JPH04256420A - Method for reducing and removing nitrogen oxides - Google Patents

Method for reducing and removing nitrogen oxides

Info

Publication number
JPH04256420A
JPH04256420A JP3037731A JP3773191A JPH04256420A JP H04256420 A JPH04256420 A JP H04256420A JP 3037731 A JP3037731 A JP 3037731A JP 3773191 A JP3773191 A JP 3773191A JP H04256420 A JPH04256420 A JP H04256420A
Authority
JP
Japan
Prior art keywords
nitrogen oxides
type
ferrilite
exhaust gas
ferrierite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3037731A
Other languages
Japanese (ja)
Inventor
Masakazu Iwamoto
正和 岩本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP3037731A priority Critical patent/JPH04256420A/en
Publication of JPH04256420A publication Critical patent/JPH04256420A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Abstract

PURPOSE:To effectively reduce and remove nitrogen oxide especially even at a low temp. by bringing the waste combustion gas incorporating nitrogen oxides, hydrocarbon and oxygen into contact with H-type ferrilite. CONSTITUTION:Exhausting combustion gas incorporating nitrogen oxides, hydrocarbons and oxygen are brought into contact with the H-type ferrilite. The H-type ferrilite is a zeolite having about 10-20mol. ratio of SiO2/Al2O3, and both of the natural or the synthetic ferrilite are usable. Also, the ferrilite may be usable so that the mol. ratio of SiO2/Al2O3 is increased by treating with mineral acid, etc., to remove aluminum. In the case of using this ferrilite as a catalyst, metallic cation therein is exchanged to hydrogen ion and converted to H-type. The treatment is preferable so that the space velocity (volumetric base)of the exhaust gas is 1000-50000hr<-1> and temp. is 100-700 deg.C. By this means the exhaust gas from the boiler, automobile engine, etc., are effectively purified to effectively reduce and remove nitrogen oxides especially even at a low temp. such as <=400 deg.C.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、ボイラー、自動車エン
ジン等から排出される窒素酸化物を含有する排ガスを処
理する方法に関し、更に詳細には、低温においても効率
が非常に優れた窒素酸化物の還元除去方法に関する。
[Industrial Field of Application] The present invention relates to a method for treating exhaust gas containing nitrogen oxides emitted from boilers, automobile engines, etc., and more specifically, the present invention relates to a method for treating exhaust gas containing nitrogen oxides discharged from boilers, automobile engines, etc. This invention relates to a method for reducing and removing .

【0002】0002

【従来の技術】ボイラー、自動車エンジン等から排出さ
れる排ガス中の窒素酸化物を除去する方法として、触媒
の存在下にアンモニアで処理する選択的接触還元法、及
び、排ガスを触媒に通し、未燃焼の一酸化炭素及び炭化
水素により還元する非選択的接触還元法等が実用化され
ている。更には、例えば、特開昭60−125,250
号公報には、還元剤非共存下で窒素酸化物を直接接触分
解できる触媒として銅イオン交換したゼオライトを用い
る方法が提案されている。
[Prior Art] As a method for removing nitrogen oxides from exhaust gas emitted from boilers, automobile engines, etc., there is a selective catalytic reduction method in which the exhaust gas is treated with ammonia in the presence of a catalyst, and a selective catalytic reduction method in which exhaust gas is passed through a catalyst to remove nitrogen oxides. Non-selective catalytic reduction methods that reduce carbon monoxide and hydrocarbons by combustion have been put into practical use. Furthermore, for example, JP-A-60-125,250
The publication proposes a method using copper ion-exchanged zeolite as a catalyst that can directly catalytically decompose nitrogen oxides in the absence of a reducing agent.

【0003】また、酸素過剰下でも、未燃焼の一酸化炭
素,炭化水素等の還元成分により窒素酸化物を選択的に
還元できる触媒として、Cu等の卑金属をゼオライト等
に含有させた触媒が提案されている(特開昭63−10
0,919号公報等)。また、浜田らは、H型ZSM−
5及びH型モルデナイトが、酸素過剰下でも未燃焼の炭
化水素による窒素酸化物の還元に有効であることを見出
した(「アプライド・キャタリシス」(Applied
  Catalysis),第64巻(1990年)L
1〜L4頁)。
[0003] In addition, a catalyst in which base metals such as Cu are contained in zeolite has been proposed as a catalyst that can selectively reduce nitrogen oxides using reducing components such as unburned carbon monoxide and hydrocarbons even in the presence of excess oxygen. (Unexamined Japanese Patent Publication No. 1983-10)
0,919, etc.). In addition, Hamada et al.
We have found that 5- and H-type mordenite are effective in reducing nitrogen oxides by unburned hydrocarbons even under oxygen excess (Applied Catalysis).
Catalysis), Volume 64 (1990) L
1-L4 pages).

