JPH0425414B2 - - Google Patents

Info

Publication number
JPH0425414B2
JPH0425414B2 JP2290383A JP2290383A JPH0425414B2 JP H0425414 B2 JPH0425414 B2 JP H0425414B2 JP 2290383 A JP2290383 A JP 2290383A JP 2290383 A JP2290383 A JP 2290383A JP H0425414 B2 JPH0425414 B2 JP H0425414B2
Authority
JP
Japan
Prior art keywords
exhaust
cylinder
trap
computer
fuel injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2290383A
Other languages
Japanese (ja)
Other versions
JPS59150921A (en
Inventor
Kyohiko Ooishi
Kyoshi Obata
Kenichiro Takama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP58022903A priority Critical patent/JPS59150921A/en
Publication of JPS59150921A publication Critical patent/JPS59150921A/en
Publication of JPH0425414B2 publication Critical patent/JPH0425414B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • F01N9/002Electrical control of exhaust gas treating apparatus of filter regeneration, e.g. detection of clogging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/025Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using fuel burner or by adding fuel to exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2430/00Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics
    • F01N2430/06Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics by varying fuel-air ratio, e.g. by enriching fuel-air mixture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Processes For Solid Components From Exhaust (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明はデイーゼルエンジンの排気浄化装置に
関し、更に詳しくは、排気ガス中に含まれるカー
ボン粒子及びそれと同様な粒状物(以下、排気微
粒子という)を物理的方法によつてフイルタエレ
メント等の適切な捕集材(フイルタ)を収容した
トラツプ内に捕集し、捕集された排気微粒子を周
期的に焼却し、フイルタを再生するに適したデイ
ーゼルエンジンの排気浄化装置におけるトラツプ
再生装置に関する。 従来技術 デイーゼルエンジンの排気ガス中に含まれる排
気微粒子はカーボン粒子のように可燃性のものが
ほとんどで、このような可燃性の微粒子を捕集
し、捕集された微粒子を焼却して捕集材を再生す
るには、従来から次のような方法が知られてお
り、それぞれ以下に述べるような欠点があつた。 デイーゼルエンジンの吸気系を絞り、吸入空
気量を減じて排気ガスの温度を上昇させ、排気
微粒子を燃焼させる方法。この方法は、エンジ
ンの高速域では排気温が十分上昇するので排気
微粒子の焼却が可能であるが、低、中速域では
排気温が十分上昇せず、排気微粒子の焼却、捕
集材の再生が不可能となる。 電気ヒータをフイルタの全面に取り付け、フ
イルタの表面に付着した排気微粒子を燃焼さ
せ、それを熱源として下流の微粒子を自燃させ
る方法。この方法は、フイルタの全表面に電気
ヒータを取り付ける為、電力消費が非常に大き
く、電力消費を小さくする為には、種々の工夫
が必要であり、コストも高くなる。 一方において、本出願人は上記のような問題点
を解決するために、さきに、排気微粒子を捕集、
燃焼する微粒子捕集トラツプを排気管路中に配設
した多気筒デイーゼルエンジンにおいて、爆発行
程と排気工程が重複して生じる少なくとも1組の
気筒の燃料通路間を連通路を介して連結し、微粒
子捕集トラツプの燃焼再生時に爆発気筒への燃料
の一部を直接排気筒に送り込む、すなわち筒内2
次噴射を行なつてそれにより高温の排気ガスを微
粒子捕集トラツプに流入せしめるようにしたデイ
ーゼルエンジンの排気浄化装置におけるトラツプ
再生装置を提案した。しかしこのような筒内2次
噴射を行なうシステムにおいてもエンジンの高速
域においてはともかく、低中速域におけるトラツ
プ内のフイルタの再生は未だ十分とは云えずこの
点の対策が望まれていた。 発明の目的 本発明は上記のような従来技術の問題点ならび
に本出願人の提案した筒内2次噴射方式の未解決
の問題点に鑑み案出されたものであつて、その目
的とするところは、排気ガスの温度を上昇させて
電力を要せずにフイルタ内の排気微粒子を燃焼さ
せることができ、しかもエンジンの高速域のみな
らず低中速域においても十分に排気微粒子を燃焼
させることのできるデイーゼルエンジンの排気浄
化装置におけるトラツプ再生装置を提供すること
にある。 発明の構成 本発明は上記の目的を達成するため、負荷、回
転数及び排気温のそれぞれを検出する各センサ
と、これらのセンサの検出信号が入力されるコン
ピユータと、このコンピユータによりその開閉が
制御される吸気絞り弁と、同コンピユータにより
作動制御され気筒の排気行程時に同気筒内に燃料
を噴射する2次燃料噴射機構と、排気路中のトラ
ツプ内に設置された未燃ガス反応触媒とを具備
し、エンジンの高速域では吸気絞りを、同低中速
域では2次燃料噴射又は2次燃料噴射と吸気絞り
との双方を行うようにしたデイーゼルエンジンの
排気浄化装置におけるトラツプ再生装置をその構
成上の特徴とする。 実施例 本発明の実施例を図面を参照して以下説明す
る。 第1図において1はデイーゼルエンジン本体、
2は燃料噴射ポンプであり、この燃料噴射ポンプ
2からは通常のように各気筒に燃料を供給するほ
か、特定の気筒の排気行程時に2次燃料を噴射す
るようになつているが、その機構については後述
する。3は吸気路中に設けた吸気絞り弁であつて
吸気絞り弁駆動用ダイヤフラム4によつて開閉さ
れるようになつており、このダイヤフラム4はバ
キユームポンプ5からの負圧により作動するよう
になつている。6,7はバキユームポンプ5と吸
気絞り弁駆動用ダイヤフラム4とを連結する負圧
通路8中に設けたバキユームスイツチングバルブ
(負圧切換弁、VSVと略称する)であり、これら
負圧切換弁に負圧を導入するかあるいは大気を導
入するかによつて前記吸気絞り弁駆動用ダイヤフ
ラム4の作動を制御する。また前記負圧切換弁
6,7は共にコンピユータ9に接続しており、こ
のコンピユータ9の指令に基づき前記のように負
圧と大気との導入の切換えが制御されるものであ
る。なお負圧切換弁を2個設けたのは吸気絞り弁
3の開閉を単にオン・オフ制御するだけでなくそ
の開閉をデユーテイ比制御することにより開閉度
を自由に調節できるようにするためである。10
は排気路内に設置したトラツプでありこの中に発
泡セラミツク及びこれに類する材料よりなるフイ
ルタを収容し、さらにこのフイルタ表面に、未燃
ガス(CO、HC等)を反応燃焼させる触媒を取り
つけている。このトラツプ内のフイルタは3次元
の網目構造となつており、その内部を排気ガスが
流通可能でありかつ排気ガス中に含まれているカ
ーボン等の排気微粒子をその網目間に捕集するこ
とができるようになつている。11は排気路中に
設けられた排気温センサであつて、その排気温の
検出信号はコンピユータ9に入力される。12は
排気路中に設けたバイパス弁でありバイパス弁駆
動用ダイヤフラム13によつて作動される。この
バイパス弁駆動用ダイヤフラム13はバキユーム
ポンプ5に負圧切換弁14を介して連結し、負圧
切換弁14はコンピユータ9に接続しその指令に
より制御されるようになつている。 15はトラツプ10の下流側に設けた排気ガス
圧センサでありコンピユータ9に接続し、排気ガ
スの圧力を検出してその信号をコンピユータ9に
入力し、トラツプ10の再生の必要性の判断を行
わせるものである。なおトラツプ再生の判断はエ
ンジンの回転数を積算して行き、ある積算の回転
数に達した時にコンピユータ9が指令するように
してもよい。16はエンジン冷却水水温センサ、
17は負荷センサ、18は回転センサ、19はス
ロツトル開度センサ、20は吸入圧力センサであ
り、これら各センサの検出信号はコンピユータ9
に入力されるようになつている。21は排気還流
弁である。 第2図は本実施例におけるトラツプ10に高温
の排気ガスを送り込むための燃料2次噴射の配管
構成を示すもので、燃料噴射ポンプ2から各気筒
#1、#2、#3、#4の燃料噴射ノズル22
A,22B,22C,22Dへの燃料は、通常の
