JPH04254741A - Suspended particulate counter - Google Patents

Suspended particulate counter

Info

Publication number
JPH04254741A
JPH04254741A JP3015154A JP1515491A JPH04254741A JP H04254741 A JPH04254741 A JP H04254741A JP 3015154 A JP3015154 A JP 3015154A JP 1515491 A JP1515491 A JP 1515491A JP H04254741 A JPH04254741 A JP H04254741A
Authority
JP
Japan
Prior art keywords
laser beam
particles
scattered
suspended
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3015154A
Other languages
Japanese (ja)
Other versions
JP2867718B2 (en
Inventor
Koujirou Itou
考治郎 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP3015154A priority Critical patent/JP2867718B2/en
Publication of JPH04254741A publication Critical patent/JPH04254741A/en
Application granted granted Critical
Publication of JP2867718B2 publication Critical patent/JP2867718B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a suspended particulate counter which can count suspended particulates exactly. CONSTITUTION:A suspended particulate counter is constructed in such a manner that it comprises a laser beam generator 11 which applies a laser beam 12 to a suspended particulate 10, a cylindrical concave mirror 14 which makes centers 14b of curvatures ranging in a straight line coincide with the optical axis 12a of the laser beam 12, a cylindrical lens 15 which makes focal positions 15b ranging in a straight line on the incident surface 15a side coincide with the optical axis 12a of the laser beam 12, and a plurality of light-sensing elements 16 which sense a scattered light 13 of the laser beam 12 scattered by the suspended particulate 10, as an incident light, and converts it into an electric signal.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、空間を浮遊する微粒子
( 以下、「浮遊微粒子」という) を計数する浮遊微
粒子計数器、特に浮遊微粒子を正確に計数できる浮遊微
粒子計数器に関する。微細な配線パターンを有する半導
体装置を歩留り良く製造するには、半導体装置を製造す
るためのクリーンルーム内の浮遊微粒子の数量を極限ま
で減少させることが肝要である。そして、このためには
浮遊微粒子を正確に計数できる浮遊微粒子計数器が不可
欠となる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a suspended particle counter that counts particles floating in space (hereinafter referred to as "suspended particles"), and more particularly to a suspended particle counter that can accurately count suspended particles. In order to manufacture semiconductor devices having fine wiring patterns with a high yield, it is important to reduce the number of floating particles in a clean room for manufacturing semiconductor devices to the utmost. For this purpose, a suspended particle counter that can accurately count suspended particles is essential.

【0002】0002

【従来の技術】次に、従来の浮遊微粒子計数器について
、図2を参照しながら説明する。図2は、従来の浮遊微
粒子計数器を模式的に示す要部斜視図である。なお、本
明細書においては、同一部品、同一材料等に対しては全
図をとおして同じ符号を付与してある。
2. Description of the Related Art Next, a conventional suspended particle counter will be explained with reference to FIG. FIG. 2 is a perspective view of a main part schematically showing a conventional suspended particle counter. In this specification, the same parts, the same materials, etc. are given the same reference numerals throughout the drawings.

【0003】従来の浮遊微粒子計数器は、図2に示すよ
うに互いの反射面21a,22a を対向且つ平行且つ
離隔した第1の平面鏡21と第2の平面鏡22の何れか
の反射面にレーザ光線発生器11が発生したレーザ光線
12を斜めから照射し、この反射面21a,22a 間
で繰り返し反射させてジグザグ状(Zigzag;つづ
ら折り) にしたレーザ光線12を浮遊微粒子10に照
射して放射状の散乱光13を形成し、そして、レーザ光
線12の進行方向を望む方向に受光面16a を向けた
ホトダイオードアレイ16が散乱光13を受光する度毎
に出力するパルス状の電気信号の数をパルスカウンタ(
図示せず)で計数するように構成していた。
[0003] As shown in FIG. 2, a conventional suspended particle counter uses a laser beam on either a first plane mirror 21 or a second plane mirror 22, which have reflecting surfaces 21a and 22a facing each other, parallel to each other, and separated from each other. A laser beam 12 generated by a light beam generator 11 is irradiated obliquely, and the laser beam 12 is repeatedly reflected between the reflecting surfaces 21a and 22a to form a zigzag shape (zigzag). A pulse counter measures the number of pulsed electrical signals output each time the photodiode array 16, which forms the scattered light 13 and faces the light-receiving surface 16a in the desired direction of the traveling direction of the laser beam 12, receives the scattered light 13. (
(not shown).

