JPH0425743A - Unevenness deciding method for tire surface - Google Patents

Unevenness deciding method for tire surface

Info

Publication number
JPH0425743A
JPH0425743A JP2131681A JP13168190A JPH0425743A JP H0425743 A JPH0425743 A JP H0425743A JP 2131681 A JP2131681 A JP 2131681A JP 13168190 A JP13168190 A JP 13168190A JP H0425743 A JPH0425743 A JP H0425743A
Authority
JP
Japan
Prior art keywords
displacement
value
tire
data
maximum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2131681A
Other languages
Japanese (ja)
Inventor
Mitsuo Higuchi
樋口 光男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ohtsu Tire and Rubber Co Ltd
Original Assignee
Ohtsu Tire and Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ohtsu Tire and Rubber Co Ltd filed Critical Ohtsu Tire and Rubber Co Ltd
Priority to JP2131681A priority Critical patent/JPH0425743A/en
Publication of JPH0425743A publication Critical patent/JPH0425743A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

PURPOSE:To speedily and accurately decide the unevenness of the tire without being affected by the strain of the whole tire by sequentially calculating the displacement quantities of the maximum and minimum values of displacement data within the circumferential-directional unevenness length of the tire to the entire periphery and comparing them with a deviation standard value. CONSTITUTION:The frequency R of sampling of measurement data P on the length l in the circumferential direction of the tire is set previously as the decided number (n) of sampled data and decision memories a1 - an are stored with the displacement data P inputted from displacement gauges C and D in order to replace internal data with the latest displacement data P; and the difference between the maximum value X and minimum value Y among the displacement data P in the memories a1 - an is calculated as displacement values T in order, and the maximum displacement value L is found among them and compared with the previously set displacement standard value Q to decide a defective when the former is larger. Consequently, speedy and accurate decision making is performed without being affected by the strain, etc., of the whole tire.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明はタイヤ表面の凹凸によってタイヤの良不良を判
定するタイヤ表面の凹凸判定方法に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a tire surface unevenness determination method for determining whether a tire is good or bad based on the tire surface unevenness.

〈従来の技術〉 タイヤに内圧を張ったときタイヤ表面に凹凸現象が発生
する場合がある。この原因として、成形工程におけるカ
ーカス、トレッド、サイドウオール等の終端部のジヨイ
ント部の重なり長さのバラツキが考えられる。このよう
なタイヤ表面の凹凸の一般的な判定方法として、第5図
に示すように加硫後のタイヤAを専用のリムBに掛け、
内圧を張ってリムBをモータMにより回転させ、変位計
C,Dを用いてタイヤ表面の凹凸を判定する方法が用い
られている。
<Prior Art> When internal pressure is applied to a tire, unevenness may occur on the tire surface. A possible cause of this is variation in the overlapping length of the joint portions at the end portions of the carcass, tread, sidewalls, etc. during the molding process. As a general method for determining the unevenness of the tire surface, as shown in Fig. 5, a vulcanized tire A is hung on a special rim B.
A method is used in which the rim B is rotated by a motor M under increased internal pressure, and the unevenness of the tire surface is determined using displacement gauges C and D.

〈発明が解決しようとする課題〉 第6図は前記変位計C,Dを用いてタイヤ表面の凹凸を
、タイヤAの1周分に亘って測定した結果を示す波形で
あるが、この測定結果には、リムBのガタ等によってお
きるタイヤ全体のゆがみによる変位がタイヤ表面の凹凸
による変位に加わる為、タイヤ表面の局所の凹凸を正確
に判定するためには、全体表面波形の周波数解析を行う
必要があり、その手段としてローパスフィルターやバイ
パスフィルター等のアナログ回路装置を付加するか、デ
ジタル波形解析プログラムを実行する等、いずれも付属
装置が必要であり、判定時間が長(なって、高速処理が
できないという問題があった。
<Problems to be Solved by the Invention> Figure 6 shows waveforms showing the results of measuring the unevenness of the tire surface over one circumference of the tire A using the displacement meters C and D. In order to accurately determine the local unevenness of the tire surface, frequency analysis of the overall surface waveform is performed, since the displacement caused by the distortion of the entire tire caused by play in the rim B is added to the displacement caused by the unevenness of the tire surface. To achieve this, additional equipment is required, such as adding an analog circuit device such as a low-pass filter or bypass filter, or running a digital waveform analysis program. The problem was that it was not possible.

本発明は上記問題点に鑑み、タイヤ表面の凹凸をタイヤ
全体のゆがみ等の影響を受けることなく迅速かつ正確に
判定できるようにしたものである。
In view of the above-mentioned problems, the present invention has been made to enable rapid and accurate determination of irregularities on the tire surface without being affected by distortion of the entire tire.