ように燃料通路23,25,27,29を経て行
われる。 ところで多気筒エンジンの場合、或る1組の気
筒は爆発行程と排気行程が必ず重複して生じる。
すなわち4気筒エンジンの場合の4サイクルを例
に示すと下表1の如くなる。
INDUSTRIAL APPLICATION FIELD The present invention relates to an exhaust purification device for a diesel engine, and more specifically, carbon particles and similar particulate matter (hereinafter referred to as exhaust particulates) contained in exhaust gas are removed from a filter element by a physical method. A trap regeneration device in a diesel engine exhaust purification device suitable for collecting the collected exhaust particulates in a trap containing an appropriate collection material (filter), periodically incinerating the collected exhaust particulates, and regenerating the filter. Regarding. Prior Art Most of the exhaust particulates contained in the exhaust gas of diesel engines are flammable, such as carbon particles, and these combustible particulates are collected and collected by incineration. The following methods have been known for recycling materials, and each method has the following drawbacks. A method of throttling the intake system of a diesel engine to reduce the amount of intake air and raise the temperature of exhaust gas to burn exhaust particulates. With this method, the exhaust temperature rises sufficiently in the high speed range of the engine, making it possible to incinerate the exhaust particulates, but in the low and medium speed ranges, the exhaust temperature does not rise sufficiently, making it difficult to incinerate the exhaust particulates and regenerate the collection material. becomes impossible. A method of attaching an electric heater to the entire surface of the filter, burning the exhaust particulates attached to the filter surface, and using this as a heat source to cause the downstream particulates to self-combust. In this method, since an electric heater is attached to the entire surface of the filter, power consumption is very large, and in order to reduce power consumption, various measures are required and the cost is also high. On the other hand, in order to solve the above-mentioned problems, the present applicant first collected exhaust particulates,
In a multi-cylinder diesel engine in which a combustion particulate collection trap is disposed in the exhaust pipe, the fuel passages of at least one set of cylinders in which the explosion stroke and exhaust stroke overlap are connected via a communication passage, and the particulate collection trap is During combustion regeneration of the collection trap, a portion of the fuel destined for the explosion cylinder is sent directly to the exhaust stack, that is, the inside of the cylinder 2
We have proposed a trap regeneration device for a diesel engine exhaust purification system that performs a secondary injection and thereby causes high-temperature exhaust gas to flow into a particulate collection trap. However, even in such a system that performs in-cylinder secondary injection, the regeneration of the filter in the trap in the low to medium speed range is still not sufficient in the engine high speed range, and a countermeasure for this problem has been desired. Purpose of the Invention The present invention has been devised in view of the problems of the prior art as described above as well as the unresolved problems of the in-cylinder secondary injection method proposed by the applicant, and its purpose is to is able to burn exhaust particulates in the filter by raising the temperature of the exhaust gas without requiring electricity, and is capable of sufficiently burning exhaust particulates not only in the high-speed range of the engine but also in the low-to-medium speed range. An object of the present invention is to provide a trap regeneration device in an exhaust purification device for a diesel engine that can perform the following functions. Composition of the Invention In order to achieve the above object, the present invention includes sensors that detect each of load, rotation speed, and exhaust temperature, a computer to which detection signals from these sensors are input, and opening and closing of the sensors controlled by this computer. A secondary fuel injection mechanism whose operation is controlled by the same computer and injects fuel into the cylinder during its exhaust stroke, and an unburned gas reaction catalyst installed in a trap in the exhaust path. The trap regeneration device in the exhaust purification system of a diesel engine is equipped with a trap regeneration device that performs intake throttling in the high-speed range of the engine, and performs secondary fuel injection or both secondary fuel injection and intake throttling in the same low and medium speed range. It is a structural feature. Embodiments Examples of the present invention will be described below with reference to the drawings. In Figure 1, 1 is the diesel engine body;