【0004】0004

【発明が解決しようとする課題】ところが、浮遊微粒子
10からの散乱光13は放射状になってあらゆる方向に
進行するから、ホトダイオードアレイ16に入射する散
乱光13は極めて微弱になり、S/N比(ホトダイオー
ドアレイ16からパルスカウンタに入力されるパルス状
の電気信号の波高値とホトダイオードアレイ16とパル
スカウンタの内部雑音電圧値の比)が低下することとな
る。このために従来の浮遊微粒子計数器は、浮遊微粒子
10を正確に計数できないという問題があった。
However, since the scattered light 13 from the suspended particles 10 travels in a radial manner in all directions, the scattered light 13 that enters the photodiode array 16 becomes extremely weak, causing a problem with the S/N ratio. (The ratio of the peak value of the pulsed electrical signal input from the photodiode array 16 to the pulse counter and the internal noise voltage value of the photodiode array 16 and the pulse counter) will decrease. For this reason, the conventional suspended particulate counter has a problem in that it cannot accurately count the suspended particulates 10.

【0005】本発明は、このような問題を解消するため
になされたものであって、その目的は、S/N比を向上
して空間を浮遊する浮遊微粒子を正確に計数できる浮遊
微粒子計数器を提供することにある。
The present invention has been made to solve these problems, and its purpose is to provide a suspended particle counter that can improve the S/N ratio and accurately count suspended particles floating in space. Our goal is to provide the following.

【0006】[0006]

【課題を解決するための手段】前記目的は、図1に示す
ように浮遊微粒子にレーザ光線を照射し、微粒子が散乱
したレーザ光線の散乱光を検出して浮遊微粒子を計数す
る浮遊微粒子計数器において、発生したビーム状のレー
ザ光線12を浮遊微粒子10に照射するレーザ光線発生
器11と、レーザ光線12の進行方向に反射面14a 
を向けて配列されて、直線状に連なる曲率中心14b 
をレーザ光線12の光軸12a に一致させた円筒型凹
面鏡14と、レーザ光線12を中間位置に介在させて入
射面15a を円筒型凹面鏡14の反射面14a に対
向させて、入射面15a 側の直線状に連なる焦点位置
15b をレーザ光線12の光軸12a に一致させた
シリンドリカルレンズ15と、受光面16a をシリン
ドリカルレンズ15の出射面15c 側の焦点位置15
d に合わせて点列され、シリンドリカルレンズ15の
出射面15c から出射した浮遊微粒子10が散乱した
レーザ光線12の散乱光13を受光面16a に入射し
て電気信号に変換する複数の受光素子16とを含んで構
成したことを特徴とする浮遊微粒子計数器により達成さ
れる。
[Means for Solving the Problems] The object is to provide a suspended particle counter that counts the suspended particles by irradiating the suspended particles with a laser beam and detecting the scattered light of the laser beam scattered by the particles, as shown in FIG. , a laser beam generator 11 that irradiates the floating particles 10 with a generated beam-shaped laser beam 12, and a reflecting surface 14a in the traveling direction of the laser beam 12.
The centers of curvature 14b are arranged in a straight line with
A cylindrical concave mirror 14 with the laser beam 12 aligned with the optical axis 12a of the laser beam 12, and an incident surface 15a facing the reflective surface 14a of the cylindrical concave mirror 14 with the laser beam 12 interposed at an intermediate position. The cylindrical lens 15 has a linearly connected focal point 15b aligned with the optical axis 12a of the laser beam 12, and the light receiving surface 16a is the focal point 15 on the side of the output surface 15c of the cylindrical lens 15.
d, and a plurality of light receiving elements 16 which input the scattered light 13 of the laser beam 12 scattered by the floating particles 10 emitted from the output surface 15c of the cylindrical lens 15 into the light receiving surface 16a and convert it into an electric signal. This is achieved by a suspended particle counter characterized by comprising:

【0007】[0007]

【作用】本発明の浮遊微粒子計数器は、図1に示すよう
に浮遊微粒子10が散乱した散乱光13で、円筒型凹面
鏡14の方向に向かう散乱光13はこの反射面14a 
で反射した後にシリンドリカルレンズ15を通過して受
光素子16に入射する。また、直接シリンドリカルレン
ズ15の方向に向かう散乱光13は、シリンドリカルレ
ンズ15を通過して受光素子16に入射することとなる
[Operation] As shown in FIG. 1, in the floating particle counter of the present invention, the scattered light 13 scattered by the floating particles 10 and the scattered light 13 directed toward the cylindrical concave mirror 14 are reflected by the reflecting surface 14a.
After being reflected, the light passes through the cylindrical lens 15 and enters the light receiving element 16 . Further, the scattered light 13 directly directed toward the cylindrical lens 15 passes through the cylindrical lens 15 and enters the light receiving element 16 .