【0004】しかしながら、これらの提案されている触
媒を用いる方法といえども、窒素酸化物の還元除去が不
十分であり、特に、自動車のアイドリング時等で必要と
される低温での除去能が不十分であることから、未だ実
用化されるに至っていない。
However, even with these proposed methods using catalysts, the reduction and removal of nitrogen oxides is insufficient, and in particular, the removal ability at low temperatures required when a car is idling is insufficient. However, it has not been put into practical use yet.

【0005】[0005]

【発明が解決しようとする課題】本発明の目的は、アン
モニア等の還元剤を使用することなく、ボイラー、自動
車エンジン等、特にディーゼルエンジン等の内燃機関か
ら排出される排ガスを、効率良く浄化し、特に低温でも
効率の良い窒素酸化物還元除去方法を提供するものであ
る。
[Problems to be Solved by the Invention] An object of the present invention is to efficiently purify exhaust gas emitted from internal combustion engines such as boilers, automobile engines, etc., especially diesel engines, without using reducing agents such as ammonia. The present invention provides a method for reducing and removing nitrogen oxides that is particularly efficient even at low temperatures.

【0006】[0006]

【課題を解決する為の手段】本発明者は、上記課題につ
いて鋭意検討した結果、本発明を完成するに至った。即
ち、本発明は、窒素酸化物、炭化水素及び酸素を含有す
る燃焼排ガスを、H型のフェリエライトに接触させるこ
とを特徴とする窒素酸化物還元除去方法を提供するもの
である。
[Means for Solving the Problems] The present inventor has completed the present invention as a result of intensive study on the above-mentioned problems. That is, the present invention provides a method for reducing and removing nitrogen oxides, which is characterized by bringing combustion exhaust gas containing nitrogen oxides, hydrocarbons, and oxygen into contact with H-type ferrierite.

【0007】以下、本発明をより詳細に説明する。本発
明の方法で使用される窒素酸化物還元除去触媒は、H型
のフェリエライトであることを必須とする。フェリエラ
イトは、「ゼオライト・モレキュラー・シーブス」(Z
EOLITE  MOLECULAR  SIEVES
)、ドナルド・ダブリュー・ブレック(DONALD 
 W.BRECK)著、(1974年)第146頁Ta
ble2.31、及び、第358頁Table4.45
に記載されているゼオライトであり、SiO2 /Al
2 O3 モル比が通常10〜20のゼオライトである
。本発明の方法では、天然品,合成品いずれのフェリエ
ライトも使用し得る。また、鉱酸等により脱アルミニウ
ム処理し、そのSiO2 /Al2 O3 モル比を高
めて使用することもできる。
The present invention will be explained in more detail below. The nitrogen oxide reduction and removal catalyst used in the method of the present invention must be H-type ferrierite. Ferrierite is "zeolite molecular sieves" (Z
EOLITE MOLECULAR SIEVES
), Donald W Breck (DONALD
W. BRECK), (1974) p. 146 Ta
ble2.31 and page 358 Table4.45
It is a zeolite described in SiO2 /Al
The zeolite usually has a 2 O3 molar ratio of 10 to 20. In the method of the present invention, both natural and synthetic ferrierite can be used. Further, it can be used by subjecting it to dealumination treatment using a mineral acid or the like to increase the SiO2/Al2O3 molar ratio.