2 is a fuel injection pump, and in addition to supplying fuel to each cylinder as usual, this fuel injection pump 2 also injects secondary fuel during the exhaust stroke of a specific cylinder. This will be discussed later. Reference numeral 3 denotes an intake throttle valve provided in the intake passage, which is opened and closed by a diaphragm 4 for driving the intake throttle valve, and this diaphragm 4 is operated by negative pressure from a vacuum pump 5. It's summery. 6 and 7 are vacuum switching valves (abbreviated as negative pressure switching valves, VSV) provided in the negative pressure passage 8 that connects the vacuum pump 5 and the diaphragm 4 for driving the intake throttle valve; The operation of the intake throttle valve driving diaphragm 4 is controlled depending on whether negative pressure or atmospheric air is introduced into the switching valve. The negative pressure switching valves 6 and 7 are both connected to a computer 9, and based on commands from the computer 9, switching between the introduction of negative pressure and atmospheric air is controlled as described above. The reason why two negative pressure switching valves are provided is to not only simply control the opening and closing of the intake throttle valve 3 on and off, but also to freely adjust the degree of opening and closing by controlling the duty ratio of the opening and closing. . 10
is a trap installed in the exhaust passage, which houses a filter made of foamed ceramic or similar materials, and a catalyst is attached to the surface of this filter to react and burn unburned gas (CO, HC, etc.). There is. The filter in this trap has a three-dimensional mesh structure, through which exhaust gas can flow, and exhaust particulates such as carbon contained in the exhaust gas can be collected between the meshes. I'm starting to be able to do it. Reference numeral 11 denotes an exhaust gas temperature sensor provided in the exhaust passage, and a detection signal of the exhaust gas temperature is input to the computer 9. Reference numeral 12 denotes a bypass valve provided in the exhaust passage, and is operated by a diaphragm 13 for driving the bypass valve. This bypass valve driving diaphragm 13 is connected to the vacuum pump 5 via a negative pressure switching valve 14, and the negative pressure switching valve 14 is connected to a computer 9 and controlled by instructions thereof. Reference numeral 15 denotes an exhaust gas pressure sensor provided downstream of the trap 10, which is connected to the computer 9, detects the exhaust gas pressure, inputs the signal to the computer 9, and determines whether the trap 10 needs to be regenerated. It is something that can be done. Note that trap regeneration may be determined by integrating the number of revolutions of the engine, and the computer 9 may issue a command when a certain cumulative number of revolutions is reached. 16 is an engine cooling water temperature sensor;
17 is a load sensor, 18 is a rotation sensor, 19 is a throttle opening sensor, and 20 is a suction pressure sensor, and the detection signals of these sensors are sent to the computer 9.
It is now entered into . 21 is an exhaust gas recirculation valve. FIG. 2 shows the piping configuration of the secondary fuel injection for sending high-temperature exhaust gas to the trap 10 in this embodiment. Fuel injection nozzle 22
Fuel is supplied to A, 22B, 22C, and 22D via fuel passages 23, 25, 27, and 29 as usual. By the way, in the case of a multi-cylinder engine, the explosion stroke and exhaust stroke of a certain set of cylinders always occur overlappingly.
In other words, taking a four-cycle case of a four-cylinder engine as an example, the results are as shown in Table 1 below.