〈課題を解決するための手段〉 この技術的課題を解決する本発明の技術的手段は、変位
計C,Dによりタイヤ表面の凹凸による変位を、タイヤ
周方向に順次測定し、その変位データPからタイヤAの
良不良を判定するようにしたタイヤ表面の凹凸判定方法
において、 タイヤ周方向の凹凸の長さlに対する測定データPのサ
ンプル回数Rを判定個数nとして予め設定しておき、判
定個数nの判定メモリーa l−a 、1に、変位計C
,Dから取り込んだ変位データPを順次格納して最新の
変位データPに順次入れ替えると共に、判定メモリーa
、〜a、、の変位データPの最大値Xと最小値Yとの差
を変位値下として順次算出し、その算出した変位値Tの
中から最大変位値りを求め、この最大変位値りと予め設
定した変位規格値Qとを比較し、最大変位値りが大であ
れば不良品と判定し、小であれば良品と判定する点にあ
る。
<Means for Solving the Problem> The technical means of the present invention to solve this technical problem is to sequentially measure displacement due to unevenness on the tire surface in the tire circumferential direction using displacement meters C and D, and to collect the displacement data P. In a tire surface unevenness determination method that determines whether the tire A is good or bad, the number of samples R of measurement data P for the length l of irregularities in the circumferential direction of the tire is set in advance as the number of determinations n, and the number of determinations is determined by n judgment memory a l-a, 1, displacement meter C
, D are sequentially stored and replaced with the latest displacement data P, and the judgment memory a
, ~a, , the difference between the maximum value The product is compared with a preset displacement standard value Q, and if the maximum displacement value is large, it is determined to be a defective product, and if it is small, it is determined to be a good product.

〈作 用〉 第4図のフローチャートを参照しながら判定動作を説明
する。ステップ■で、制御部4から測定指令を入力する
と、ステップ■で測定指令を入力したことを判別し、ス
テップ■に進む。
<Operation> The determination operation will be explained with reference to the flowchart in FIG. When a measurement command is input from the control unit 4 in step (2), it is determined in step (2) that a measurement command has been input, and the process proceeds to step (2).

ステップ■で、変位計C,Dからの変位データPを取込
み、ステップ■で、第3図に示すように判定メモリーa
l−afiに変位データPを順次格納し、ステップ■に
進む。
In step ■, the displacement data P from the displacement meters C and D is taken in, and in step ■, the determination memory a is read as shown in FIG.
The displacement data P is sequentially stored in l-afi, and the process proceeds to step (2).

ステップ■で、判定個数nが、取込んだ変位データPの
サンプル回数Rよりも小であるか否かを判別し、小であ
れば、判定メモリーa、〜a、のすべてに変位データP
が格納されていることになり、ステップ■に進み、大で
あれば、判定メモリーa〜a、のすべてにはまだ変位デ
ータPが格納されていないことになり、ステップ[相]
に進む。
In step (2), it is determined whether the number of judgment pieces n is smaller than the number of samples R of the captured displacement data P, and if it is smaller, all the displacement data P in the judgment memories a, ~a,
is stored, and the process proceeds to step (2). If it is large, it means that the displacement data P has not been stored in all of the judgment memories a to a, and the process proceeds to step [phase].
Proceed to.

ステップ■で、判定メモリーat−a、、に格納されて
いる変位データPの中からその最大値Xを選び出し、ス
テップ■で、判定メモリーa1〜a、、に格納されてい
る変位データPの中からその最小値Yを選び出し、ステ
ップ■に進む。
In step ■, the maximum value X is selected from among the displacement data P stored in the judgment memories at-a, , and in step ■, the maximum value Select the minimum value Y from , and proceed to step (2).

ステップ■で、メモリー9に記録している最大変位値り
が、ステップ■■で求めた最大値Xと最小値Yとの差(
変位値T)よりも小であるか否かを判別し、小であれば
、ステップ■で変位値下を新たな最大変位値りとしてメ
モリー9に格納した後、ステップ[相]に進む。最大変
位値りが最大値Xと最小値Yとの差よりも大であれば、
ステップ■からステップ[相]に進む。これにより、メ
モリー9には現在の凹凸測定段階における最大変位値り
が順次格納されてゆく。
In step ■, the maximum displacement value recorded in the memory 9 is the difference between the maximum value X and the minimum value Y obtained in step ■■ (
It is determined whether or not it is smaller than the displacement value T), and if it is smaller, the lower displacement value is stored in the memory 9 as the new maximum displacement value in step (2), and then the process proceeds to step [phase]. If the maximum displacement value is greater than the difference between the maximum value X and the minimum value Y, then
Proceed from step ■ to step [phase]. As a result, the maximum displacement values at the current unevenness measurement stage are sequentially stored in the memory 9.