【0008】原料フェリエライト中には、通常Na,K
等の金属陽イオンがイオン交換サイトに存在している。 本発明の触媒として使用するには、これらの金属陽イオ
ンをHイオンに交換してH型とすることが必要である。 Hイオンに交換する方法は特に限定されず、一般的な方
法、即ち、鉱酸で処理して直接Hイオン交換するか、ま
たは、アンモニウム処理した後焼成する方法を採用する
ことができる。
[0008] Raw material ferrierite usually contains Na, K
Metal cations such as are present at ion exchange sites. In order to use it as a catalyst of the present invention, it is necessary to exchange these metal cations with H ions to form the H type. The method for exchanging H ions is not particularly limited, and a general method can be adopted, that is, treatment with a mineral acid and direct H ion exchange, or ammonium treatment followed by calcination.

【0009】鉱酸としては、塩酸、硫酸、硝酸、炭酸等
が使用でき、鉱酸で処理するには、鉱酸を含む水溶液に
原料フェリエライトを混合、攪拌し、洗浄する等の方法
が適用できる。アンモニウムで処理するには、アンモニ
ウム化合物を含む水溶液に原料フェリエライトを混合、
攪拌し、洗浄する方法等が適用される。アンモニウム化
合物としては塩化アンモニウム、硝酸アンモニウム、硫
酸アンモニウム、アンモニア水等が用いられる。アンモ
ニウム処理後、500℃〜700℃で焼成して、H型フ
ェリエライトを得ることができる。
[0009] Hydrochloric acid, sulfuric acid, nitric acid, carbonic acid, etc. can be used as the mineral acid, and methods such as mixing raw material ferrierite in an aqueous solution containing mineral acid, stirring, and washing are applied to treat with mineral acid. can. To treat with ammonium, raw ferrierite is mixed into an aqueous solution containing an ammonium compound,
Methods such as stirring and washing are applied. As the ammonium compound, ammonium chloride, ammonium nitrate, ammonium sulfate, ammonia water, etc. are used. After the ammonium treatment, H-type ferrierite can be obtained by firing at 500°C to 700°C.

【0010】鉱酸或いはアンモニウム化合物の添加量と
しては、ゼオライト中のAlに対し0.5〜10倍当量
が望ましい。0.5倍当量未満ではHイオンのイオン交
換サイトへの導入量が少なくなり、また、10倍を越え
てもそれに見合うだけの効果が得られない。鉱酸処理及
びアンモニウム処理時のゼオライトスラリーの濃度は、
通常採られる1重量%〜50重量%が好ましい。
The amount of mineral acid or ammonium compound added is preferably 0.5 to 10 equivalents to Al in the zeolite. If the amount is less than 0.5 times the equivalent amount, the amount of H ions introduced into the ion exchange site will be reduced, and if it is more than 10 times the amount, the corresponding effect will not be obtained. The concentration of zeolite slurry during mineral acid treatment and ammonium treatment is
It is preferably 1% to 50% by weight, which is usually adopted.

【0011】また、処理条件は、通常行われる10〜1
00℃の温度、1時間〜5日の時間であることが望まし
い。10℃未満の温度、1時間未満の時間では、Hイオ
ンのイオン交換サイトへの導入量が少なくなり、100
℃を越える温度、5日を越える時間では、それに見合う
だけの効果が得られない。イオン交換処理は、必要に応
じて繰り返し行なうこともできる。本発明で使用される
触媒の結晶構造は、イオン交換前後で本質的に異なるも
のではない。
[0011] Furthermore, the processing conditions are 10 to 1, which is usually carried out.
Preferably, the temperature is 00°C and the time is 1 hour to 5 days. At a temperature of less than 10°C and a time of less than 1 hour, the amount of H ions introduced into the ion exchange site decreases, and the
If the temperature exceeds ℃ or the time exceeds 5 days, the corresponding effect will not be obtained. The ion exchange treatment can be repeated as necessary. The crystal structure of the catalyst used in the present invention is not essentially different before and after ion exchange.

【0012】本発明で使用されるH型フェリエライトは
、粘土鉱物等のバインダーと混合し、円柱状,球状,ハ
ニカム状等に成形して使用することもできる。また、予
めH型フェリエライトを成形し、その成形体をHイオン
交換することもできる。H型フェリエライトを成形する
際に用いられるバインダーとしては、カオリン、アタバ
ルガイト、モンモリロナイト、ベントナイト、アロフェ
ン、セピオライト等の粘土鉱物が好ましい。
The H-type ferrierite used in the present invention can also be used by mixing it with a binder such as a clay mineral and forming it into a cylindrical, spherical, or honeycomb shape. Alternatively, H-type ferrierite can be molded in advance and the molded product can be subjected to H ion exchange. As the binder used when molding H-type ferrierite, clay minerals such as kaolin, attabulgite, montmorillonite, bentonite, allophane, and sepiolite are preferred.

