JPH0425211B2 - - Google Patents

Info

Publication number
JPH0425211B2
JPH0425211B2 JP59070034A JP7003484A JPH0425211B2 JP H0425211 B2 JPH0425211 B2 JP H0425211B2 JP 59070034 A JP59070034 A JP 59070034A JP 7003484 A JP7003484 A JP 7003484A JP H0425211 B2 JPH0425211 B2 JP H0425211B2
Authority
JP
Japan
Prior art keywords
fiber
glass
rod
cladding
polarization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59070034A
Other languages
Japanese (ja)
Other versions
JPS60215541A (en
Inventor
Hiroshi Yokota
Toshio Danzuka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP59070034A priority Critical patent/JPS60215541A/en
Publication of JPS60215541A publication Critical patent/JPS60215541A/en
Publication of JPH0425211B2 publication Critical patent/JPH0425211B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01211Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube
    • C03B37/01217Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube for making preforms of polarisation-maintaining optical fibres
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/30Polarisation maintaining [PM], i.e. birefringent products, e.g. with elliptical core, by use of stress rods, "PANDA" type fibres

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Description

【発明の詳細な説明】 本発明は光フアイバの製造方法に関し、特に偏
波特性を有する定偏波フアイバの製造方法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing an optical fiber, and more particularly to a method for manufacturing a polarization constant fiber having polarization characteristics.

(背景技術) 光の偏波状態を保持する定偏波フアイバは、例
えば光フアイバセンサー、コヒーレント通信等へ
の応用が可能なことから、その早急な開発が望ま
れている。
(Background Art) A constant polarization fiber that maintains the polarization state of light can be applied to, for example, optical fiber sensors, coherent communications, etc., and therefore, its immediate development is desired.

この定偏波フアイバは、光を伝搬するコアに複
屈折性を付加して、偏光状態を保持することを可
能にしたものである。従来知られている定偏波フ
アイバの製造方法としては、特開昭58−15041
号公報に提案されている、石英管の内側にまず石
英ガラスより低軟化点のガラス層を、次に高軟化
点のガラス層を夫々堆積した後、減圧して中実化
し、低軟化点ガラス層を楕円化する方法や、特
開昭58−104035号公報に提案されている、コア材
の外周にクラツド材、ロツド及び応力付与母材ロ
ツドを配置して、ロツドインチユーブ法により製
造する方法がある。
This polarization constant fiber has birefringence added to the core through which light propagates, making it possible to maintain the polarization state. A conventionally known method for manufacturing a polarization fiber is disclosed in Japanese Patent Application Laid-Open No. 15041-1983.
As proposed in the publication, a glass layer with a lower softening point than quartz glass is first deposited on the inside of the quartz tube, and then a glass layer with a higher softening point is deposited, respectively, and then the pressure is reduced to make it solid. Manufactured by the method of making the layers oval, or by the rod inch tube method, which is proposed in JP-A-58-104035, by arranging clad material, rods, and stress-applying base material rods around the outer periphery of the core material. There is a way.

しかしながら、本発明者らが実験したところ、
上記の方法では石英管の内厚、堆積ガラス膜
厚、粘度および減圧力、加熱温度等条件が複雑に
相互作用するため、所望の楕円クラツド層と円形
コア層を有する定偏波フアイバを再現性良く得る
ことは困難である。
However, when the present inventors conducted an experiment,
In the above method, conditions such as the inner thickness of the quartz tube, the deposited glass film thickness, viscosity, vacuum pressure, and heating temperature interact in a complex manner, so it is difficult to reproducibly produce a polarization-controlled fiber with the desired elliptical cladding layer and circular core layer. It is difficult to get good.

また上記の方法では、多数のガラスロツドを
組合せて、ロツドインチユーブするため、気泡発
生が多く見られた。これについては、全てのロツ
ド表面の清浄化前処理を綿密に実施することによ
り、気泡発生を幾分減少することが可能である
が、前処理に長時間を要し、経済性において劣
る。さらに、ロツド−ロツド表面は、中実化時に
おいて、微妙な温度差を有するため、微細な気泡
を完全になくすことは極めて困難である。
In addition, in the above method, since a large number of glass rods are combined and incubated, many air bubbles are generated. Regarding this, it is possible to reduce the generation of bubbles to some extent by carrying out thorough cleaning pretreatment of all rod surfaces, but the pretreatment requires a long time and is less economical. Furthermore, since the rod-rod surface has a slight temperature difference during solidification, it is extremely difficult to completely eliminate fine air bubbles.