ステップ[相]で、サンプル回数Rに1を加算し、ステ
ップ■で、判定メモリーa1〜a、1の格納アドレスA
に1を加算し、これにより判定メモリー81〜a、1の
格納アドレスAを1進める。
In step [phase], 1 is added to the number of samples R, and in step
1 is added to , thereby incrementing the storage address A of the determination memory 81-a, 1 by 1.

ステップ@で、格納アドレスAが判定個数nより大か否
かを判別し、格納アドレスAが犬であれば、ステップ■
で格納アドレスAに初期値a1を初期設定して、ステッ
プ[株]に進み、格納アドレスAが小であればステ・ノ
ブ@からステップ[相]に進む。
In step @, it is determined whether the storage address A is greater than the number of determination items n, and if the storage address A is a dog, step
Initialize the storage address A with the initial value a1 and proceed to step [stock]. If the storage address A is small, proceed from step knob @ to step [phase].

ステップ[相]で、制御部4からの測定指令を入力して
ステップ■に進み、ステップ■で、その測定指令がオフ
か否かを判別し、オフでなければ、ステップ■に戻り、
ステップ■からステップ[相]の動作をくり返す。測定
指令がオフであれば、タイヤ表面の一周分の凹凸の測定
が終了したことになり、ステップ■に進む。
In step [phase], a measurement command from the control unit 4 is input and the process proceeds to step ■, and in step ■, it is determined whether or not the measurement command is off, and if it is not off, the process returns to step ■.
Repeat the operation from step ■ to step [phase]. If the measurement command is off, this means that the measurement of the unevenness of the tire surface for one circumference has been completed, and the process proceeds to step (3).

ステップ[相]で、変位規格値Qと最大変位値りとを比
較し、最大変位値りが大であれば、不良品と判定し、ス
テップ■で不良信号S2を出してステンブ■に戻り、最
大変位値りが小であれば、良品と判定し、ステンプ■で
良品信号S、を出してステ4゜プ■に戻る。
In step [phase], the displacement standard value Q and the maximum displacement value are compared, and if the maximum displacement value is large, it is determined that the product is defective, and in step ■, a defective signal S2 is issued and the process returns to step ■. If the maximum displacement value is small, it is determined that the product is non-defective, a non-defective product signal S is outputted at step 2, and the process returns to step 4°.

〈実施例〉 以下、本発明を図示の実施例に従って説明すると、第1
図において、1はパーソナルコンピュータ等を構成する
CPUで、変位計C,Dからアンプ2.3を介して変位
データPを入力する。4は制御部で、タイヤAの表面を
1周分に亘って凹凸を測定するため測定指令をCPUI
に与える。前記CPUIは、第2図に示すように判定メ
モリーa、〜a7、変位値算出手段7、最大変位値判別
手段8、最大変位値格納用のメモリー9、良不良判定手
段10等を有する。
<Example> Hereinafter, the present invention will be explained according to the illustrated example.
In the figure, reference numeral 1 denotes a CPU constituting a personal computer or the like, which inputs displacement data P from displacement meters C and D via an amplifier 2.3. 4 is a control unit that sends a measurement command to the CPU to measure the unevenness of the surface of tire A over one lap.
give to The CPUI has, as shown in FIG. 2, determination memories a to a7, displacement value calculation means 7, maximum displacement value determination means 8, maximum displacement value storage memory 9, good/bad determination means 10, and the like.

判定メモリーa1〜a7は、変位計C,Dから取り込ん
だ判定個数nの変位データPを順次格納し、記録内容を
最新の測定データPに順次入れ替えるようになっている
。ここで、判定個数nは、第3図に示す全体波形(タイ
ヤ周方向)に含まれる1つの凹凸の長さ!(例えば10
インチタイヤで約200mm)に対するサンプル回数R
を判定個数として設定したもので、その値nはボリュー
ム等の設定手段12によって予め設定される。
The determination memories a1 to a7 sequentially store the displacement data P of the determined number n taken in from the displacement meters C and D, and sequentially replace the recorded contents with the latest measurement data P. Here, the number of determinations n is the length of one unevenness included in the entire waveform (tire circumferential direction) shown in FIG. 3! (For example, 10
Number of samples R for inch tires (approximately 200mm)
is set as the judgment number, and the value n is set in advance by a setting means 12 such as a volume.