【0008】したがって、本発明の浮遊微粒子計数器に
おいては、浮遊微粒子10が放射状に反射したレーザ光
線12の散乱光13は受光素子16に同時に入射するこ
ととなり、受光素子16が散乱光13の入射と同時に出
力するパルス状の電気信号の波高値は大きくなってS/
N比が向上し、浮遊微粒子を正確に計数できることとな
る。
Therefore, in the floating particle counter of the present invention, the scattered light 13 of the laser beam 12 reflected radially by the floating particles 10 simultaneously enters the light receiving element 16, and the light receiving element 16 detects the incident scattered light 13. At the same time, the peak value of the pulsed electrical signal that is output increases and becomes S/
The N ratio is improved, and suspended particles can be counted accurately.

【0009】[0009]

【実施例】以下、本発明の一実施例の浮遊微粒子計数器
について、図1を参照しながら説明する。図1は、本発
明の一実施例の浮遊微粒子計数器を説明するための図で
あって、同図(a) は装置の要部の構成を模式的に示
す斜視図、同図(b) は要部の断面図である。
Embodiment A suspended particle counter according to an embodiment of the present invention will be described below with reference to FIG. FIG. 1 is a diagram for explaining a suspended particle counter according to an embodiment of the present invention, in which FIG. 1 (a) is a perspective view schematically showing the configuration of the main part of the device, and FIG. is a sectional view of the main part.

【0010】同図(a) 及び同図(b) に示す本発
明の一実施例の浮遊微粒子計数器は、発生したビーム状
のレーザ光線12を空間内で浮遊する微粒子10に照射
するレーザ光線発生器11と、レーザ光線12の進行方
向に円筒を半割りしその内面を用いて形成した如くの反
射面14a を向けて配列されて、直線状に連なる曲率
中心14b をレーザ光線12の光軸12a に一致さ
せた円筒型凹面鏡14と、レーザ光線12を中間位置に
介在させて平坦な入射面15a を円筒型凹面鏡14の
反射面14a に対向させて、入射面15a 側の直線
状に連なる焦点位置15b をレーザ光線12の光軸1
2a に一致させたシリンドリカルレンズ15と、受光
面16a をシリンドリカルレンズ15の円柱周壁状を
した出射面15c 側の焦点位置15d に合わせて点
列され、シリンドリカルレンズ15の出射面15c か
ら出射した浮遊微粒子10が散乱したレーザ光線12の
散乱光13を受光面16a に入射して電気信号に変換
する複数の受光素子、例えばホトダイオードアレイ16
を含んで構成したものである。
[0010] A floating particle counter according to an embodiment of the present invention shown in Figs. The generator 11 and the reflective surface 14a, which is formed by dividing a cylinder in half and using the inner surface of the cylinder, are arranged in the traveling direction of the laser beam 12, and the centers of curvature 14b, which are connected in a straight line, are aligned with the optical axis of the laser beam 12. A cylindrical concave mirror 14 aligned with the angle 12a, and a linearly connected focal point on the side of the incident surface 15a, with the laser beam 12 interposed at an intermediate position and a flat incident surface 15a facing the reflective surface 14a of the cylindrical concave mirror 14. The position 15b is the optical axis 1 of the laser beam 12.
2a, and the light receiving surface 16a is aligned with the focal position 15d on the exit surface 15c side of the cylindrical lens 15, which has a cylindrical peripheral wall shape. A plurality of light-receiving elements, for example, a photodiode array 16, convert the scattered light 13 of the laser beam 12 scattered by the laser beam 10 into an electric signal by entering the light-receiving surface 16a.
It is composed of:

【0011】このように構成した本発明の一実施例の浮
遊微粒子計数器は、同図(b) に示すように浮遊微粒
子10が散乱したレーザ光線12の散乱光13で、円筒
型凹面鏡14の方向に向かう散乱光13はこの反射面1
4a で反射した後にシリンドリカルレンズ15を通過
して受光素子16に入射する。また、直接シリンドリカ
ルレンズ15の方向に向かう散乱光13は、シリンドリ
カルレンズ15を通過して受光素子16に入射すること
となる。
The suspended particle counter according to one embodiment of the present invention constructed as described above uses the scattered light 13 of the laser beam 12 scattered by the suspended particles 10 to detect the cylindrical concave mirror 14 as shown in FIG. Scattered light 13 heading in the direction
After being reflected by 4a, the light passes through the cylindrical lens 15 and enters the light receiving element 16. Further, the scattered light 13 directly directed toward the cylindrical lens 15 passes through the cylindrical lens 15 and enters the light receiving element 16 .

【0012】したがって、本発明の浮遊微粒子計数器に
おいては、浮遊微粒子10が放射状に反射したレーザ光
線12の散乱光13は受光素子16に同時に入射するこ
ととなり、受光素子16が散乱光13の入射と同時に出
力するパルス状の電気信号の波高値は大きくなってS/
N比が向上し、浮遊微粒子を正確に計数できることとな
る。
Therefore, in the floating particle counter of the present invention, the scattered light 13 of the laser beam 12 reflected radially by the floating particles 10 simultaneously enters the light receiving element 16, and the light receiving element 16 detects the incident scattered light 13. At the same time, the peak value of the pulsed electrical signal that is output increases and becomes S/
The N ratio is improved, and suspended particles can be counted accurately.

【0013】[0013]

【発明の効果】以上説明したように本発明は、浮遊微粒
子を正確に計数できる浮遊微粒子計数器を提供すること
を可能にする。したがって、本発明の浮遊微粒子計数器
を採用するとクリーンルーム等の浮遊微粒子の管理が正
確となることにより、半導体装置等の製造歩留りを向上
できることとなる。
As described above, the present invention makes it possible to provide a suspended particle counter that can accurately count suspended particles. Therefore, when the floating particle counter of the present invention is employed, floating particles in a clean room or the like can be managed accurately, thereby improving the manufacturing yield of semiconductor devices or the like.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】は、本発明の一実施例の浮遊微粒子計数器を説
明するための図、
FIG. 1 is a diagram for explaining a suspended particle counter according to an embodiment of the present invention;

【図2】は、従来の浮遊微粒子計数器を模式的に示す要
部斜視図である。
FIG. 2 is a perspective view of a main part schematically showing a conventional suspended particle counter.

【符号の説明】[Explanation of symbols]