(発明の目的) 本発明は、上述の従来方法における欠点を解消
し、円形コアに異方性応力を付加する応力付加層
を、クラツド層の外周に再現性良く配置すること
ができ、しかも気泡発生等の製造上の問題を容易
に抑止できる、偏波特性に優れた低損失な定偏波
フアイバの製造方法を提供することを目的とす
る。
(Object of the Invention) The present invention eliminates the drawbacks of the above-mentioned conventional methods, and makes it possible to arrange a stress-applying layer that applies anisotropic stress to a circular core on the outer periphery of a cladding layer with good reproducibility. It is an object of the present invention to provide a method for manufacturing a constant polarization fiber with excellent polarization characteristics and low loss, which can easily prevent manufacturing problems such as generation of polarization.

(発明の構成) すなわち、本発明は、円形コアと楕円形状クラ
ツドからなるガラスロツドを、クラツドガラスと
実質的に屈折率が等しく、熱膨張率の異なるガラ
ス層をその内部に被覆堆積させた石英管に挿入し
て、加熱融着し一体化した後線引きフアイバ化す
ることを特徴とする定偏波フアイバの製造方法を
提供するものである。
(Structure of the Invention) That is, the present invention includes a glass rod consisting of a circular core and an elliptical cladding, and a quartz tube in which a glass layer having a refractive index substantially equal to that of the cladding glass and having a different coefficient of thermal expansion is deposited therein. The present invention provides a method for manufacturing a constant polarization fiber, which is characterized in that the fibers are inserted, heat-fused and integrated, and then formed into a drawn fiber.

以下、本発明を具体的に説明する。 The present invention will be specifically explained below.

まずコア11とクラツド12を有するガラスロ
ツドを公知の方法である内付けロツド法(この場
合は第1図Aに示すように、石英管からなるジヤ
ケツト層13があつて、3層構造となるのが普通
である。)、あるいはVAD法、外付け法、ロツド
インチユーブ法等で作成する(第1図Bに示す)。
First, a glass rod having a core 11 and a cladding 12 is assembled using a well-known internal rod method (in this case, as shown in FIG. ) or by the VAD method, external attachment method, rod inch tube method, etc. (as shown in Figure 1B).

この時に、クラツド12と熱応力付与層との間
に、大きな熱応力を発生させる目的で、クラツド
層はSiO2、もしくは、SiO2−Fの組成のような
熱膨張係数の小さいガラス組成とすることが望ま
しい。屈折率の微調整を行う目的で、P2O5
GeO2、Al2O3、TiO2等のうちの少なくとも1つ
を添加剤として微量加えてもよい。コア11はク
ラツド12よりも高屈折率となるようにガラス組
成を適宜選択する。
At this time, in order to generate a large thermal stress between the cladding 12 and the thermal stress applying layer, the cladding layer is made of a glass composition with a small thermal expansion coefficient such as SiO 2 or SiO 2 -F composition. This is desirable. For the purpose of finely adjusting the refractive index, P 2 O 5 ,
A trace amount of at least one of GeO 2 , Al 2 O 3 , TiO 2 , etc. may be added as an additive. The glass composition of the core 11 is appropriately selected so that it has a higher refractive index than the cladding 12.

このようにして得られた、第1図a又は第1図
Bに示されるガラスロツドは、外周を研削して
夫々第2図A又は第2図Bに示されるような、そ
の短径がa、長径がbの、楕円形状とする。ここ
でその楕円率をηとすると、η=2(b−a)/(b+
a)で ある。研削後は、ロツド表面を清浄、平滑にする
ために、HFエツチングし、さらに火炎研摩を施
すことが有効である。火炎研摩にかえてプラズマ
研摩を施してもよい。
The thus obtained glass rod shown in FIG. 1a or FIG. 1B has its minor axis a, as shown in FIG. It has an elliptical shape with a major axis b. Here, if the ellipticity is η, then η=2(ba-a)/(b+
a). After grinding, it is effective to perform HF etching and flame polishing to clean and smooth the rod surface. Plasma polishing may be performed instead of flame polishing.