【表】 尚、上表において各文字の意味する行程は次の
通りである。 圧…圧縮、爆…爆発、排…排気、吸…吸気 第1表から明らかな如く第1気筒(#1)が爆
発行程のときは第2気筒(#2)が排気行程にあ
り、以下同様に第2気筒の爆発と第4気筒の排
気、第3気筒(#3)の爆発と第1気筒の排気、
第4気筒(#4)の爆発と第3気筒の排気とが
夫々重複している。そこで本実施例ではこれら爆
発と排気とが重複する一組あるいは二組以上の気
筒の燃料通路どうしを連通路を介して連結する。
#1気筒用の燃料通路23と#2気筒用の燃料通
路25とは、また#3気筒用の燃料通路27と
#4気筒用の燃料通路29とは夫々連通路24,
28を介して連結される。そしてこれら連通路2
4,28内には夫々爆発気筒(#1及び#4)側
から排気気筒(#2及び#3)側に向う方向にの
み燃料の流れを可能ならしめる逆止弁33,37
が設けられる。逆止弁33,37はそれ自体公知
の、例えばばね付勢式ボールチエツク弁でよい。
更にまた、これら連通路24,28内には切替弁
31,35が設けれらる。切替弁31,35はそ
れ自体公知の、例えばソレノイドプランジヤ式電
磁弁でよくコンピユータ9からの制御信号に基い
て連通路24,28を開閉制御するものである。
則ち、切替弁31,35は常時閉弁位置にあり、
トラツプ再生時のみコンピユータ9により開弁せ
しめられる。この切替弁31,35はトラツプ再
生時以外は各気筒の燃料通路を相互に独立させ、
エンジン本来の燃料供給を行わせるために設けら
れるものである。 上記の構成によりなる本実施例の作動は次のと
おりである。 エンジン運転中においてトラツプ10の下流側
に設置された排気ガス圧センサ15の検出結果に
よつてコンピユータ9がトラツプ10の再生の必
要な有無を判断する。そしてトラツプ10の再生
の必要な時期になると作動が開始される。 負荷センサ17及び回転センサ18の検出信号
によりコンピユータ9がエンジンの高速域である
ことを判断すると、その指令が負圧切換弁6及び
7に伝達され、これらの負圧切換弁はその大気ポ
ートが閉じられバキユームポンプ5からの負圧が
負圧通路8、負圧切換弁6及び7を経て吸気絞り
弁駆動用ダイヤフラム4に作用し、これにより吸
気絞り弁3を吸入圧力センサ20の目標圧力にな
るまで閉じる。なお、一般に吸気を絞ると過剰空
気が減少し排気ガスの温度が上昇するので、吸入
圧力センサ20の目標圧力はトラツプ10内の排
気微粒子を燃焼させるに必要な排気ガス温が得ら
れるような吸入圧力に設定しておく。(カーボン
等の排気微粒子の燃料温度は約600℃であるが、
触媒を設ければこれよりさらに燃焼温度は下が
る。)その結果トラツプ10内に流入する排気ガ
ス温度が排気微粒子燃料温度にまで上昇し、フイ
ルタに捕集されていた微粒子が燃焼しトラツプの
機能が再生できることとなる。なおこの際スロツ
トル開度センサ19によりスロツトル開度の大き
さを検出しその開度が設定値以上になれば(負荷
が大きくなれば)コンピユータ9の指令により、
負圧切換弁14を介してバイパス弁駆動用ダイヤ
フラム13に負圧を導入し、バイパス弁12を開
きトラツプ10がエンジン1に与える圧力損失を
少なくする。このようにして高速域においては吸
気を絞ることにより排気ガス温度を上昇されトラ
ツプ内の排気微粒子を燃焼させることができる。 一方、負荷センサ17、回転数センサ18の検
出によりエンジンの低中速域であることを判断し
た場合には、コンピユータ9からの指令により切
換弁31及び切換弁35を開弁させるので、#1
気筒の爆発行程直前に噴射されるべき燃料通路2
3の燃料の一部は連通路24を介して逆止弁33
を開弁させながら燃料通路25に流れ込み#2気
筒の燃料噴射ノズルから#2気筒にも2次噴射さ
れる。このとき#2気筒は爆発行程を終了して排
気行程の初期であるが#2気筒に噴射された燃料
は気筒内に残存する爆発行程での高温燃焼ガスに
接触してCO、HCを発生しこれが排気路内に排出
される。 これと全く同様にして#4気筒の爆発時にも
#4気筒用の燃料の一部が排気行程中の#3気筒
に供給され、CO、HCが発生しこれが排気路内に
排出される。そしてこのCO、HCをトラツプ10
内の触媒の作用により反応させてその発生熱によ
つてトラツプ10の内部温度を上昇させ、フイル
タにより捕集されている排気微粒子を焼却する。
この場合排気温センサ11によりトラツプ10内
の温度上昇が不十分であることを検出したならば
コンピユータ9が指令を出して負圧切換弁6,7
を切換えこれらの負圧切換弁を介して吸気絞り弁
駆動用ダイヤフラム4に負圧を導入し吸気絞り弁
3を閉じる方向に制御し、排気ガス温度をさらに
上昇するよう作用する。このようにして、エンジ
ン低中速域においては燃料の2次噴射により発生
した未燃ガス反応熱によりトラツプ10内の温度
を上昇させ、これでも温度上昇が足りない場合に
はさらに吸気絞りを行なつて排気ガス温度を上昇
させ、トラツプ内の排気微粒子を焼却させること
ができる。 なお上記の燃料の2次噴射は2組の気筒間で行
なつたが、必らず2組の気筒間で行なうものとは
限られず、1組の気筒間のみで行なつてもよい。
また爆発気筒と排気気筒との組合わせも上記のも
のの他に、#2気筒と#4気筒、#3気筒と#1
気筒等が考えられる。 発明の効果 本発明は以上説明したように、吸気絞りと気筒
内への燃料2次噴射とトラツプ内の触媒との3者
を組合わせ用いることにより、エンジン高速域に
おいては吸気絞りのみで、低中速域においては気
筒内の燃料2次噴射により、あるいはこれで不十
分の時はさらに吸気絞りを加え、排気ガス温度を
排気微粒子の燃焼可能な温度にまで上昇させるこ
とができるので、エンジンの全運転領域において
十分にトラツプの再生が行なわれ電力消費を節減
することもでき、耐久性、安全性に優れ構造も比
較的簡単で低コストのデイーゼルエンジンの排気
浄化装置におけるトラツプ再生装置が得られるの
ものである。
[Table] In the table above, the meaning of each letter is as follows. Pressure...Compression, Explosion...Explosion, Exhaust...Exhaust, Intake...Intake As is clear from Table 1, when the first cylinder (#1) is in the explosion stroke, the second cylinder (#2) is in the exhaust stroke, and so on. 2nd cylinder explosion and 4th cylinder exhaust, 3rd cylinder (#3) explosion and 1st cylinder exhaust,
The explosion of the fourth cylinder (#4) and the exhaust of the third cylinder overlap. Therefore, in this embodiment, the fuel passages of one or more sets of cylinders in which explosion and exhaust overlap are connected to each other via a communication passage.
The fuel passage 23 for the #1 cylinder and the fuel passage 25 for the #2 cylinder are connected to the communication passage 24, and the fuel passage 27 for the #3 cylinder and the fuel passage 29 for the #4 cylinder are connected to the communication passage 24, respectively.
28. And these communication paths 2
