JPH04255721A - Production of polyarylene sulfide - Google Patents

Production of polyarylene sulfide

Info

Publication number
JPH04255721A
JPH04255721A JP3016541A JP1654191A JPH04255721A JP H04255721 A JPH04255721 A JP H04255721A JP 3016541 A JP3016541 A JP 3016541A JP 1654191 A JP1654191 A JP 1654191A JP H04255721 A JPH04255721 A JP H04255721A
Authority
JP
Japan
Prior art keywords
sulfide
mol
alkali metal
sulfur source
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3016541A
Other languages
Japanese (ja)
Other versions
JP2924202B2 (en
Inventor
Toshio Wakabayashi
俊雄 若林
Keiji Nakagawa
啓次 中川
Toshiyuki Asakura
朝倉 敏之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Phillips Petroleum KK
Original Assignee
Toray Phillips Petroleum KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Phillips Petroleum KK filed Critical Toray Phillips Petroleum KK
Priority to JP3016541A priority Critical patent/JP2924202B2/en
Publication of JPH04255721A publication Critical patent/JPH04255721A/en
Application granted granted Critical
Publication of JP2924202B2 publication Critical patent/JP2924202B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)

Abstract

PURPOSE:To produce a polyarylene sulfide having high molecular weight in a short time in high yield. CONSTITUTION:A polyarylene sulfide is produced by reacting (A) a sulfur source selected from an alkali metal sulfide, alkali metal hydrosulfide and hydrogen sulfide with (B) an alkali metal hydroxide and a polyhalogenated aromatic compound (in the case of using the above sulfur source other than the alkali metal sulfide) or a polyhalogenated aromatic compound (in the case of using the alkali metal sulfide as the above sulfur source) in an organic polar solvent. In the above process, the reaction solution is heated from <=220 deg.C to >=260 deg.C at a heating rate of <=0.5 deg.C/min on an average in the presence of <0.3mol of water and an alkali metal carboxylate based on 1mol of S in the sulfur source.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、各種成形品やフィルム
、シート、繊維あるいは機械部品、電気、電子部品など
の材料として好適な高分子量なポリアリーレンスルフィ
ドを短時間で経済的有利に製造する方法に関するもので
ある。
[Industrial Application Field] The present invention is for producing high-molecular weight polyarylene sulfide, which is suitable as a material for various molded products, films, sheets, fibers, mechanical parts, electrical and electronic parts, etc., in a short time and economically. It is about the method.

【0002】0002

【従来の技術】ポリアリーレンスルフィドは耐熱性およ
び耐薬品性に優れておりさらに機械特性、難燃性、寸法
安定性、加工性なども良好であるので、エンジニアリン
グプラスチックスとして、自動車部品、電気・電子部品
、精密機械部品、OA機器部品など多分野にわたって広
く用いられている。
[Prior Art] Polyarylene sulfide has excellent heat resistance and chemical resistance, and also has good mechanical properties, flame retardance, dimensional stability, and processability, so it is used as engineering plastics for automobile parts, electrical and electrical equipment, etc. It is widely used in many fields such as electronic parts, precision mechanical parts, and OA equipment parts.

【0003】ポリアリーレンスルフィドの製造方法とし
ては、N−メチルピロリドンなどの有機アミド溶媒中に
おいてジハロゲン化芳香族化合物と硫化ナトリウムを反
応させる方法が知られている。(特公昭45−3368
号公報)
As a method for producing polyarylene sulfide, a method is known in which a dihalogenated aromatic compound and sodium sulfide are reacted in an organic amide solvent such as N-methylpyrrolidone. (Tokuko Sho 45-3368
Publication No.)

【0004】しかしこの方法では得られるポリアリーレ
ンスルフィドの分子量が十分には大きくならない。例え
ば、重量平均分子量として2万以下(重量平均分子量は
、重合体のα−クロルナフタレン溶液を200℃以上の
高温でGPC法、光散乱法等により測定することができ
る。)である。このため、溶融粘度が低いために、フィ
ルム、シート、繊維などに成形加工することが困難であ
るという問題があった。
However, with this method, the molecular weight of the polyarylene sulfide obtained does not become sufficiently large. For example, the weight average molecular weight is 20,000 or less (the weight average molecular weight can be measured by GPC method, light scattering method, etc. in a solution of the polymer in α-chlornaphthalene at a high temperature of 200° C. or higher). Therefore, due to the low melt viscosity, there was a problem in that it was difficult to mold them into films, sheets, fibers, etc.

【0005】この点を改良し、重合度の高いポリアリー
レンスルフィドを得るために種々の方法が提案されてい
る。その代表的なものとして、水の存在下、二段階で反
応を行なう方法(特開昭61−7332号公報)や重合
助剤としてアルカリ金属カルボン酸塩を用いる方法(特
公昭52−12240号公報)が提案されている。
Various methods have been proposed to improve this point and obtain polyarylene sulfide with a high degree of polymerization. Typical examples include a method in which the reaction is carried out in two stages in the presence of water (Japanese Patent Publication No. 7332/1983) and a method using an alkali metal carboxylate as a polymerization aid (Japanese Patent Publication No. 12240/1982). ) has been proposed.

【0006】これらの方法によって得られるポリアリー
レンスルフィドは重合度があがるものの、例えば、重量
平均分子量として4〜5万程度、重合度として400〜
500であって、まだ十分ではなく、さらに分子量6万
以上、重合度として600以上の、より高重合度のポリ
アリーレンスルフィドを得るためには重合時間を12時
間以上に長くしたり、重合助剤を使用される硫黄源のモ
ル当り0.5モル以上のような多量に使用する必要があ
り、結果としてポリアリーレンスルフィドの製造コスト
が増大するなど経済的な面から問題がある。
Although the polyarylene sulfide obtained by these methods has a high degree of polymerization, for example, the weight average molecular weight is about 40,000 to 50,000, and the degree of polymerization is about 400 to 50,000.
500, which is still not sufficient.In order to obtain a polyarylene sulfide with a higher molecular weight of 60,000 or more and a polymerization degree of 600 or more, the polymerization time may be increased to 12 hours or more, or a polymerization aid may be added. It is necessary to use a large amount of 0.5 mole or more per mole of the sulfur source used, which results in an economical problem such as an increase in the production cost of polyarylene sulfide.

【0007】また単に溶融粘度ないし分子量を高くする
のであれば3個以上のハロゲン原子を有する化合物を用
いて架橋構造を導入する方法もあるが(特公昭54−8
719号公報)この方法で得られる高分子量ポリアリー
レンスルフィドはその導入量が多いと線状性が損なわれ
るため曳糸性および製膜性が不良になるなどの問題があ
る。
Alternatively, if one simply wants to increase the melt viscosity or molecular weight, there is a method of introducing a crosslinked structure using a compound having three or more halogen atoms (Japanese Patent Publication No. 54-8
(No. 719) The high molecular weight polyarylene sulfide obtained by this method has problems such as poor spinnability and film forming properties due to loss of linearity when introduced in a large amount.