【0013】本発明の方法においては、窒素酸化物、炭
化水素及び酸素を含有する燃焼排ガスを、H型のフェリ
エライトに接触させることが必須である。窒素酸化物と
は、NO,NO2 ,N2 O,N2 O2 等である
。また、炭化水素の種類は特に限定されないが、炭素数
6以下の炭化水素の含有量が多い燃焼排ガスにおいて本
発明方法の効果は顕著に現われる。
In the method of the present invention, it is essential to bring the combustion exhaust gas containing nitrogen oxides, hydrocarbons and oxygen into contact with H-type ferrierite. Nitrogen oxides include NO, NO2, N2O, N2O2, and the like. Although the type of hydrocarbon is not particularly limited, the effect of the method of the present invention is noticeable in combustion exhaust gas containing a large amount of hydrocarbons having 6 or less carbon atoms.

【0014】被処理対象である燃焼排ガス中のこれらの
成分ガスの濃度は特に制限されないが、通常、窒素酸化
物が10〜10,000ppm 、炭化水素が10〜1
0,000ppm 、また、酸素は、0.1〜15%で
ある。特に、排ガス中に含まれる炭化水素等の還元成分
を完全に酸化するのに必要な酸素量よりも過剰な酸素が
含まれている場合においても、窒素酸化物を効率良く除
去できる。また、排ガス中に炭化水素を更に添加して窒
素酸化物を還元除去することもできる。還元除去する際
の、排ガスの空間速度及び温度は特に限定されないが、
空間速度(体積基準)1,000〜500,000hr
−1、温度100℃〜700℃が好ましい。
[0014] The concentration of these component gases in the combustion exhaust gas to be treated is not particularly limited, but usually 10 to 10,000 ppm for nitrogen oxides and 10 to 1 ppm for hydrocarbons.
0,000 ppm, and oxygen is 0.1-15%. In particular, nitrogen oxides can be efficiently removed even when exhaust gas contains oxygen in excess of the amount of oxygen required to completely oxidize reducing components such as hydrocarbons contained in the exhaust gas. Further, nitrogen oxides can be reduced and removed by further adding hydrocarbons to the exhaust gas. The space velocity and temperature of the exhaust gas during reduction and removal are not particularly limited, but
Space velocity (volume basis) 1,000-500,000hr
-1, the temperature is preferably 100°C to 700°C.

【0015】[0015]

【発明の効果】本発明の窒素酸化物還元除去方法によれ
ば、炭化水素及び酸素が共存する燃焼排ガスから窒素酸
化物を効率良く還元除去することができ、特に400℃
以下の低温においてもその除去効果は高い。
Effects of the Invention According to the method for reducing and removing nitrogen oxides of the present invention, nitrogen oxides can be efficiently reduced and removed from combustion exhaust gas in which hydrocarbons and oxygen coexist.
The removal effect is high even at low temperatures below.

【実施例】以下、実施例について本発明を更に詳細に説
明する。しかし、本発明はこれら実施例のみに限定され
るものではない。
[Examples] The present invention will be explained in more detail with reference to Examples below. However, the present invention is not limited to these examples.

【0016】実施例1 SiO2 /Al2 O3 モル比12の(Na,K)
型フェリエライト  100gを、0.2mol /L
の硝酸アンモニウム水溶液2Lに添加し、室温にて一昼
夜攪拌した後、洗浄、乾燥し、NH4 型フェリエライ
トを得た。次いで、得られた触媒の活性試験を行なった
Example 1 SiO2/Al2O3 molar ratio of (Na,K) 12
Type Ferrierite 100g, 0.2mol/L
The mixture was added to 2 L of an aqueous ammonium nitrate solution and stirred at room temperature for a day and night, then washed and dried to obtain NH4 type ferrierite. Next, an activity test of the obtained catalyst was conducted.