Check valves 33 and 37 that allow fuel to flow only in the direction from the explosion cylinders (#1 and #4) to the exhaust cylinders (#2 and #3), respectively, are disposed in the insides of the cylinders 4 and 28.
is provided. The check valves 33, 37 may be known per se, for example spring-loaded ball check valves.
Furthermore, switching valves 31 and 35 are provided in these communication passages 24 and 28. The switching valves 31 and 35 may be, for example, solenoid plunger electromagnetic valves which are known per se, and control the opening and closing of the communication passages 24 and 28 based on a control signal from the computer 9.
That is, the switching valves 31 and 35 are always in the closed position,
The valve is opened by the computer 9 only during trap regeneration. These switching valves 31 and 35 make the fuel passages of each cylinder independent from each other except during trap regeneration.
It is provided to supply the engine with its own fuel. The operation of this embodiment having the above configuration is as follows. During engine operation, the computer 9 determines whether or not regeneration of the trap 10 is necessary based on the detection result of an exhaust gas pressure sensor 15 installed downstream of the trap 10. Then, when it is necessary to regenerate the trap 10, the operation is started. When the computer 9 determines that the engine is in the high speed range based on the detection signals of the load sensor 17 and rotation sensor 18, the command is transmitted to the negative pressure switching valves 6 and 7, and these negative pressure switching valves switch their atmospheric ports to When closed, the negative pressure from the vacuum pump 5 acts on the intake throttle valve driving diaphragm 4 via the negative pressure passage 8 and the negative pressure switching valves 6 and 7, thereby controlling the intake throttle valve 3 to the target pressure of the suction pressure sensor 20. Close until. Generally, when the intake air is throttled, excess air decreases and the temperature of the exhaust gas increases. Set it to pressure. (The fuel temperature of exhaust particulates such as carbon is approximately 600℃,
If a catalyst is installed, the combustion temperature will be lowered even further. ) As a result, the temperature of the exhaust gas flowing into the trap 10 rises to the temperature of the exhaust particulate fuel, the particulates collected by the filter are combusted, and the function of the trap can be restored. At this time, the throttle opening sensor 19 detects the throttle opening, and if the opening exceeds the set value (if the load becomes large), the computer 9 commands:
Negative pressure is introduced into the bypass valve driving diaphragm 13 via the negative pressure switching valve 14, and the bypass valve 12 is opened to reduce the pressure loss that the trap 10 gives to the engine 1. In this manner, in the high speed range, by throttling the intake air, the temperature of the exhaust gas is raised, and the exhaust particles in the trap can be combusted. On the other hand, when it is determined that the engine is in the low-medium speed range based on the detection of the load sensor 17 and the rotation speed sensor 18, the switching valve 31 and the switching valve 35 are opened by a command from the computer 9.
Fuel passage 2 to be injected just before the cylinder's explosion stroke
A part of the fuel in No. 3 is passed through the communication path 24 to the check valve 33.