【0008】[0008]

【発明が解決しようとする問題点】本発明はこのような
従来の高分子量ポリアリーレンスルフィドの製造方法が
有する欠点を克服し、高分子量のポリアリーレンスルフ
ィドを短時間にかつ高収率で製造する方法を提供するも
のである。ここで、高分子量とは、分子量約6万以上を
いい、短時間とは重合時間として12時間未満をいう。 また高収率とは少くとも80%以上をいう。
[Problems to be Solved by the Invention] The present invention overcomes the drawbacks of the conventional method for producing high molecular weight polyarylene sulfide, and produces high molecular weight polyarylene sulfide in a short time and with high yield. The present invention provides a method. Here, high molecular weight refers to a molecular weight of about 60,000 or more, and short time refers to a polymerization time of less than 12 hours. Moreover, high yield means at least 80% or more.

【0009】[0009]

【問題を解決するための手段】上記の目的はポリアリー
レンスルフィドの製造に当り、規制された量の水とアル
カリ金属カルボン酸塩の存在下、反応系の昇温速度を制
御しながら重合させることによって達成される。
[Means for solving the problem] The above purpose is to perform polymerization in the presence of a regulated amount of water and an alkali metal carboxylate while controlling the heating rate of the reaction system in the production of polyarylene sulfide. achieved by.

【0010】すなわち、本発明は、有機極性溶媒中で硫
化アルカリ、水硫化アルカリ、硫化水素から選ばれた硫
黄源および、前記の硫黄源として、硫化アルカリ以外の
ものを使用する場合は、アルカリ金属水酸化物とポリハ
ロゲン化芳香族化合物とを、又前記の硫黄源として硫化
アルカリを使用する場合は、ポリハロゲン化芳香族化合
物とを反応させてポリアリーレンスルフィドを得る方法
において、反応溶液を220℃以下の温度から260℃
以上に昇温する時に、硫黄源中のS1モル当り0.3モ
ル未満の水とアルカリ金属カルボン酸塩の存在下、平均
して0.5℃/分以下の昇温速度で反応を行なうことを
特徴とするポリアリーレンスルフィドの製造法を提供す
るものである。
That is, the present invention provides a sulfur source selected from alkali sulfide, alkali hydrosulfide, and hydrogen sulfide in an organic polar solvent, and when a sulfur source other than alkali sulfide is used, an alkali metal In the method for obtaining polyarylene sulfide by reacting a hydroxide and a polyhalogenated aromatic compound, and when using an alkali sulfide as the sulfur source, the reaction solution is From temperature below ℃ to 260℃
When the temperature is raised to above, the reaction is carried out at an average heating rate of 0.5°C/min or less in the presence of less than 0.3 mol of water and alkali metal carboxylate per 1 mol of S in the sulfur source. The present invention provides a method for producing polyarylene sulfide characterized by the following.

【0011】[0011]

【発明の具体的開示】本発明で製造するポリアリーレン
スルフィドとは、式
DETAILED DESCRIPTION OF THE INVENTION The polyarylene sulfide produced in the present invention has the formula

【化1】 の繰り返し単位を主要構成単位とするホモポリマーまた
はコポリマーである。この繰り返し単位を主要構成単位
とする限り、
It is a homopolymer or copolymer whose main constituent unit is the repeating unit of [Chemical 1]. As long as this repeating unit is the main constituent unit,

【化2】 等で表わされる少量の分岐結合または架橋結合を含むこ
とができる。
It may contain a small amount of branched bond or crosslinked bond represented by the formula 2 and the like.

【0012】Arとしては[0012] As Ar

【化3】[Chemical formula 3]

【化4】 (R1 、R2 は水素、アルキル基、アルコキシ基、
ハロゲン基から選ばれたもの)などがある。特に好まし
いポリアリーレンスルフィドとしては、ポリマーの主構
成単位としてp−フェニレン単位
embedded image (R1 and R2 are hydrogen, alkyl group, alkoxy group,
(selected from halogen groups). Particularly preferred polyarylene sulfides include p-phenylene units as the main structural unit of the polymer.

【化5】 を90モル%以上含有するポリフェニレンスルフィド(
以下、PPSともいう)、ポリフェニレンスルフィドス
ルホン、ポリフェニレンスルフィドケトンがあげられる
Polyphenylene sulfide containing 90 mol% or more of
(hereinafter also referred to as PPS), polyphenylene sulfide sulfone, and polyphenylene sulfide ketone.

【0013】本発明の硫黄源としては、硫化アルカリ、
水硫化アルカリおよび硫化水素から選ばれた少なくとも
1種を硫黄源として使用することができる。硫化アルカ
リとしては硫化ナトリウム、硫化カリウム、硫化リチウ
ム、硫化ルビジウム、硫化セシウムなどがあげられ、な
かでも硫化ナトリウムが好ましく用いられる。水硫化ア
ルカリとしては、水硫化ナトリウム、水硫化カリウム、
水硫化リチウム、水硫化ルビジウム、水硫化セシウムな
どがあげられなかでも水硫化ナトリウムが好ましく用い
られる。
The sulfur source of the present invention includes alkali sulfide,
At least one selected from alkali hydrosulfide and hydrogen sulfide can be used as the sulfur source. Examples of the alkali sulfide include sodium sulfide, potassium sulfide, lithium sulfide, rubidium sulfide, and cesium sulfide, among which sodium sulfide is preferably used. Alkali hydrosulfides include sodium hydrosulfide, potassium hydrosulfide,
Lithium bisulfide, rubidium bisulfide, cesium bisulfide, etc. can be mentioned, and among these, sodium bisulfide is preferably used.

【0014】本発明のアルカリ金属水酸化物としては、
水酸化ナトリウム、水酸化カリウム、水酸化リチウム、
水酸化ルビジウム、水酸化セシウムなどがあげられ、な
かでも水酸化ナトリウムが好ましく用いられる。
The alkali metal hydroxide of the present invention includes:
Sodium hydroxide, potassium hydroxide, lithium hydroxide,
Examples include rubidium hydroxide and cesium hydroxide, and among them, sodium hydroxide is preferably used.