変位値算出手段7は、判定メモ’J  at〜a、に格
納されている判定個数nの変位データPの中から最大値
Xと最小値Yとを選び出して、両者の差を変位値Tとし
て順次算出する (第3回参照)。
The displacement value calculation means 7 selects the maximum value X and the minimum value Y from among the displacement data P of the number n of determinations stored in the determination memo 'J at ~ a, and calculates the difference between the two as the displacement value T. Calculate sequentially (see Part 3).

最大変位値判別手段8は、変位値算出手段7Qこよって
算出した変位値Tと、過去のサンプリングの最大変位値
りとを比較して、算出した変位値Tが大きければ、この
値を最大変位値しとしてメモリーに格納すると共に、算
出した変位値Tが小であれば、過去のサンプリングの最
大変位値りをメモリーにそのまま残す。これによりタイ
ヤAの周方向全周に亘る最大変位値りを選び出す。
The maximum displacement value determining means 8 compares the displacement value T calculated by the displacement value calculating means 7Q with the maximum displacement value of past sampling, and if the calculated displacement value T is large, this value is set as the maximum displacement value. If the calculated displacement value T is small, the maximum displacement value of the past sampling is left in the memory as it is. As a result, the maximum displacement value over the entire circumferential direction of the tire A is selected.

良不良判定手段lOは、制御部4からの測定指令がオフ
すると、最大変位値判別手段8によって判別した最大変
位値りと、ボリューム等の設定手段13によって予め設
定した変位規格値Qとを比較し、規格以上(最大変位値
りが変位規格値Qよりも大)であれば、不良信号S2を
出力し、規格以内(最大変位値りが変位規格値Qよりも
小)であれば、良品信号S、を出力する。
When the measurement command from the control unit 4 is turned off, the pass/fail determining means 1O compares the maximum displacement value determined by the maximum displacement value determining means 8 with a displacement standard value Q preset by a setting means 13 such as a volume. If it is above the standard (the maximum displacement value is larger than the displacement standard value Q), a defect signal S2 is output, and if it is within the standard (the maximum displacement value is smaller than the displacement standard value Q), it is a good product. Outputs a signal S.

〈発明の効果〉 本発明によれば、タイヤ周方向の凹凸の長さpの範囲内
での変位データPの最大値χと最小値Yとの変位値Tを
、タイヤの周方向全周に亘って順次算出して、その変位
値Tのうちの最大変位値りと変位規格値Qとを比較し、
規格以内であれば良品とし、規格以上であれば不良品と
するので、タイヤ全体のゆがみによる変位の影響を受け
ずに、タイヤ表面の凹凸を局所毎に正確に判定できる。
<Effects of the Invention> According to the present invention, the displacement value T between the maximum value χ and the minimum value Y of the displacement data P within the range of the length p of the unevenness in the tire circumferential direction is calculated over the entire circumference of the tire. The maximum displacement value among the displacement values T and the displacement standard value Q are compared,
If it is within the standard, it is determined to be a good product, and if it is above the standard, it is determined to be a defective product, so that unevenness on the tire surface can be accurately determined locally without being affected by displacement due to distortion of the entire tire.

しかも、従来のように波形の周波数解析を行なう必要が
なくなり、簡単な装置で高速処理することが可能になり
、その実用的効果は著大である。
Moreover, it is no longer necessary to perform frequency analysis of waveforms as in the past, and high-speed processing can be performed with a simple device, which has a significant practical effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す構成図、第2図は同ブ
ロック図、第3図は同変位計によりタイヤ表面の凹凸を
タイヤ周方向に測定した結果を示す変位データの波形図
、第4図は同動作説明用のフローチャートである。第5
図は従来例説明用の構成図、第6図は変位データの波形
図である。 1−CP U、 a、、 a2.−a、 −判定メモリ
−7・・・変位値算出手段、8・・・最大変位値判別手
段、9・・・メモリー、10・・・良不良判定手段。
Fig. 1 is a configuration diagram showing an embodiment of the present invention, Fig. 2 is a block diagram thereof, and Fig. 3 is a waveform diagram of displacement data showing the results of measuring irregularities on the tire surface in the tire circumferential direction using the same displacement meter. , FIG. 4 is a flowchart for explaining the same operation. Fifth
The figure is a configuration diagram for explaining a conventional example, and FIG. 6 is a waveform diagram of displacement data. 1-CPU, a,, a2. -a, -Judgment memory-7...Displacement value calculation means, 8...Maximum displacement value discrimination means, 9...Memory, 10...Good/bad judgment means.

