en) 1990-05-22 1990-05-22 Oxygen concentration sensor

Publications (1)

Publication Number Publication Date
JPH0425754A true JPH0425754A (en) 1992-01-29

Family

ID=15030875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2130294A Pending JPH0425754A (en) 1990-05-22 1990-05-22 Oxygen concentration sensor

Country Status (1)

Country Link
JP (1) JPH0425754A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013178228A (en) * 2012-02-01 2013-09-09 Ngk Spark Plug Co Ltd Gas sensor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5313980A (en) * 1976-07-23 1978-02-08 Nippon Denso Co Ltd Oxygen concentration detector
JPS5520423A (en) * 1978-08-01 1980-02-13 Toyota Motor Corp Oxygen sensor element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5313980A (en) * 1976-07-23 1978-02-08 Nippon Denso Co Ltd Oxygen concentration detector
JPS5520423A (en) * 1978-08-01 1980-02-13 Toyota Motor Corp Oxygen sensor element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013178228A (en) * 2012-02-01 2013-09-09 Ngk Spark Plug Co Ltd Gas sensor

Similar Documents

Publication Publication Date Title
US10060312B2 (en) Exhaust gas filter
US5089237A (en) Gas filter with catalytic coating and a gastight downstream region
US5171721A (en) Ceramic green sheet for porous layer, electrochemical element using the green sheet, and method of producing the element
WO2017175574A1 (en) Exhaust gas purification device
CN106794421A (en) Emission-control equipment
EP0834343B1 (en) Exhaust gas purifying filter
US6800108B2 (en) Filter made of porous ceramic sintered body
JP2001503323A (en) Filter insert
JP6386474B2 (en) Exhaust gas purification device and particulate filter
EP0837312B1 (en) Method and device for aerosol size-selective sampling
JPH0425754A (en) Oxygen concentration sensor
JPS58214370A (en) Spray device
WO2015083670A1 (en) Exhaust gas purification device and particulate filter
WO2020004857A1 (en) Filter containing flake-shaped powder coating layer and manufacturing method therefor
JPH02276956A (en) Oxygen sensor and production thereof and method for preventing poisoning
US4479866A (en) Gas sensor with sensitive element enclosed in perforated hood
AU696749B2 (en) Cyclone with spray electrode
GB2200460A (en) Solid electrolyte oxygen concentration detector
JP2000097114A (en) Control method for fuel vaporization gas purge flow rate and fuel vaporization gas management valve assembly
JPH02124440A (en) Apparatus for detecting pressure in intake pipe
US20220018803A1 (en) Gas sensor
JP2002340854A (en) Sensor element
JPH09113480A (en) Oxygen sensor element
US8414838B2 (en) Honeycomb filter and exhaust gas purifying apparatus
JPS62179653A (en) Threshold current type oxygen sensor