一方、別途用意した石英管15の内側に、第3
図に示すように内付法によつて応力付与層14を
堆積被覆させる。該応力付与層は、大きな熱応力
を発生させることを目的として設置される層であ
るので、クラツド12とはその熱膨張係数を異と
することが必須条件である。しかも、伝送特性
上、クラツドモードを発生させないためには、該
熱応力付与層の屈折率はクラツド12の屈折率と
実質的に等しいことが要求される。
On the other hand, inside a separately prepared quartz tube 15, a third
As shown in the figure, a stress applying layer 14 is deposited and coated by an internal coating method. Since the stress applying layer is a layer provided for the purpose of generating large thermal stress, it is essential that it has a different thermal expansion coefficient from that of the cladding 12. Furthermore, in terms of transmission characteristics, the refractive index of the thermal stress imparting layer is required to be substantially equal to the refractive index of the cladding 12 in order to prevent the generation of cladding modes.

上記の目的に合致する組成としては、石英ガラ
スの屈折率を下げかつ熱膨張係数を変えるための
添加剤である。B2O3、Fのうち少なくとも1種
以上を含有し、同時に石英ガラスの屈折率を高め
る添加剤であるGeO2、P2O5、Al2O3、TiO2等の
うち少なくとも1種以上を含有する組成が適当で
ある。このような組成としては、例えば、SiO2
−B2O3−GeO2、SiO2−F−GeO2、SiO2−B2O3
−GeO2−F、SiO2−B2O3−Al2O3、SiO2−B2O3
−TiO2、SiO2−F−TiO2等が挙げられるが、勿
論これに限定されるものではなく、上述の条件を
満す組成であれば、いずれでもよい。
A composition that meets the above objectives is an additive for lowering the refractive index and changing the coefficient of thermal expansion of quartz glass. Contains at least one of B 2 O 3 and F, and at least one of GeO 2 , P 2 O 5 , Al 2 O 3 , TiO 2 , etc., which is an additive that increases the refractive index of silica glass. A composition containing the following is suitable. Such compositions include, for example, SiO 2
−B 2 O 3 −GeO 2 , SiO 2 −F−GeO 2 , SiO 2 −B 2 O 3
-GeO2 -F, SiO2 - B2O3 - Al2O3 , SiO2 - B2O3
-TiO2 , SiO2 -F-TiO2 , etc. , but of course the composition is not limited thereto, and any composition may be used as long as it satisfies the above-mentioned conditions.

次に該応力付与層14が被覆された石英管15
の内側に、すでにその外周を研削された楕円率η
=2(a−b)/a+bなる楕円形のガラスロツドを挿
入 する。この状態を第4図A及びBに夫々示す。図
中の符番は第1〜3図と同じを意味する。さらに
石英管の外側から加熱中実化した後線引きして、
フアイバ化する。
Next, the quartz tube 15 coated with the stress applying layer 14
inside the ellipticity η whose outer circumference has already been ground
Insert an elliptical glass rod with =2(a-b)/a+b. This state is shown in FIGS. 4A and 4B, respectively. The reference numerals in the figures have the same meanings as in FIGS. 1 to 3. Furthermore, after heating the quartz tube from the outside and making it solid, it is drawn.
Convert to fiber.

得られたフアイバの断面を、第1〜4図と同じ
意味の符番によつて、第5図A及びBに示すが、
第5図A及びBにおいて、コア11に付与される
熱応力は、クラツド12が短径a、長径bの非円
であるため、短径、長径方向に異方性が生ずる。
この異方性熱応力により、コア11に複屈折率が
得られ、伝搬する光の偏光状態を保持することが
可能となる。
The cross sections of the obtained fibers are shown in FIGS. 5A and 5B with the same reference numbers as in FIGS. 1 to 4.
In FIGS. 5A and 5B, the thermal stress applied to the core 11 is anisotropic in the short axis and long axis directions because the clad 12 is noncircular with a short axis a and a long axis b.
This anisotropic thermal stress provides the core 11 with birefringence, making it possible to maintain the polarization state of propagating light.

以下に実施例により本発明を説明する。 The present invention will be explained below with reference to Examples.