The fuel flows into the fuel passage 25 while opening the valve, and is also secondarily injected into the #2 cylinder from the fuel injection nozzle of the #2 cylinder. At this time, the #2 cylinder has completed its explosion stroke and is in the beginning of its exhaust stroke, but the fuel injected into the #2 cylinder comes into contact with the high-temperature combustion gas from the explosion stroke that remains in the cylinder, generating CO and HC. This is discharged into the exhaust path. In exactly the same way, when the #4 cylinder explodes, part of the fuel for the #4 cylinder is supplied to the #3 cylinder during the exhaust stroke, generating CO and HC, which are discharged into the exhaust path. And trap this CO, HC10
The internal temperature of the trap 10 is increased by the generated heat, and the exhaust particulates collected by the filter are incinerated.
In this case, if the exhaust temperature sensor 11 detects that the temperature rise in the trap 10 is insufficient, the computer 9 issues a command to the negative pressure switching valves 6 and 7.
The intake throttle valve 3 is controlled to close by introducing negative pressure into the intake throttle valve driving diaphragm 4 through these negative pressure switching valves, thereby acting to further increase the exhaust gas temperature. In this way, in the low and medium speed range of the engine, the temperature inside the trap 10 is increased by the unburned gas reaction heat generated by the secondary injection of fuel, and if the temperature rise is still insufficient, the intake air is throttled further. As a result, the exhaust gas temperature can be increased to incinerate the exhaust particulates in the trap. Although the above secondary injection of fuel is performed between two sets of cylinders, it is not necessarily performed between two sets of cylinders, and may be performed only between one set of cylinders.
In addition to the above combinations, there are also combinations of explosion cylinders and exhaust cylinders: #2 cylinder and #4 cylinder, #3 cylinder and #1 cylinder.
Possible examples include cylinders, etc. Effects of the Invention As explained above, the present invention uses a combination of the intake throttle, secondary fuel injection into the cylinder, and the catalyst in the trap to achieve low engine speed in the engine high-speed range with only the intake throttle. In the medium speed range, the exhaust gas temperature can be raised to a temperature at which exhaust particulates can be combusted by secondary fuel injection in the cylinder, or by further restricting the intake air if this is insufficient. A trap regeneration device for a diesel engine exhaust purification device that is durable, safe, has a relatively simple structure, and is low cost can be obtained, as the trap is sufficiently regenerated in all operating ranges and power consumption can be reduced. belongs to.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例の全体を示す系統図、
第2図は同実施例における2次燃料噴射のための
燃料配管図である。 1……デイーゼルエンジン本体、2……燃料噴
射ポンプ、3……吸気絞り弁、9……コンピユー
タ、10……トラツプ、11……排気温センサ、
17……負荷センサ、18……回転センサ、20
……吸入圧力センサ、23,25,27,29…
…燃料通路、24,28……連通路、31,35
……切替弁、33,37……逆止弁。
FIG. 1 is a system diagram showing the entire embodiment of the present invention;
FIG. 2 is a fuel piping diagram for secondary fuel injection in the same embodiment. 1... Diesel engine body, 2... Fuel injection pump, 3... Intake throttle valve, 9... Computer, 10... Trap, 11... Exhaust temperature sensor,
17...Load sensor, 18...Rotation sensor, 20
...Suction pressure sensor, 23, 25, 27, 29...
...Fuel passage, 24, 28...Communication passage, 31, 35
...Switching valve, 33, 37...Check valve.