10は、浮遊微粒子、 11は、レーザ光線発生器、 12は、レーザ光線、 12a は、レーザ光線の光軸、 13は、散乱光、 14は、円筒型凹面鏡、 14a は、円筒型凹面鏡の反射面、 14b は、曲率中心、 15は、シリンドリカルレンズ、 15a は、シリンドリカルレンズの入射面、15b 
と15d は、シリンドリカルレンズの焦点位置、15
c は、シリンドリカルレンズの出射面、16は、受光
素子 (ホトダイオードアレイ) 、16a は、受光
面、 21は、第1の平面鏡、 21a は、第1の平面鏡の反射面、 22は、第2の平面鏡、 22a は、第2の平面鏡の反射面をそれぞれ示す。
10 is floating particulate; 11 is a laser beam generator; 12 is a laser beam; 12a is an optical axis of the laser beam; 13 is scattered light; 14 is a cylindrical concave mirror; 14a is reflection of the cylindrical concave mirror 14b is the center of curvature, 15 is the cylindrical lens, 15a is the incident surface of the cylindrical lens, 15b
and 15d is the focal position of the cylindrical lens, 15
c is the output surface of the cylindrical lens; 16 is the light receiving element (photodiode array); 16a is the light receiving surface; 21 is the first plane mirror; 21a is the reflection surface of the first plane mirror; 22 is the second plane mirror. The plane mirrors 22a each represent a reflective surface of a second plane mirror.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  空間を浮遊する微粒子にレーザ光線を
照射し、微粒子が散乱したレーザ光線の散乱光を検出し
て微粒子を計数する浮遊微粒子計数器において、発生し
たビーム状の前記レーザ光線(12)を前記浮遊微粒子
(10)に照射するレーザ光線発生器(11)と、前記
レーザ光線(12)の進行方向に反射面(14a) を
向けて配列されて、直線状に連なる曲率中心(14b)
 をレーザ光線(12)の光軸(12a) に一致させ
た円筒型凹面鏡(14)と、前記レーザ光線(12)を
中間位置に介在させて入射面(15a) を前記円筒型
凹面鏡(14)の反射面(14a) に対向させて、前
記入射面(15a) 側の直線状に連なる焦点位置(1
5b) をレーザ光線(12)の光軸(12a) に一
致させたシリンドリカルレンズ(15)と、受光面(1
6a) を前記シリンドリカルレンズ(15)の出射面
(15c) 側の焦点位置(15d) に合わせて点列
され、シリンドリカルレンズ(15)の出射面(15c
) から出射した前記浮遊微粒子(10)が散乱した前
記レーザ光線(12)の散乱光(13)を受光面(16
a) に入射して電気信号に変換する複数の受光素子(
16)とを含んで構成したことを特徴とする浮遊微粒子
計数器。
1. In a floating particle counter that counts particles by irradiating particles floating in space with a laser beam and detecting the scattered light of the laser beam scattered by the particles, the beam-shaped laser beam (12 ) for irradiating the floating particles (10) with a laser beam generator (11); )
a cylindrical concave mirror (14) with the laser beam (12) aligned with the optical axis (12a) of the laser beam (12); A linear series of focal positions (1
5b) aligned with the optical axis (12a) of the laser beam (12), and a cylindrical lens (15) with the light receiving surface (1
6a) is aligned with the focal position (15d) on the exit surface (15c) side of the cylindrical lens (15), and the exit surface (15c) of the cylindrical lens (15) is
) The scattered light (13) of the laser beam (12) scattered by the suspended particles (10) emitted from the light receiving surface (16
a) A plurality of light receiving elements (
16) A suspended particle counter comprising:
JP3015154A 1991-02-06 1991-02-06 Suspended particle counter Expired - Lifetime JP2867718B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3015154A JP2867718B2 (en) 1991-02-06 1991-02-06 Suspended particle counter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3015154A JP2867718B2 (en) 1991-02-06 1991-02-06 Suspended particle counter

Publications (2)

Publication Number Publication Date
JPH04254741A true JPH04254741A (en) 1992-09-10
JP2867718B2 JP2867718B2 (en) 1999-03-10

Family

ID=11880881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3015154A Expired - Lifetime JP2867718B2 (en) 1991-02-06 1991-02-06 Suspended particle counter

Country Status (1)

Country Link
JP (1) JP2867718B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102009934B1 (en) * 2018-01-08 2019-08-12 (주)싸이닉솔루션 Dust measuring apparatus

Also Published As

Publication number Publication date
JP2867718B2 (en) 1999-03-10

Similar Documents

Publication Publication Date Title
KR102568116B1 (en) 2D SCANNING HIGH PRECISION LiDAR USING COMBINATION OF ROTATING CONCAVE MIRROR AND BEAM STEERING DEVICES
US10063849B2 (en) Optical system for collecting distance information within a field
EP0069782B1 (en) Optical system for intruder detecting device
EP3649481A1 (en) Lidar receiver using a waveguide and an aperture
JPS6234096B2 (en)
US3825325A (en) Light trap
JP3752538B2 (en) Optical coupling device
JPS593306A (en) Measuring device for angular displacement of body
JPH04254741A (en) Suspended particulate counter
JP2672492B2 (en) Photoelectric switch
JPH1090008A (en) Apparatus for detecting origin position of encoder
JPH08286016A (en) Optical element and semiconductor laser device
JP2000329860A (en) Infrared body detector
JP3065380B2 (en) Etching rate monitor
JP2004125554A (en) Mirror angle detection device
JP2595315B2 (en) Light scattering measuring device
JPH0882677A (en) Reflection measuring apparatus
JPH02228069A (en) Photodetector array
JPS58725A (en) Photodetecting device
JP3593030B2 (en) Light emitting unit and photoelectric sensor
JPH09265880A (en) Area sensor
JPS59119628A (en) Relfection type photoelectric switch
JPH06331449A (en) Infrared sensor
JPH0674959A (en) Speed measurement device
JPS59183305A (en) Position detector

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19981124