(実施例) 実施例 1 VAD法により、コアがSiO2−GeO2、クラツド
がSiO2からなる第1図bの構造のシングルモー
ドフアイバ用母材(長さ200cm、コア径3mmφ)
を製造した。この時のコア−クラツド間の屈折率
差は0.3%であつた。該母材を短径2a=6mm、長
径2b=18mmとなるように楕円形に研削加工し、
第2図Bの構造とした。該外周研削加工されたガ
ラスロツドを、10%HF液でエツチングした後、
酸水素炎により火炎研摩した。
(Example) Example 1 Using the VAD method, a base material for a single mode fiber (length 200 cm, core diameter 3 mmφ) having the structure shown in Fig. 1b, whose core is SiO 2 -GeO 2 and cladding is SiO 2
was manufactured. At this time, the refractive index difference between the core and the cladding was 0.3%. Grind the base material into an oval shape so that the minor axis 2a = 6 mm and the major axis 2b = 18 mm,
The structure is shown in Figure 2B. After etching the outer circumferentially ground glass rod with 10% HF solution,
Flame polished with oxyhydrogen flame.

一方、外径26mmφ、内径19mmφ、長さ250mmの
天然溶融石英管の内側に、SiCl4180c.c./分、
BF3200c.c./分、GeCl4、50c.c./分を送り込み、酸
水素炎で1050℃(光高温計により測定)に加熱し
てトラバースし、SiO2−B2O3−GeO2−F組成ガ
ラス膜を60回堆積し、熱応力付与層を第3図のよ
うに形成した。
On the other hand, inside a natural fused silica tube with an outer diameter of 26 mmφ, an inner diameter of 19 mmφ, and a length of 250 mm, SiCl 4 180 c.c./min.
BF 3 200c.c./min, GeCl 4 , 50c.c./min were fed, heated to 1050°C (measured by optical pyrometer) with an oxyhydrogen flame and traversed, SiO 2 −B 2 O 3 −GeO The 2 -F composition glass film was deposited 60 times to form a thermal stress imparting layer as shown in FIG.

この石英管の内側に、上述の外周研削した楕円
形ロツドを第4図Bのように挿入し、酸水素炎の
加熱温度を1900℃に高め、管内圧力は400mmHg
に減圧して、中実化した。
Inside this quartz tube, insert the oval rod with its outer circumference ground as shown in Figure 4B, raise the heating temperature of the oxyhydrogen flame to 1900℃, and increase the pressure inside the tube to 400mmHg.
The pressure was reduced to 100%, and the material was solidified.

さらにこの中実化ロツドを直径10mmφに延伸し
た後、外径/コア径の比を調整するために、外径
24mmφの石英管に挿入し、中実化した後延伸し
て、外径100μmのフアイバを製造した。
Furthermore, after stretching this solid rod to a diameter of 10 mmφ, the outer diameter was adjusted to adjust the ratio of outer diameter/core diameter.
The fiber was inserted into a 24 mmφ quartz tube, solidified, and then stretched to produce a fiber with an outer diameter of 100 μm.

得られたフアイバの偏波特性を評価したとこ
ろ、波長λ=1.15μmのレーザー光で、ビート長
Lbが3mmの良好な偏波特性が達成されていた。
また該フアイバの伝送損失も、1dB/Kmと良好な
値であつた。
When the polarization characteristics of the obtained fiber were evaluated, it was found that the beat length was
Good polarization characteristics with Lb of 3 mm were achieved.
The transmission loss of the fiber was also a good value of 1 dB/Km.

以上の方法で、5本のVAD母材について同様
に加工してフアイバ化したところ、いずれのフア
イバもビート長3mm±0.5mmの値が得られ、本発
明方法により極めて安定して再現性良く、優れた
偏波特性と伝送損失特性を有する定偏波フアイバ
を製造できることがわかつた。
When five VAD base materials were similarly processed and made into fibers using the above method, a beat length of 3 mm ± 0.5 mm was obtained for each fiber, and the method of the present invention was extremely stable and reproducible. It was found that a polarization-constant fiber with excellent polarization characteristics and transmission loss characteristics can be manufactured.