【0015】なお、硫黄源として硫化アルカリを使用す
る場合は、アルカリ金属水酸化物の併用は、使用しない
場合と比べ差はない。しかし水硫化アルカリ(NaSH
)および硫化水素(H2 S)の場合は併用しないと重
合度が上昇しない。つまりPPS重合時の硫黄源として
は硫化アルカリとして存在することが必要となっている
。この理由としては、以下のように考えられる。 例えばアルカリ金属がNaの場合:   硫化ナトリウム(Na2 S)───重合度が十分
  水硫化ナトリウム(NaSH)+水酸化ナトリウム
(NaOH)→Na2 S             
                         
                ───重合度が十分
  硫化水素(H2 S)+水酸化ナトリウム(2Na
OH)→Na2 S                
                         
             ───重合度が十分
[0015] When alkali sulfide is used as a sulfur source, there is no difference in the case where an alkali metal hydroxide is used in combination with the case where an alkali metal hydroxide is not used. However, alkali hydrosulfide (NaSH)
) and hydrogen sulfide (H2S), the degree of polymerization will not increase unless they are used together. In other words, it is necessary to exist as an alkali sulfide as a sulfur source during PPS polymerization. The reason for this is thought to be as follows. For example, when the alkali metal is Na: Sodium sulfide (Na2S) --- Sufficient degree of polymerization Sodium hydrosulfide (NaSH) + Sodium hydroxide (NaOH) → Na2S

────Polymerization degree is sufficient Hydrogen sulfide (H2S) + Sodium hydroxide (2Na
OH)→Na2S

────Polymerization degree is sufficient

【00
16】本発明のポリハロゲン化芳香族化合物とはハロゲ
ン原子が2以上でかつ分子量が1000未満の化合物を
いう。具体例としては、p−ジクロルベンゼン、m−ジ
クロルベンゼン、o−ジクロルベンゼン、1,3,5−
トリクロルベンゼン、1,2,4−トリクロルベンゼン
、1,2,4,5−テトラクロルベンゼン、ヘクサクロ
ルベンゼン、2,5−ジクロルトルエン、2,5−ジク
ロル−p−キシレン、1,4−ジブロムベンゼン、1,
4−ジクロルナフタリン、1,5−ジクロルナフタレン
、1−メトキシ−2,5−ジクロルベンゼン、4,4′
−ジクロルビフェニル、3,5−ジクロル安息香酸、4
,4′−ジクロルジフェニルエーテル、4,4′−ジク
ロルジフェニルスルホン、4,4′−ジクロルジフェニ
ルケトンなどのポリハロゲン置換、芳香族化合物があり
、なかでも、p−ジクロルベンゼン、4,4′−ジクロ
ルジフェニルスルホン、4,4′−ジクロルジフェニル
ケトンが好ましく用いられる。
00
16] The polyhalogenated aromatic compound of the present invention refers to a compound having two or more halogen atoms and a molecular weight of less than 1,000. Specific examples include p-dichlorobenzene, m-dichlorobenzene, o-dichlorobenzene, 1,3,5-
Trichlorobenzene, 1,2,4-trichlorobenzene, 1,2,4,5-tetrachlorobenzene, hexachlorobenzene, 2,5-dichlorotoluene, 2,5-dichloro-p-xylene, 1,4- Dibromobenzene, 1,
4-dichloronaphthalene, 1,5-dichloronaphthalene, 1-methoxy-2,5-dichlorobenzene, 4,4'
-dichlorobiphenyl, 3,5-dichlorobenzoic acid, 4
, 4'-dichlorodiphenyl ether, 4,4'-dichlorodiphenyl sulfone, and 4,4'-dichlorodiphenyl ketone. 4'-dichlorodiphenyl sulfone and 4,4'-dichlordiphenyl ketone are preferably used.

【0017】本発明の有機極性溶媒としてはN−メチル
ピロリドン、N−メチルカプロラクタム、N,N−ジメ
チルアセトアミド、N,N−ジメチルホルムアミド、ヘ
キサメチルリン酸トリアミド、ジメチルスルホン、テト
ラメチレンスルホキシドなどがあげられ、中でもN−メ
チルピロリドンが好ましく用いられる。
Examples of the organic polar solvent of the present invention include N-methylpyrrolidone, N-methylcaprolactam, N,N-dimethylacetamide, N,N-dimethylformamide, hexamethylphosphoric triamide, dimethylsulfone, and tetramethylene sulfoxide. Among them, N-methylpyrrolidone is preferably used.

【0018】本発明のアルカリ金属カルボン酸塩として
は、酢酸リチウム、酢酸ナトリウム、酢酸カリウム、プ
ロピオン酸リチウム、プロピオン酸ナトリウム、2−メ
チルプロピオン酸リチウム、酪酸ルビジウム、吉草酸リ
チウム、吉草酸ナトリウム、ヘキサン酸セシウム、ヘプ
タン酸リチウム、2−メチルオクタン酸リチウム、ドデ
カン酸カリウム、4−エチルテトラデカン酸ルビジウム
、オクタデカン酸ナトリウム、ヘンエイコサン酸ナトリ
ウム、シクロヘキサンカルボン酸リチウム、シクロドデ
カンカルボン酸セシウム、3−メチルシクロペンタンカ
ルボン酸ナトリウム、シクロヘキシル酢酸カリウム、安
息香酸カリウム、安息香酸リチウム、安息香酸ナトリウ
ム、m−トルイル酸カリウム、フェニル酢酸リチウム、
4−フェニルシクロヘキサンカルボン酸ナトリウム、p
−トリル酢酸カリウム、4−エチルシクロヘキシル酢酸
リチウム、その他同種類の塩、及びそれらの混合物があ
げられ、中でも酢酸リチウム、酢酸ナトリウム、安息香
酸ナトリウム、安息香酸リチウムが好ましく用いられる
The alkali metal carboxylates of the present invention include lithium acetate, sodium acetate, potassium acetate, lithium propionate, sodium propionate, lithium 2-methylpropionate, rubidium butyrate, lithium valerate, sodium valerate, and hexane. Cesium acid, lithium heptanoate, lithium 2-methyloctoate, potassium dodecanoate, rubidium 4-ethyltetradecanoate, sodium octadecanoate, sodium heneicosanoate, lithium cyclohexanecarboxylate, cesium cyclododecanecarboxylate, 3-methylcyclopentanecarboxylate sodium acid, potassium cyclohexyl acetate, potassium benzoate, lithium benzoate, sodium benzoate, potassium m-toluate, lithium phenylacetate,
Sodium 4-phenylcyclohexanecarboxylate, p
- Potassium tolyl acetate, lithium 4-ethylcyclohexyl acetate, other salts of the same type, and mixtures thereof, among which lithium acetate, sodium acetate, sodium benzoate, and lithium benzoate are preferably used.

【0019】本発明の反応において、その重合反応温度
は220℃以下の温度では重合反応がおこりにくいため
好ましくなく、さらに重合反応を十分に進めるためには
260℃以上の温度が好ましい。また220℃以下の温
度から260℃以上の温度に昇温する時の昇温速度は0
.5℃/分以下が好ましく、この速度以上の速度で昇温
すると副反応がおこりやすくなり、得られるポリアリー
レンスルフィドの重合度が大きくならないため好ましく
ない。
In the reaction of the present invention, the polymerization reaction temperature is not preferably 220° C. or lower because the polymerization reaction is difficult to occur, and a temperature of 260° C. or higher is preferable in order to sufficiently advance the polymerization reaction. Also, the rate of temperature increase when increasing the temperature from below 220°C to above 260°C is 0.
.. The temperature is preferably 5° C./min or less, and increasing the temperature at a rate higher than this rate is not preferable because side reactions tend to occur and the degree of polymerization of the obtained polyarylene sulfide does not increase.