Claims (1)

【特許請求の範囲】[Claims] (1)変位計(C)(D)によりタイヤ表面の凹凸によ
る変位を、タイヤ周方向に順次測定し、その変位データ
Pからタイヤ(A)の良不良を判定するようにしたタイ
ヤ表面の凹凸判定方法において、タイヤ周方向の凹凸の
長さlに対する測定データPのサンプル回数Rを判定個
数nとして予め設定しておき、判定個数nの判定メモリ
ー(a_1)〜(a_n)に、変位計(C)(D)から
取り込んだ変位データPを順次格納して最新の変位デー
タPに順次入れ替えると共に、判定メモリー(a_1)
〜(a_n)の変位データPの最大値Xと最小値Yとの
差を変位値Tとして順次算出し、その算出した変位値T
の中から最大変位値Lを求め、この最大変位値Lと予め
設定した変位規格値Qとを比較し、最大変位値Lが大で
あれば不良品と判定し、小であれば良品と判定すること
を特徴とするタイヤ表面の凹凸判定方法。
(1) Displacements due to unevenness on the tire surface are sequentially measured in the tire circumferential direction using displacement meters (C) and (D), and the quality of the tire (A) is determined from the displacement data P. In the determination method, the number of samples R of measurement data P for the length l of irregularities in the circumferential direction of the tire is set in advance as the determination number n, and displacement meters ( C) Sequentially stores the displacement data P taken in from (D) and sequentially replaces it with the latest displacement data P, and also stores the displacement data P in the judgment memory (a_1).
The difference between the maximum value X and the minimum value Y of the displacement data P of ~(a_n) is sequentially calculated as a displacement value T, and the calculated displacement value T
Find the maximum displacement value L from among them, compare this maximum displacement value L with a preset displacement standard value Q, and if the maximum displacement value L is large, it is determined to be a defective product, and if it is small, it is determined to be a good product. A method for determining unevenness on a tire surface.
JP2131681A 1990-05-21 1990-05-21 Unevenness deciding method for tire surface Pending JPH0425743A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2131681A JPH0425743A (en) 1990-05-21 1990-05-21 Unevenness deciding method for tire surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2131681A JPH0425743A (en) 1990-05-21 1990-05-21 Unevenness deciding method for tire surface

Publications (1)

Publication Number Publication Date
JPH0425743A true JPH0425743A (en) 1992-01-29

Family

ID=15063734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2131681A Pending JPH0425743A (en) 1990-05-21 1990-05-21 Unevenness deciding method for tire surface

Country Status (1)

Country Link
JP (1) JPH0425743A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7578181B2 (en) * 2005-04-18 2009-08-25 Kabushiki Kaisha Bridgestone Method for correcting concave-convex exhibited on a surface of a body of rotation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7578181B2 (en) * 2005-04-18 2009-08-25 Kabushiki Kaisha Bridgestone Method for correcting concave-convex exhibited on a surface of a body of rotation

Similar Documents

Publication Publication Date Title
JP3018040B2 (en) Hard disk inspection device
JPH05223701A (en) Inspector for tire manufacturing apparatus
JPH0425743A (en) Unevenness deciding method for tire surface
JPS62188646A (en) Method and device for controlling machining of machined partin machine tool
JPS6170473A (en) Waveform analyzer
JPH10157653A (en) Wheel alignment regulation method for vehicle and wheel alignment regulation device and spider curve deciding device used in the method
JPH05172550A (en) Measuring apparatus for height of net of melon
JPH0396872A (en) Method and device for testing coil
JPH01156681A (en) Circuit board inspecting method
JP3621519B2 (en) Device pass / fail judgment method
JP2841326B2 (en) Method and apparatus for estimating workpiece design values of measuring machine
JP2002156413A (en) Semiconductor tester
JPH0727668A (en) Inspecting apparatus for gear
JPH0823312A (en) Signal processing unit
JPH0629826Y2 (en) DAT recording / playback level adjustment device
JPH01107129A (en) Measurement of defective material
JP2720225B2 (en) Error check method for magnetic disk tester
JP2024127239A (en) Inspection device, inspection method, and inspection program
JPS59187274A (en) Master data setter for conduction tester in insulation of circuit board
JPH04256331A (en) Adjusting method of position of probe card
JPH0575259B2 (en)
JPH10242225A (en) Semiconductor testing apparatus and method
JPH0627172A (en) Method of obtaining actual operation characteristic curve
JPH01247129A (en) Method and apparatus for judging quality of injection molded product
KR970007372A (en) Defective Identification Method of Defective Decision System Using Vibration Signal