実施例 2 内付け法により、コアがSiO2−GeO2、クラツ
ドがSiO2からなる第1図aの構造の、シングル
モードフアイバ用母材(長さ200mm、アコ径1.5mm
φ、クラツド径9mmφ、ジヤケツト径12mmφ)を
製造した。この時のコアークラツド間の屈折率差
は0.32%であつた。該母材を、短径2a=3mmφ、
長径2b=11mmφとなるように非円研削加工し、
第2図Aの構造とした。
Example 2 A base material for a single mode fiber (length 200 mm, core diameter 1.5 mm) having the structure shown in Fig. 1a, in which the core is made of SiO 2 -GeO 2 and the cladding is SiO 2 , was prepared using the internal attachment method.
φ, clad diameter 9 mm φ, and jacket diameter 12 mm φ). At this time, the difference in refractive index between the core claddings was 0.32%. The base material has a short diameter 2a=3mmφ,
Non-circular grinding is performed so that the long diameter 2b = 11mmφ,
The structure is shown in Figure 2A.

以下外周研削後の表面処理及び熱反力層の作成
等実施例1と同様に行つてフアイバ化し、外径
10μmの定偏波フアイバを得た。
Thereafter, the surface treatment after outer periphery grinding, the creation of a heat reaction layer, etc. were carried out in the same manner as in Example 1 to form a fiber, and the outer diameter
A 10 μm polarization constant fiber was obtained.

得られたフアイバの偏波特性は、波長λ=
1.15μmにおいて、ビート長Lb=2.5mmであり、ま
た伝送損失は1.2dB/Kmと、いずれも良好であつ
た。
The polarization characteristics of the obtained fiber are as follows: wavelength λ=
At 1.15 μm, the beat length Lb was 2.5 mm, and the transmission loss was 1.2 dB/Km, both of which were good.

この場合も同じ方法で作製した5本のブリフオ
ームについて、同様にフアイバ化してその再現性
を調査したところ、いずれのプリフオームから作
製したフアイバも、ビート長Lb=2.5±0.5mm以内
であり、きわめて再現性良く製造できた。
In this case as well, five preforms fabricated using the same method were made into fibers and their reproducibility was investigated. The beat length Lb of the fibers fabricated from any of the preforms was within 2.5±0.5mm, which was extremely reproducible. It was manufactured with good performance.

(発明の効果) 以上の実施例からも明らかなように、本発明方
法は、複屈折率を決定する熱応力異方性を、石英
管に挿入する外周研削ロツドの楕円率η=
2(b−a)/(b+a)によつて決定するので、極め
て再現 性良く製造できる上に、得られたフアイバの偏波
保持特性が得られる。この良好な再現性は、ガラ
スロツドの外周研削加工が精度高くかつ容易にで
きることによる。しかも、本発明の方法では、石
英管中に挿入されるガラスロツドは1本のみなの
で、気泡の発生が、HF液エツチングと火炎研摩
により短時間処理で抑止できるし、従来法のよう
な多数ロツドの組み合わせの場合に発生する。ロ
ツド−ロツド間の表面の微細気泡の発生は見られ
ない。
(Effects of the Invention) As is clear from the above embodiments, the method of the present invention is capable of converting the thermal stress anisotropy that determines the birefringence into the ellipticity η=
Since it is determined by 2(b-a)/(b+a), it can be manufactured with extremely good reproducibility, and the resulting fiber can have polarization-maintaining characteristics. This good reproducibility is due to the fact that the outer periphery of the glass rod can be ground with high accuracy and easily. Moreover, in the method of the present invention, only one glass rod is inserted into the quartz tube, so the generation of bubbles can be suppressed in a short time by HF liquid etching and flame polishing, and the generation of bubbles can be suppressed in a short time, unlike the conventional method, in which multiple rods are inserted. Occurs in combination. No generation of microbubbles on the surface between the rods was observed.