【0020】本発明の反応において、反応初期段階で系
内に存在する水は硫黄源中のS  1モル当り0.3モ
ル未満であることが好ましく、これ以上の水が存在する
と得られるポリアリーレンスルフィドの重合度が大きく
ならず、また、反応容器の腐食が激しくなるので好まし
くない。
In the reaction of the present invention, the amount of water present in the system at the initial stage of the reaction is preferably less than 0.3 mol per 1 mol of S in the sulfur source. This is not preferred because the degree of polymerization of sulfide does not become large and the reaction vessel becomes severely corroded.

【0021】本発明の反応においては、3個以上のハロ
ゲン原子を有する化合物等を用いて架橋構造を導入する
こともできるが、その添加量はポリハロゲン化芳香族化
合物の総量の0.5モル%以下が好ましい。3個以上の
ハロゲン原子を有する化合物等を0.5モル%以上添加
すると得られるポリアリーレンスルフィドの曳糸性、製
膜性が悪くなるので好ましくない。
In the reaction of the present invention, a crosslinked structure can be introduced using a compound having three or more halogen atoms, but the amount added is 0.5 mol of the total amount of the polyhalogenated aromatic compound. % or less is preferable. It is not preferable to add a compound having three or more halogen atoms in an amount of 0.5 mol % or more because the spinnability and film-forming properties of the resulting polyarylene sulfide deteriorate.

【0022】また、本発明の反応においては有機スルホ
ン酸塩、アルカリ土類金属酸化物、アルカリ金属リン酸
塩、アルカリ土類金属リン酸塩等の助剤を添加すること
もできるし、有機酸、無機酸、末端封止剤等を添加する
ことができる。また、重合後期において水を添加するこ
ともできる。
In addition, in the reaction of the present invention, auxiliary agents such as organic sulfonates, alkaline earth metal oxides, alkali metal phosphates, alkaline earth metal phosphates, etc. can be added. , an inorganic acid, a terminal capping agent, etc. can be added. Moreover, water can also be added in the late stage of polymerization.

【0023】本発明で反応せしめた後の反応液中のポリ
ハロゲン化芳香族化合物の残存量は、その供給量の2.
5モル%以下であることが好ましく、特に0.5〜2.
0モル%が好ましい。2.5モル%を越えると得られる
ポリアリーレンスルフィドの分子量が小さく好ましくな
い。
The amount of the polyhalogenated aromatic compound remaining in the reaction solution after the reaction in the present invention is 2.
It is preferably 5 mol% or less, particularly 0.5 to 2.
0 mol% is preferred. If it exceeds 2.5 mol%, the resulting polyarylene sulfide will have a small molecular weight, which is not preferable.

【0024】本発明で反応せしめられたポリアリーレン
スルフィドは極性有機溶媒もしくは水で洗浄され、乾燥
して得られる。得られたポリアリーレンスルフィドは高
分子量であり、繊維、フィルム、成形用樹脂組成物等に
用いるとすぐれた機械特性を有した成形品を得ることが
できる。
The polyarylene sulfide reacted in the present invention is obtained by washing with a polar organic solvent or water and drying. The obtained polyarylene sulfide has a high molecular weight, and when used in fibers, films, molding resin compositions, etc., molded articles with excellent mechanical properties can be obtained.

【0025】また、ガラス繊維、炭素繊維、酸化チタン
、炭酸カルシウム等の無機充填材、酸化防止剤、熱安定
剤、紫外線吸収剤、着色剤等を添加することもできる。
[0025] Furthermore, inorganic fillers such as glass fiber, carbon fiber, titanium oxide, and calcium carbonate, antioxidants, heat stabilizers, ultraviolet absorbers, colorants, and the like may be added.

【0026】また、ポリアミド、ポリスルホン、ポリフ
ェニレンオキシド、ポリカーボネート、ポリエーテルス
ルホン、ポリエチレンテレフタレート、ポリブチレンテ
レフタレート、ポリエチレン、ポリプロピレン、ポリテ
トラフルオロエチレン、ポリエーテルエステルエラスト
マー、ポリエーテルアミドエラストマー、ポリアミドイ
ミド、ポリアセタール、ポリイミド等の樹脂を配合する
こともできる。
In addition, polyamide, polysulfone, polyphenylene oxide, polycarbonate, polyether sulfone, polyethylene terephthalate, polybutylene terephthalate, polyethylene, polypropylene, polytetrafluoroethylene, polyether ester elastomer, polyether amide elastomer, polyamideimide, polyacetal, polyimide It is also possible to blend resins such as.

【0027】[0027]

【実施例】以下、本発明を実施例を用いてさらに具体的
に説明する。本発明におけるメルトフローレイトは、A
STM  D−12380−70に準じて温度315.
6℃、荷重5kgにて測定したものである。単位はg/
10分である。
EXAMPLES The present invention will be explained in more detail below using examples. The melt flow rate in the present invention is A
Temperature 315.according to STM D-12380-70.
It was measured at 6°C and a load of 5 kg. The unit is g/
It's 10 minutes.

【0028】実施例1 攪拌機付の1lオートクレーブに硫化ナトリウム・9水
塩245.0g(1.02モル)、酢酸ナトリウム24
.6g(0.3モル)、約48%水酸化ナトリウム水溶
液2.5g(0.03モル)およびN−メチル−2−ピ
ロリドン198g(2.0モル)を仕込み、窒素を通じ
ながら205℃まで約3時間かけて徐々に加熱し、水を
主成分とする留出物164gを留出させた。系内に残っ
ている水は0.14モルであった。
Example 1 In a 1-liter autoclave equipped with a stirrer, 245.0 g (1.02 mol) of sodium sulfide nonahydrate and 24 g of sodium acetate were added.
.. 6 g (0.3 mol), about 48% aqueous sodium hydroxide solution 2.5 g (0.03 mol) and 198 g (2.0 mol) of N-methyl-2-pyrrolidone, and heated to 205°C while passing nitrogen through the mixture for about 3 mols. The mixture was heated gradually over a period of time, and 164 g of a distillate containing water as a main component was distilled out. The amount of water remaining in the system was 0.14 mol.