【0017】得られた触媒をプレス成形した後粉砕して
12〜20メッシュに整粒し、その0.5gを流通式反
応装置に装着した。Heガスの流通下、徐々に昇温した
後500℃で5時間の処理を行い、H型フェリエライト
とした。冷却後、NO:1,000ppm ,C2 H
4 :250ppm ,O2 :2%を含有するHeガ
スを150cc/minの速度で流し、各温度での定常
浄化活性を測定した。この時の空間速度は9,000h
r−1であった。定常浄化活性は、各温度で2時間保持
した後のNOの窒素への転化率として評価した。
[0017] The obtained catalyst was press-molded and then pulverized to a size of 12 to 20 mesh, and 0.5 g of the catalyst was placed in a flow reactor. The temperature was gradually raised under the flow of He gas, and then treatment was performed at 500° C. for 5 hours to obtain H-type ferrierite. After cooling, NO: 1,000ppm, C2H
He gas containing 250 ppm of O2 and 2% of O2 was flowed at a rate of 150 cc/min, and the steady-state purification activity at each temperature was measured. The space velocity at this time is 9,000h
It was r-1. Steady-state purification activity was evaluated as the conversion rate of NO to nitrogen after holding at each temperature for 2 hours.

【0018】窒素への転化率は N2 への転化率=2×(N2 )out /(NO)
in(N2 )out :触媒層出口におけるN2 濃
度(NO)in  :触媒層入口におけるNO濃度で示
される。得られた結果を表1に示す。
The conversion rate to nitrogen is the conversion rate to N2=2×(N2)out/(NO)
in(N2)out: N2 concentration at the catalyst layer outlet (NO) in: NO concentration at the catalyst layer inlet. The results obtained are shown in Table 1.

【表1】[Table 1]

【0019】比較例1 SiO2 /Al2 O3 モル比23のNa型ZSM
−5  100gを、0.2mol /Lの硝酸アンモ
ニウム水溶液1Lに添加し、室温にて一昼夜攪拌した後
、洗浄、乾燥し、NH4 型ZSM−5(比較触媒1)
を得た。
Comparative Example 1 Na-type ZSM with a SiO2/Al2O3 molar ratio of 23
-5 100g was added to 1L of 0.2mol/L ammonium nitrate aqueous solution, stirred at room temperature all day and night, washed and dried, and NH4 type ZSM-5 (comparative catalyst 1)
I got it.

【0020】比較例2 SiO2 /Al2 O3 モル比11のNa型モルデ
ナイト  100gを、0.2mol /Lの硝酸アン
モニウム水溶液2Lに添加し、室温にて一昼夜攪拌した
後、洗浄、乾燥し、NH4 型モルデナイト(比較触媒
2)を得た。
Comparative Example 2 100 g of Na-type mordenite with a SiO2 /Al2 O3 molar ratio of 11 was added to 2 L of 0.2 mol/L ammonium nitrate aqueous solution, stirred all day and night at room temperature, washed and dried to obtain NH4-type mordenite ( Comparative catalyst 2) was obtained.

【0021】比較例3 SiO2 /Al2 O3 モル比12の(Na,K)
型フェリエライト  100gを、0.1mol /L
の酢酸銅水溶液2Lに添加した後、アンモニア水を添加
しpHを7.5に調整した。室温にて一昼夜攪拌した後
、洗浄、乾燥し、比較触媒3を得た。Cuの交換率は1
30%であった。
Comparative Example 3 (Na,K) with SiO2 /Al2O3 molar ratio of 12
type ferrierite 100g, 0.1mol/L
After adding to 2 L of copper acetate aqueous solution, ammonia water was added to adjust the pH to 7.5. After stirring at room temperature all day and night, the mixture was washed and dried to obtain Comparative Catalyst 3. The exchange rate of Cu is 1
It was 30%.

【0022】比較例4 実施例1と同様の方法で、比較触媒1〜3、及び実施例
1で用いた(Na,K)型フェリエライトについて活性
試験を行った。得られた結果を表2に示す。
Comparative Example 4 In the same manner as in Example 1, an activity test was conducted on Comparative Catalysts 1 to 3 and the (Na, K) type ferrierite used in Example 1. The results obtained are shown in Table 2.