これらの効果を奏する本発明の方法は、優れた
偏波特性を有する低損失定偏波フアイバを再現性
よく、しかも経済的に製造できる、非常に有利な
方法である。
The method of the present invention, which achieves these effects, is a very advantageous method that can economically produce a low-loss polarization-constant fiber having excellent polarization characteristics with good reproducibility.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のコア・クラツドを有するロツ
ドを説明するもので、第1図Aは内付け法による
もの、第1図BはVAD法又は外付け法によるも
のである。第2図A及びBは第1図A及びBのロ
ツドを夫々非円研削加工したものの説明図、第3
図はジヤケツト管に応力付与層を形成したものの
説明図、第4図A及びBは、第3図の石英管に第
2図A及びBの非円加工されたロツドを夫々挿入
したものの説明図、第5図A及びBは、第4図A
及びBを中実化した後得られた夫々のフアイバの
断面図を示す。
1A and 1B illustrate a rod having a core cladding according to the present invention, FIG. 1A is by the internal attachment method, and FIG. 1B is by the VAD method or the external attachment method. Figure 2 A and B are explanatory diagrams of the rods in Figure 1 A and B processed by non-circular grinding, respectively.
The figure is an explanatory diagram of a jacket tube with a stress applying layer formed thereon, and Figures 4A and B are explanatory diagrams of the quartz tube of Figure 3 in which the non-circularly machined rods of Figures 2A and B are inserted, respectively. , Figures 5A and B are Figure 4A
FIG. 2 shows a cross-sectional view of the respective fibers obtained after solidifying B and B.

Claims (1)

【特許請求の範囲】[Claims] 1 円形コアと楕円形状クラツドからなるガラス
ロツドを、クラツドガラスと実質的に屈折率が等
しく、熱膨張率の異なるガラス層をその内部に被
覆堆積させた石英管に挿入して、加熱融着し一体
化した後線引きフアイバ化することを特徴とする
定偏波フアイバの製造方法。
1. A glass rod consisting of a circular core and an elliptical cladding is inserted into a quartz tube in which a glass layer with a refractive index substantially equal to that of the cladding glass and a different coefficient of thermal expansion is deposited, and the rod is heated and fused to integrate the rod. 1. A method for producing a constant polarization fiber, which comprises:
JP59070034A 1984-04-10 1984-04-10 Production of fiber for constantly polarized waves Granted JPS60215541A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59070034A JPS60215541A (en) 1984-04-10 1984-04-10 Production of fiber for constantly polarized waves

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59070034A JPS60215541A (en) 1984-04-10 1984-04-10 Production of fiber for constantly polarized waves

Publications (2)

Publication Number Publication Date
JPS60215541A JPS60215541A (en) 1985-10-28
JPH0425211B2 true JPH0425211B2 (en) 1992-04-30

Family

ID=13419901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59070034A Granted JPS60215541A (en) 1984-04-10 1984-04-10 Production of fiber for constantly polarized waves

Country Status (1)

Country Link
JP (1) JPS60215541A (en)

Also Published As

Publication number Publication date
JPS60215541A (en) 1985-10-28

Similar Documents

Publication Publication Date Title
US4426129A (en) Optical fiber and method of producing the same
US3932162A (en) Method of making glass optical waveguide
US4896942A (en) Polarization-maintaining optical fiber
US4184859A (en) Method of fabricating an elliptical core single mode fiber
GB2221903A (en) Method of producing elliptic core type polarization-maintaining optical fibre
JPH03182704A (en) Passive optical part and manufacture thereof
JPH0236535B2 (en)
JPH0425211B2 (en)
JP2616087B2 (en) Manufacturing method of elliptical core type polarization maintaining optical fiber
JPH06235838A (en) Production of polarization maintaining optical fiber
JPS58135141A (en) Preparation of single polarized optical fiber
JPS6328857B2 (en)
JPH0557215B2 (en)
JPS59139005A (en) Fiber for maintaining linearly polarized light
JPH0324420B2 (en)
JPH01279211A (en) Polarized wave maintaining optical fiber
JPS60215542A (en) Production of fiber for constantly polarized waves
JP2827231B2 (en) Manufacturing method of polarization maintaining optical fiber coupler
JPH0439605A (en) Elliptic core type polarization plane maintaining optical fiber and optical fiber polarizer
JPH0210093B2 (en)
Arutyunyan et al. Investigation of the spectral dependences of some of the polarization characteristics of fiber waveguides with an elliptic stress-inducing cladding and a circular core
JPS58214104A (en) Optical fiber for preserving plane of polarization
JPH024540B2 (en)
JPS59197001A (en) Stress applying base material for optical fiber maintaining polarization
JPS6344692B2 (en)