【0029】反応容器を180℃に冷却し、p−ジクロ
ルベンゼン147g(1.0モル)およびN−メチル−
2−ピロリドン149g(1.5モル)を加え、窒素ガ
ス圧下に密閉し210℃まで昇温した。
The reaction vessel was cooled to 180°C, and 147 g (1.0 mol) of p-dichlorobenzene and N-methyl-
149 g (1.5 mol) of 2-pyrrolidone was added, the mixture was sealed under nitrogen gas pressure, and the temperature was raised to 210°C.

【0030】反応容器を210℃から225℃まで0.
5℃/分の昇温速度で昇温し、次に270℃まで0.3
℃/分で昇温し、270℃で110分間反応を行なった
。内温210℃から重合反応終了までの時間は280分
であった。
[0030] The reaction vessel was heated from 210°C to 225°C.
Raise the temperature at a heating rate of 5°C/min, then increase the temperature by 0.3°C to 270°C.
The temperature was raised at a rate of .degree. C./min, and the reaction was carried out at 270.degree. C. for 110 minutes. The time from the internal temperature of 210°C to the end of the polymerization reaction was 280 minutes.

【0031】反応容器を1℃/分の速度でゆっくりと冷
却後、内容物を取り出し、残存しているp−ジクロルベ
ンゼンの量をガスクロマトグラフィーにより分析したと
ころ1.2モル%であった。内容物を70℃のN−メチ
ル−2−ピロリドン500gで洗浄した後、70℃の水
700gで6回洗浄し、120℃で減圧乾燥した。
After cooling the reaction vessel slowly at a rate of 1° C./min, the contents were taken out and the amount of remaining p-dichlorobenzene was analyzed by gas chromatography and found to be 1.2 mol %. . The contents were washed with 500 g of N-methyl-2-pyrrolidone at 70°C, washed six times with 700 g of water at 70°C, and dried under reduced pressure at 120°C.

【0032】得られたポリフェニレンスルフィドの収率
は89%でメルトフローレイトは64g/10分であっ
た。この操作の中の脱水工程中、飛散した硫化水素は2
.0モル%であった。
The yield of the polyphenylene sulfide obtained was 89%, and the melt flow rate was 64 g/10 minutes. During the dehydration process in this operation, the amount of hydrogen sulfide scattered is 2
.. It was 0 mol%.

【0033】実施例2 反応容器を密閉後210℃から270℃まで0.3℃/
分の速度で昇温し270℃で70分間反応させた以外は
実施例1と同様の操作を行なった。内温210℃から重
合反応終了までの時間は280分であった。収率84%
で得られたポリフェニレンスルフィドのメルトフローレ
イトは76g/10分で、残存しているp−ジクロルベ
ンゼンは1.4モル%であった。
Example 2 After sealing the reaction vessel, the temperature was increased from 210°C to 270°C by 0.3°C/
The same operation as in Example 1 was carried out, except that the temperature was raised at a rate of 1 minute and the reaction was carried out at 270° C. for 70 minutes. The time from the internal temperature of 210°C to the end of the polymerization reaction was 280 minutes. Yield 84%
The melt flow rate of the polyphenylene sulfide obtained was 76 g/10 minutes, and the remaining p-dichlorobenzene was 1.4 mol%.

【0034】実施例3 実施例1と同様の1リットルオートクレーブに、45%
水硫化ナトリウム127.1g(1.02モル)、水酸
化ナトリウム40.0g(1.0モル)、酢酸ナトリウ
ム24.6g(0.30モル)およびN−メチル−2−
ピロリドン198g(2.0モル)を仕込み、実施例1
と同様に加熱し、水を主成分とする留出物66gを留出
させた。系内に残存している水は、0.22モルであっ
た。
Example 3 In a 1 liter autoclave similar to Example 1, 45%
Sodium hydrosulfide 127.1 g (1.02 mol), sodium hydroxide 40.0 g (1.0 mol), sodium acetate 24.6 g (0.30 mol) and N-methyl-2-
Example 1: Pyrrolidone 198g (2.0mol) was charged.
The mixture was heated in the same manner as above, and 66 g of a distillate containing water as a main component was distilled out. The amount of water remaining in the system was 0.22 mol.

【0035】反応容器を180℃に冷却し、p−ジクロ
ルベンゼン147g(1.0モル)およびN−メチル−
2−ピロリドン149g(1.5モル)を加え、窒素ガ
ス圧下に密閉し210℃まで昇温した。
The reaction vessel was cooled to 180°C, and 147 g (1.0 mol) of p-dichlorobenzene and N-methyl-
149 g (1.5 mol) of 2-pyrrolidone was added, the mixture was sealed under nitrogen gas pressure, and the temperature was raised to 210°C.

【0036】次に210℃から225℃まで0.5℃/
分の速度で昇温し、225℃で30分間反応させた後0
.3℃/分の速度で270℃まで昇温を行ない、270
℃で70分間反応を行なった。
Next, from 210°C to 225°C, increase the temperature by 0.5°C/
The temperature was raised at a rate of 1 minute, and after reacting at 225℃ for 30 minutes,
.. The temperature was raised to 270°C at a rate of 3°C/min.
The reaction was carried out at ℃ for 70 minutes.

【0037】反応終了後、反応容器を1℃/分で冷却し
ながら水18gを1ml/分の速度で添加した。以下実
施例1と同様に冷却、洗浄、乾燥し、収率87%でポリ
フェニレンスルフィドを得た。残存しているp−ジクロ
ルベンゼンは1.6モル%で、メルトフローレイトは5
2g/10分であった。また内温210℃から重合反応
終了までの時間は280分であった。
After the reaction was completed, 18 g of water was added at a rate of 1 ml/min while cooling the reaction vessel at a rate of 1° C./min. Thereafter, the mixture was cooled, washed, and dried in the same manner as in Example 1 to obtain polyphenylene sulfide in a yield of 87%. The remaining p-dichlorobenzene is 1.6 mol%, and the melt flow rate is 5.
It was 2g/10 minutes. Further, the time from the internal temperature of 210°C to the end of the polymerization reaction was 280 minutes.

【0038】実施例4 反応容器を密閉後、反応を225℃で106分、さらに
0.5℃/分で昇温して270℃で55分間反応させた
以外は実施例3と同様の操作を行なった。内温210℃
から重合反応終了までの時間は280分であった。収率
87%で得られたポリフェニレンスルフィドのメルトフ
ローレイトは85g/10分で、残存しているp−ジク
ロルベンゼンは1.9モル%であった。
Example 4 The same procedure as in Example 3 was carried out, except that after sealing the reaction vessel, the reaction was carried out at 225°C for 106 minutes, and then the temperature was increased at a rate of 0.5°C/min and the reaction was carried out at 270°C for 55 minutes. I did it. Internal temperature 210℃
The time from the start to the end of the polymerization reaction was 280 minutes. The melt flow rate of polyphenylene sulfide obtained with a yield of 87% was 85 g/10 minutes, and the remaining p-dichlorobenzene was 1.9 mol %.