【表2】[Table 2]

【0023】実施例及び比較例より明らかなように、本
発明の窒素酸化物還元除去方法によれば、燃焼排ガスか
ら窒素酸化物を効率良く還元除去することができ、特に
400℃以下の低温でもその除去効果は高い。
As is clear from the Examples and Comparative Examples, according to the method for reducing and removing nitrogen oxides of the present invention, nitrogen oxides can be efficiently reduced and removed from combustion exhaust gas, especially at low temperatures of 400° C. or lower. Its removal effect is high.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  窒素酸化物、炭化水素及び酸素を含有
する燃焼排ガスを、H型のフェリエライトに接触させる
ことを特徴とする窒素酸化物還元除去方法。
1. A method for reducing and removing nitrogen oxides, which comprises bringing combustion exhaust gas containing nitrogen oxides, hydrocarbons and oxygen into contact with H-type ferrierite.
【請求項2】  H型フェリエライトが、フェリエライ
トをその中のAlに基づき0.5〜10倍当量の鉱酸ま
たはアンモニウム化合物で処理したものである請求項1
記載の窒素酸化物還元除去方法。
2. H-type ferrierite is obtained by treating ferrierite with a mineral acid or ammonium compound in an amount of 0.5 to 10 times equivalent based on Al in the ferrierite.
The nitrogen oxide reduction and removal method described.
【請求項3】  燃焼排ガスを、空間速度(体積基準)
1,000〜50,000hr−1、温度100℃〜7
00℃にてH型フェリエライトに接触させる請求項1ま
たは2記載の窒素酸化物還元除去方法。
[Claim 3] Combustion exhaust gas has a space velocity (volume basis)
1,000~50,000hr-1, temperature 100℃~7
The method for reducing and removing nitrogen oxides according to claim 1 or 2, wherein the method is brought into contact with H-type ferrierite at 00°C.
JP3037731A 1991-02-08 1991-02-08 Method for reducing and removing nitrogen oxides Pending JPH04256420A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3037731A JPH04256420A (en) 1991-02-08 1991-02-08 Method for reducing and removing nitrogen oxides

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3037731A JPH04256420A (en) 1991-02-08 1991-02-08 Method for reducing and removing nitrogen oxides

Publications (1)

Publication Number Publication Date
JPH04256420A true JPH04256420A (en) 1992-09-11

Family

ID=12505638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3037731A Pending JPH04256420A (en) 1991-02-08 1991-02-08 Method for reducing and removing nitrogen oxides

Country Status (1)

Country Link
JP (1) JPH04256420A (en)

Similar Documents

Publication Publication Date Title
EP0462598B1 (en) Transition metal-containing zeolite having high hydrothermal stability, production method thereof and method of using same
JPH08323151A (en) Method for purifying waste gas containing nitrogen oxides
JPH03118836A (en) Catalyst for contact decomposition of nitrogen oxides and contact decomposition method
JPH04256420A (en) Method for reducing and removing nitrogen oxides
JP3511638B2 (en) Exhaust gas purification method
JPH06170166A (en) Removal of nitrogen oxide
JP3395219B2 (en) Nitrogen oxide removal method
JP3482658B2 (en) Nitrogen oxide removal method
JPH0478444A (en) Catalyst for purification of exhaust gas and its using method
JP3395221B2 (en) Nitrogen oxide removal method
JPH04118030A (en) Method of removing nitrogen oxide
JP3395220B2 (en) Nitrogen oxide removal method
JPH04256444A (en) Catalyst for removal of nitrogen oxide
JP3511637B2 (en) Exhaust gas purification method
JPH06277522A (en) Nitrogen oxide removing catalyst and nitrogen oxide removing method using same
JPH06126184A (en) Catalyst for purifying exhaust gas and purifying method for exhaust gas by using it
JPH05269386A (en) Catalyst for reduction removing nitrogen oxide and method for reduction removing
JPH0478443A (en) Catalyst for purification of exhaust gas and its using method
JPH06320007A (en) Waste gas purification catalyst and method for removing nox
JPH0760059A (en) Removing process for nitrogen oxide
JPH06198192A (en) Exhaust gas purification catalyst
JPH0871423A (en) Exhaust gas purification catalyst, method for removing nox and production of zeolite
JPH03217218A (en) Method for removing nitrogen oxide
JPH06277521A (en) Nitrogen oxide removing catalyst and nitrogen oxide removing method using same
JPH07171345A (en) Removal of nitrogen oxide