Claims (1)

【特許請求の範囲】 1 負荷、回転数及び排気温のそれぞれを検出す
る各センサと、これらのセンサの検出信号が入力
されるコンピユータと、このコンピユータにより
その開閉が制御される吸気絞り弁と、同コンピユ
ータにより作動制御され気筒の排気行程時に同気
筒内に燃料を噴射する2次燃料噴射機構と、排気
路中のトラツプ内に設置された未燃ガス反応触媒
とを具備し、エンジンの高速域では吸気絞りを、
同中低速域では2次燃料噴射又は2次燃料噴射と
吸気絞りとの双方を行うようにしたデイーゼルエ
ンジンの排気浄化装置におけるトラツプ再生装
置。 2 前記2次燃料噴射機構の構成が、爆発行程と
排気行程が重複して生じる少なくとも1組の気筒
の燃料通路間を爆発気筒側から排気気筒側に向か
つてのみ燃料の流入を可能とする逆止弁を有する
連通路を介して連結すると共にこの連通路内にト
ラツプ再生時のみ開放する弁を設けたものである
特許請求の範囲第1項記載のデイーゼルエンジン
の排気浄化装置におけるトラツプ再生装置。
[Scope of Claims] 1. Each sensor that detects each of load, rotation speed, and exhaust temperature, a computer to which the detection signals of these sensors are input, and an intake throttle valve whose opening and closing are controlled by this computer. It is equipped with a secondary fuel injection mechanism that is controlled by the same computer and injects fuel into the cylinder during the exhaust stroke of the cylinder, and an unburned gas reaction catalyst installed in a trap in the exhaust path. Now, the intake throttle,
A trap regeneration device in an exhaust purification device for a diesel engine that performs secondary fuel injection or both secondary fuel injection and intake throttling in the medium and low speed range. 2. The configuration of the secondary fuel injection mechanism is such that fuel can only flow from the explosion cylinder side toward the exhaust cylinder side between the fuel passages of at least one set of cylinders where the explosion stroke and exhaust stroke overlap. 2. A trap regeneration device in an exhaust purification system for a diesel engine according to claim 1, which is connected through a communication path having a stop valve and is provided with a valve in the communication path that opens only during trap regeneration.
JP58022903A 1983-02-16 1983-02-16 Trap regenerating device in exhaust gas purifying device for diesel engine Granted JPS59150921A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58022903A JPS59150921A (en) 1983-02-16 1983-02-16 Trap regenerating device in exhaust gas purifying device for diesel engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58022903A JPS59150921A (en) 1983-02-16 1983-02-16 Trap regenerating device in exhaust gas purifying device for diesel engine