【0039】実施例5 実施例3と同一処方で、但しp−ジクロルベンゼンの代
わりにp−ジブロムベンゼン155.9g(1.0モル
)を使用し重合を行なった。残存していたp−ジブロム
ベンゼンは0.7モル%であり、メルトフローレート8
3g/10分の重合体を得た。ここで、270℃まで0
.5℃/分で昇温し、270℃に到達した時点で反応容
器は即ち1℃/分で冷却を開始した。内温210℃から
、重合反応終了までの時間は210分であった。
Example 5 Polymerization was carried out using the same recipe as in Example 3, except that 155.9 g (1.0 mol) of p-dibromobenzene was used instead of p-dichlorobenzene. The remaining p-dibromobenzene was 0.7 mol%, and the melt flow rate was 8.
3g/10min of polymer was obtained. Here, 0 to 270℃
.. The temperature was increased at a rate of 5°C/min, and when the temperature reached 270°C, the reaction vessel began to cool down at a rate of 1°C/min. The time from the internal temperature of 210°C to the end of the polymerization reaction was 210 minutes.

【0040】実施例6 実施例1において、水酸化ナトリウムの代わりに45%
水硫化ナトリウム2.0g(0.016モル)を使用し
た他は同一の重合操作を行なった。粒子状の重合体が9
2%の収率で得られ、メルトフローレートは48g/1
0分であった。この操作の中の脱水工程中、飛散した硫
化水素は水硫化ナトリウム当たり2.8モル%であった
Example 6 In Example 1, 45% sodium hydroxide was added instead of sodium hydroxide.
The same polymerization procedure was carried out except that 2.0 g (0.016 mol) of sodium hydrosulfide was used. Particulate polymer is 9
Obtained with a yield of 2% and a melt flow rate of 48g/1
It was 0 minutes. During the dehydration step of this operation, the amount of hydrogen sulfide scattered was 2.8 mol % based on sodium bisulfide.

【0041】比較例1 実施例1において210℃から270℃まで0.6℃/
分の速度で昇温を行ない270℃で170分反応を行な
った以外は全て実施例1と同様の操作を行なった。得ら
れたポリフェニレンスルフィドのメルトフローレイトは
624g/10分で残存しているp−ジクロルベンゼン
は1.0モル%であった。またポリマーの収率は79%
であった。
Comparative Example 1 In Example 1, from 210°C to 270°C, 0.6°C/
All operations were carried out in the same manner as in Example 1, except that the temperature was raised at a rate of 270° C. and the reaction was carried out at 270° C. for 170 minutes. The melt flow rate of the obtained polyphenylene sulfide was 624 g/10 minutes, and the remaining p-dichlorobenzene was 1.0 mol %. Also, the yield of polymer was 79%
Met.

【0042】比較例2 p−ジクロルベンゼンを加える時、同時に水18g(1
モル)を加えた以外は全て実施例1と同様の操作を行な
った。得られたポリフェニレンスルフィドのメルトフロ
ーレイトは1100g/10分で残存しているp−ジク
ロルベンゼンは0.4モル%であった。またポリマーの
収率は63%であった。
Comparative Example 2 When adding p-dichlorobenzene, 18 g (18 g) of water was added at the same time.
The same operations as in Example 1 were performed except that mol) was added. The melt flow rate of the obtained polyphenylene sulfide was 1100 g/10 minutes, and the remaining p-dichlorobenzene was 0.4 mol %. Moreover, the yield of the polymer was 63%.

【0043】比較例3 酢酸ナトリウムを添加しなかった以外は全て実施例1と
同様の操作を行なった。得られたポリフェニレンスルフ
ィドのメルトフローレイトは1400g/10分で残存
しているp−ジクロルベンゼンは1.5モル%であった
。またポリマーの収率は80%であった。
Comparative Example 3 The same operations as in Example 1 were carried out except that sodium acetate was not added. The melt flow rate of the obtained polyphenylene sulfide was 1400 g/10 minutes, and the remaining p-dichlorobenzene was 1.5 mol %. Moreover, the yield of the polymer was 80%.

【0044】比較例4 p−ジクロルベンゼンを150g(1.02モル)加え
た以外は全て実施例1と同様の操作を行なった。得られ
たポリフェニレンスルフィドのメルトフローレイトは7
30g/10分で残存しているp−ジクロルベンゼンは
2.9モル%であった。また、ポリマーの収率は82%
であった。
Comparative Example 4 The same procedure as in Example 1 was carried out except that 150 g (1.02 mol) of p-dichlorobenzene was added. The melt flow rate of the obtained polyphenylene sulfide was 7
The p-dichlorobenzene remaining at 30 g/10 minutes was 2.9 mol%. In addition, the yield of polymer was 82%
Met.

【0045】比較例5 p−ジクロルベンゼン145.5g(0.99モル)と
1,2,4−トリクロルベンゼン1.8g(0.01モ
ル)を加えた以外は全て実施例1と同様の操作を行なっ
た得られたポリフェニレンスルフィドのメルトフローレ
イトは45g/10分で残存しているp−ジクロルベン
ゼンは1.2モル%であった。また、ポリマーの収率は
81%であった。しかしながら、このポリマーでは曳糸
時に糸切れが発生した。
Comparative Example 5 The same procedure as in Example 1 was carried out except that 145.5 g (0.99 mol) of p-dichlorobenzene and 1.8 g (0.01 mol) of 1,2,4-trichlorobenzene were added. The melt flow rate of the polyphenylene sulfide obtained after the operation was 45 g/10 minutes, and the remaining p-dichlorobenzene was 1.2 mol %. Moreover, the yield of the polymer was 81%. However, with this polymer, thread breakage occurred during spinning.

【0046】比較例6 底部に抜出しコックを有する1リットル容器を使用し、
実施例1と同一の処方で脱水操作を行なった。この系を
180℃まで冷却後、p−ジクロルベンゼン147g(
1.0モル)およびN−メチルピロリドン149gを加
え窒素雰囲気下に密閉し210℃まで加熱し一定に保っ
た。内容物を抜出しコックを使用し約50gずつ5、1
0、20時間後に抜出し、粉末状のポリマを水洗、乾燥
後メルトフローレートを測定したところ次のようであっ
た。
Comparative Example 6 Using a 1 liter container with an extraction cock at the bottom,
Dehydration was performed using the same recipe as in Example 1. After cooling this system to 180°C, 147 g of p-dichlorobenzene (
1.0 mol) and 149 g of N-methylpyrrolidone were added, the mixture was sealed in a nitrogen atmosphere, and the mixture was heated to 210°C and kept constant. Remove the contents and use a cooker to add approximately 50g each.
After 0 and 20 hours, the powdered polymer was taken out, washed with water, and dried, and the melt flow rate was measured, and the results were as follows.

【表1】       ───────────────────
────────────             
             メルトフローレート   
   分子量      ─────────────
──────────────────       
   5時間後        5000以上    
        15000以下        10
              5000以上     
           〃        20   
           3800          
      17500      ────────
───────────────────────
[Table 1] ────────────────────
────────────
melt flow rate
Molecular weight ──────────────
────────────────────
5 hours later 5000 or more
15,000 or less 10
5000 or more
〃 20
3800
17500 ────────
────────────────────────

【0
047】比較例7 実施例3において、水酸化ナトリウムを使用することを
除いて同一の重合操作を行なった。脱水工程において7
0gの留出物を得ると同時に使用した水硫化ナトリウム
当り3.5モル%の硫化水素が飛散した。洗浄後の重合
体は粉末状であり、メルトフローレートは3200g/
10分であった。一方、この系で210℃から270℃
まで0.8℃/分で昇温し、同様な操作で得た微粉状重
合体のメルトフローレートは6700g/10分と高か
った。
0
Comparative Example 7 The same polymerization procedure as in Example 3 was carried out except that sodium hydroxide was used. 7 in the dehydration process
At the same time as 0 g of distillate was obtained, 3.5 mol% of hydrogen sulfide was scattered based on the sodium hydrogen sulfide used. The polymer after washing is in powder form, and the melt flow rate is 3200g/
It was 10 minutes. On the other hand, in this system, 210℃ to 270℃
The melt flow rate of a finely powdered polymer obtained by the same operation was as high as 6,700 g/10 min.

【0048】次に、実施例1および比較例1で得られた
ポリマを直接、下記の射出成形機を用いて成形した際の
成形品の物性を示す。 住友ネスタール  SG75 射出温度        320℃ 金型温度        150℃ 試験片    JIS−K7113
Next, the physical properties of molded products obtained when the polymers obtained in Example 1 and Comparative Example 1 were directly molded using the injection molding machine described below will be shown. Sumitomo Nestal SG75 Injection temperature 320℃ Mold temperature 150℃ Test piece JIS-K7113

【表2】 ─────────────────────────
──────────               
                         
実施例1        比較例1─────────
─────────────────────────
─  引張り強度  (kg/cm2 )      
        891          770 
 伸び        (%)           
           12.5          
3.8  ウェルド強度(kg/cm2 )     
         820          750
  曲げ強度    (kg/cm2 )      
      1450        1412  衝
撃強度                      
        破壊せず          29 
   ノッチ無し(kg・cm/cm2 )     
     (60以上)──────────────
─────────────────────
[Table 2] ──────────────────────────
──────────

Example 1 Comparative example 1──────────
──────────────────────────
─ Tensile strength (kg/cm2)
891 770
stretch (%)
12.5
3.8 Weld strength (kg/cm2)
820 750
Bending strength (kg/cm2)
1450 1412 Impact strength
without destruction 29
No notch (kg・cm/cm2)
(60 or more)──────────────
──────────────────────

【004
9】実施(比較)例中のポリマはいずれもガラス転移温
度89〜92℃、融点275〜295℃の範囲にあり、
ポリフェニレンスルフィド構造を繰返し単位として持つ
ものと推定される。
004
9] The polymers in the practical (comparative) examples all have a glass transition temperature of 89 to 92°C and a melting point of 275 to 295°C,
It is presumed to have a polyphenylene sulfide structure as a repeating unit.

【0050】実施(比較)例中には、メルトフローレー
トの値が記載してあるが、この値と分子量(または重合
度)には一定の関係がある。また  分子量=108×
重合度である。そこで、各実施(比較)例で得られたポ
リマーについて、メルトフローレート及び分子量を以下
に表にする。
[0050] In the practical (comparative) examples, the value of the melt flow rate is described, and there is a certain relationship between this value and the molecular weight (or degree of polymerization). Also, molecular weight = 108×
It is the degree of polymerization. Therefore, the melt flow rate and molecular weight of the polymers obtained in each practical (comparative) example are shown in the table below.

【表3】[Table 3]

【0051】上記の表から分るとおり、本発明の実施例
1〜6の場合、メルトフローレートが小さく、得られた
ポリマーの重合度が高いことがわかる。なお、実施例1
の脱水工程中には2.0モル%の硫化水素が飛散し、実
施例6において飛散した硫化水素は2.8モル%であっ
たことから、水酸化ナトリウム併用が、重合前工程(脱
水工程)での硫黄源のロスを低減させることを示唆して
いる。
As can be seen from the above table, in Examples 1 to 6 of the present invention, the melt flow rate was low and the degree of polymerization of the obtained polymers was high. In addition, Example 1
During the dehydration step, 2.0 mol% of hydrogen sulfide was scattered, and the amount of hydrogen sulfide scattered in Example 6 was 2.8 mol%. ) suggests that it reduces the loss of sulfur sources.

【0052】上記実施例1〜6に対して、比較例1〜7
のように昇温速度が早い場合(比較例1)、重合反応温
度が220℃以下の場合(比較例6)、重合反応時、系
内に水が多く存在している場合(比較例2)、アルカリ
金属カルボン酸塩が存在しない場合(比較例3)、ポリ
ハロゲン化芳香族化合物の残存量が多い場合(比較例4
)、また、硫黄源として硫化ナトリウム以外のものを用
いかつアルカリ金属水酸化物を使用しない場合(比較例
7)、重合度の高いポリアリーレンスルフィドを得るこ
とができない。また、架橋構造が多く導入された場合(
比較例5)重合度は高くなるもののポリマーの特性が損
なわれる。
Comparative Examples 1 to 7 in contrast to Examples 1 to 6 above
When the temperature increase rate is fast (Comparative Example 1), when the polymerization reaction temperature is 220°C or less (Comparative Example 6), when there is a large amount of water in the system during the polymerization reaction (Comparative Example 2) , when there is no alkali metal carboxylate (Comparative Example 3), when there is a large amount of residual polyhalogenated aromatic compound (Comparative Example 4)
), and when using something other than sodium sulfide as a sulfur source and not using an alkali metal hydroxide (Comparative Example 7), polyarylene sulfide with a high degree of polymerization cannot be obtained. In addition, when many crosslinked structures are introduced (
Comparative Example 5) Although the degree of polymerization increases, the properties of the polymer are impaired.