Publications (2)

Publication Number Publication Date
JPS59150921A JPS59150921A (en) 1984-08-29
JPH0425414B2 true JPH0425414B2 (en) 1992-04-30

Family

ID=12095596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58022903A Granted JPS59150921A (en) 1983-02-16 1983-02-16 Trap regenerating device in exhaust gas purifying device for diesel engine

Country Status (1)

Country Link
JP (1) JPS59150921A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0196421B1 (en) * 1985-04-04 1988-10-12 Zeuna-Stärker Gmbh & Co Kg Method for regenerating a soot filter in a diesel internal-combustion engine
JPH0629527B2 (en) * 1987-05-29 1994-04-20 川崎重工業株式会社 Lubricator for vertical axis engine
JP2748686B2 (en) * 1990-11-16 1998-05-13 トヨタ自動車株式会社 In-cylinder direct injection spark ignition engine
US6304815B1 (en) 2000-03-29 2001-10-16 Ford Global Technologies, Inc. Method for controlling an exhaust gas temperature of an engine for improved performance of exhaust aftertreatment systems
EP1296050B1 (en) * 2001-09-25 2006-08-16 Ford Global Technologies, LLC Apparatus and method for regeneration of exhaust treatment device
DE10261911A1 (en) * 2002-12-30 2004-07-29 Volkswagen Ag Process for controlling the temperature of a catalytic converter and multi-cylinder engine with lambda-split exhaust gas cleaning system

Also Published As

Publication number Publication date
JPS59150921A (en) 1984-08-29

Similar Documents

Publication Publication Date Title
JPH0425414B2 (en)
JPS6193219A (en) Diesel particulate oxidizer system
JPS60184918A (en) Device for protecting diesel particulates collection member
JPS62162762A (en) Exhaust gas purifier for diesel engine
JPS6054491B2 (en) compression ignition internal combustion engine
JPS6132122Y2 (en)
JPS6079114A (en) Device for processing microparticles in exhaust gas of internal-combustion engine
JPH0359251B2 (en)
JPS58158348A (en) Purifier for exhaust particle from diesel engine
JPS6140891Y2 (en)
US20230374950A1 (en) Method and system for managing an active scr device of an after treatment system ats
JPS63988Y2 (en)
JPH0617645B2 (en) Exhaust particulate treatment device for internal combustion engine
JPS61164014A (en) Exhaust purifying device of diesel engine
JPS6233939Y2 (en)
JPS6337468Y2 (en)
JPH0515892B2 (en)
JPH0134647Y2 (en)
JPS58162713A (en) Purifying device of exhaust fine particles for diesel engine
JPS60216017A (en) Exhaust gas particulate processing device in internal- combustion engine provided with turbocharger
JPH04128549A (en) Exhaust gas weight reduction device
JPS58162712A (en) Purifying device of exhaust fine particles for diesel engine
JPH0478809B2 (en)
JPH0134648Y2 (en)
JPS6321726Y2 (en)