【0053】[0053]

【発明の効果】ポリアリーレンスルフィドの製造方法に
おいて、従来の公知例では、反応系の昇温速度について
は、一般的記述として広く設定されていたが、本発明の
ように特定の条件にコントロールすることによって高重
合度のポリアリーレンスルフィドが短時間(12時間未
満、例えば、210分〜280分)で得られ、また、副
次的に得られるポリアリーレンスルフィドの収率も向上
する効果がある。
[Effect of the invention] In the conventionally known method for producing polyarylene sulfide, the temperature increase rate of the reaction system was broadly set as a general description, but as in the present invention, it is controlled to specific conditions. As a result, polyarylene sulfide with a high degree of polymerization can be obtained in a short time (less than 12 hours, for example, 210 minutes to 280 minutes), and the yield of polyarylene sulfide obtained as a secondary product is also improved.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  有機極性溶媒中で硫化アルカリ、水硫
化アルカリ、硫化水素から選ばれた硫黄源および、前記
の硫黄源として、硫化アルカリ以外のものを使用する場
合は、アルカリ金属水酸化物とポリハロゲン化芳香族化
合物とを、又前記の硫黄源として硫化アルカリを使用す
る場合は、ポリハロゲン化芳香族化合物とを反応させて
ポリアリーレンスルフィドを得る方法において、反応溶
液を220℃以下の温度から260℃以上に昇温する時
に、硫黄源中のS  1モル当り0.3モル未満の水と
アルカリ金属カルボン酸塩の存在下、平均して0.5℃
/分以下の昇温速度で反応を行なうことを特徴とするポ
リアリーレンスルフィドの製造方法。
Claim 1: When using a sulfur source selected from alkali sulfide, alkali hydrosulfide, and hydrogen sulfide in an organic polar solvent, and as the sulfur source other than alkali sulfide, an alkali metal hydroxide and In the method of obtaining polyarylene sulfide by reacting a polyhalogenated aromatic compound and, when using an alkali sulfide as the sulfur source, the reaction solution is heated to a temperature of 220°C or less. 0.5°C on average in the presence of less than 0.3 mole of water and alkali metal carboxylate per mole of S in the sulfur source when increasing the temperature from
1. A method for producing polyarylene sulfide, characterized in that the reaction is carried out at a temperature increase rate of /min or less.
【請求項2】  反応終了後のポリハロゲン化芳香族化
合物の残存量が、その供給量の2.5モル%以下である
請求項(1)に記載の方法。
2. The method according to claim 1, wherein the amount of the polyhalogenated aromatic compound remaining after completion of the reaction is 2.5 mol % or less of the amount supplied.
【請求項3】  ポリアリーレンスルフィドのメルトフ
ローレイトが500以下である請求項(1)に記載の方
法。
3. The method according to claim 1, wherein the polyarylene sulfide has a melt flow rate of 500 or less.
JP3016541A 1991-02-07 1991-02-07 Method for producing polyarylene sulfide Expired - Lifetime JP2924202B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3016541A JP2924202B2 (en) 1991-02-07 1991-02-07 Method for producing polyarylene sulfide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3016541A JP2924202B2 (en) 1991-02-07 1991-02-07 Method for producing polyarylene sulfide

Publications (2)

Publication Number Publication Date
JPH04255721A true JPH04255721A (en) 1992-09-10
JP2924202B2 JP2924202B2 (en) 1999-07-26

Family

ID=11919128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3016541A Expired - Lifetime JP2924202B2 (en) 1991-02-07 1991-02-07 Method for producing polyarylene sulfide

Country Status (1)

Country Link
JP (1) JP2924202B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0720998A2 (en) * 1994-12-28 1996-07-10 Kureha Kagaku Kogyo Kabushiki Kaisha Process for producing poly(phenylene sulfide)
JP2001089569A (en) * 1999-07-21 2001-04-03 Toray Ind Inc Production of granular polyarylene sulfide resin
JP2008075055A (en) * 2006-09-25 2008-04-03 Dainippon Ink & Chem Inc Polyarylene sulfide resin composition, its preparation process, and optical component
CN109705345A (en) * 2018-12-28 2019-05-03 重庆晟淦新材料科技有限公司 Ultralow chloride polyphenylene sulfide resin and its synthetic method and application

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102262062B1 (en) 2014-08-08 2021-06-08 도레이 카부시키가이샤 Solvent-resistant separation membrane

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0720998A2 (en) * 1994-12-28 1996-07-10 Kureha Kagaku Kogyo Kabushiki Kaisha Process for producing poly(phenylene sulfide)
EP0720998A3 (en) * 1994-12-28 1997-10-29 Kureha Chemical Ind Co Ltd Process for producing poly(phenylene sulfide)
US5744576A (en) * 1994-12-28 1998-04-28 Kureha Kagaku Kogyo K.K. Process for producing poly(phenylene sulfide)
JP2001089569A (en) * 1999-07-21 2001-04-03 Toray Ind Inc Production of granular polyarylene sulfide resin
JP2008075055A (en) * 2006-09-25 2008-04-03 Dainippon Ink & Chem Inc Polyarylene sulfide resin composition, its preparation process, and optical component
CN109705345A (en) * 2018-12-28 2019-05-03 重庆晟淦新材料科技有限公司 Ultralow chloride polyphenylene sulfide resin and its synthetic method and application

Also Published As

Publication number Publication date
JP2924202B2 (en) 1999-07-26

Similar Documents

Publication Publication Date Title
US4116947A (en) Branched arylene sulfide polymer production
CA1182247A (en) Elevated, declining pressure dehydration of poly(arylene sulfide) prepolymerization mixture
JP5392537B2 (en) Process for producing polyarylene sulfide
US4089847A (en) Temperature programming in the production of arylene sulfide polymers
JPH07121985B2 (en) Method for producing polyarylensulfide
US4424339A (en) Process for the preparation of polyarylene sulphides
JP3610990B2 (en) Polyarylene sulfide with excellent adhesion
EP0215312A1 (en) Method for producing of polyarylene sulfides
JPH08170016A (en) Polyarylene sulfide resin composition
JP3624410B2 (en) Polyarylene sulfide resin composition
JP4893436B2 (en) Process for producing polyarylene sulfide
JP3582123B2 (en) Method for producing polyarylene sulfide
JP3614486B2 (en) Production method of polyarylene sulfide with excellent adhesion
JP2002201275A (en) Process for preparing polyarylene sulfide
JP2869983B2 (en) Method for producing polyarylene sulfide
US4740569A (en) Arylene sulfide polymer, contacted with polyhaloaromatic compound
JPH04255721A (en) Production of polyarylene sulfide
US5109110A (en) Process for the production of polyarylene sulfides with lithium halide and alkali metal hydrosulfide
JP3143928B2 (en) Method for producing polyarylene sulfide
JPH04255722A (en) Production of polyarylene sulfide
JPH07233256A (en) Production of polyarylene sulfide
JP3568049B2 (en) Polyarylene thioether and method for producing the same
US5200499A (en) Removal of water by venting during the polymerization of phenylene sulfide polymers with sulfur source/polar organic compound molar ratio being at least 0.36/1
US5380821A (en) Process for the manufacture of poly(arylene sulphide)
US4656231A (en) Arylene sulfide polymerization; arylene sulfide polymer treated with aromatic compound having more than 2 halogen substituents; processed product thereof

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080507

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090507

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090507

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100507

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110507

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110507

Year of fee payment: 12