JPH0425120A - Manufacture of compound semiconductor layer - Google Patents

Manufacture of compound semiconductor layer

Info

Publication number
JPH0425120A
JPH0425120A JP2129914A JP12991490A JPH0425120A JP H0425120 A JPH0425120 A JP H0425120A JP 2129914 A JP2129914 A JP 2129914A JP 12991490 A JP12991490 A JP 12991490A JP H0425120 A JPH0425120 A JP H0425120A
Authority
JP
Japan
Prior art keywords
layer
crystal layer
substrate
conductivity type
gaas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2129914A
Other languages
Japanese (ja)
Other versions
JPH0828326B2 (en
Inventor
Kousei Takahashi
向星 高橋
Masahiro Hosoda
昌宏 細田
Atsutake Tsunoda
篤勇 角田
Naohiro Suyama
尚宏 須山
Kaneki Matsui
完益 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2129914A priority Critical patent/JPH0828326B2/en
Priority to DE69120865T priority patent/DE69120865T2/en
Priority to DE69133230T priority patent/DE69133230T2/en
Priority to US07/698,001 priority patent/US5255279A/en
Priority to DE69129047T priority patent/DE69129047T2/en
Priority to EP95115775A priority patent/EP0695006B1/en
Priority to EP91304161A priority patent/EP0456485B1/en
Priority to EP97105580A priority patent/EP0785603B1/en
Publication of JPH0425120A publication Critical patent/JPH0425120A/en
Priority to US08/080,004 priority patent/US5360762A/en
Publication of JPH0828326B2 publication Critical patent/JPH0828326B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Light Receiving Elements (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To make it possible to obtain a compound semiconductor device provided with an AlXGa1-XAs crystal layer having excellent crystallinity by a method wherein a substrate is heated up to the temperature at which the In of a crystal layer is evaporated while an As molecular beams is being projected on the surface of an (AlYGa1-Y)0.5P crystal layer (0<=Y<=1) which is latice- matched with a GaAs substrate. CONSTITUTION:An (AlYGa1-Y)0.5infinity n0.5P crystal layer (0<=Y<=1), with which a lattice matching is performed, is formed on a GaAs substrate 11, the substrate 1 is heated up to the temperature at which the In of the crystal layer 14 will be evaporated by projecting an As molecular beam on the surface of the crystal layer 14, and the surface of the crystal layer 14 is converted to several molecular layers of AlYGa1-YAs crystal layer 15 (0<=Y<=1). Then, an AlXGa1-XAs crystal layer 16 (0<=X<=1) is formed on the AlYGa1-YAs crystal layer 15. As a result, an AlXGa1-XAs crystal layer 16 of high quality, which is lattice matched to the substrate 1, can be formed easily without deterioration on the surface of the (AlYGa1-Y)0.5In0.5P crystal layer 14.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は化合物半導体層の製造方法に関し、特に、m−
v族に属する化合物半導体層をGaAs基板上に結晶性
良く形成することができる化合物半導体層の製造方法に
関する。
Detailed Description of the Invention (Industrial Field of Application) The present invention relates to a method for manufacturing a compound semiconductor layer, and in particular, to a method for manufacturing a compound semiconductor layer.
The present invention relates to a method for manufacturing a compound semiconductor layer that can form a compound semiconductor layer belonging to Group V on a GaAs substrate with good crystallinity.

(従来の技術) 近年、光情′報処理システムの高機能化等を目的として
、より短波長域で発振する半導体レーザ素子の実現が要
求されている。
(Prior Art) In recent years, in order to improve the functionality of optical information processing systems, there has been a demand for the realization of semiconductor laser elements that oscillate in a shorter wavelength range.

GaAs基板に格子整合する(A I yG a +−
v)e、s In 11.SP結晶(0≦Y≦1)は、
600nm帯の波長を有する光を放射する可視光半導体
レーザのための材料として注目されている。以下、本明
細書に於ては、特に断わらない限り、 (AIYGa 
I−Y) 11.5r n lI、5P (0≦Y≦1
)をAlGa1nP又はGa I nP (Y=Oの場
合)と称する。
Lattice matched to GaAs substrate (A I yG a +-
v) e,s In 11. SP crystal (0≦Y≦1) is
It is attracting attention as a material for visible light semiconductor lasers that emit light with a wavelength in the 600 nm band. Hereinafter, in this specification, unless otherwise specified, (AIYGa
I-Y) 11.5r n lI, 5P (0≦Y≦1
) is referred to as AlGa1nP or GaInP (in the case of Y=O).

AIGaInP結晶を基板上に成長させる方法としては
、有機金属気相成長法(MOCVD法)の他に、分子線
エピタキシー法(MBE法)が期待されている。
In addition to metal organic chemical vapor deposition (MOCVD), molecular beam epitaxy (MBE) is a promising method for growing AIGaInP crystals on a substrate.

MBE法を用いて作成されたAlGa InP系可視光
半導体レーザ素子が、室温で可視光を連続的に発振した
ことの報告がある(Hayakawa、et、al、J
ournal  of  Cry=2 5tal   Growth   95   (198
9)pp、  949)。
There is a report that an AlGa InP visible light semiconductor laser device fabricated using the MBE method continuously oscillated visible light at room temperature (Hayakawa, et al., J.
Our own of Cry=2 5tal Growth 95 (198
9)pp, 949).

第5図に、’MBE法により作成された従来のAIGa
InP系可視光半導体レーザ素子の断面図を示す。
Figure 5 shows the conventional AIGa created by the 'MBE method.
1 shows a cross-sectional view of an InP-based visible light semiconductor laser device.

第1導電型GaAs基板1上に、各々MBE法により成
長させられた第1導電型G a A s /’ yファ
層2、第1導電型Ga I nPバッファ層3、第1導
電型AlGa InPクラッド層4、GaInP活性層
5、第2導電型AIGaInP第2クラツド層6、及び
第2導電型GaInP層20が、この順番で基板1側か
ら積層されている。
A first conductivity type GaAs/'y layer 2, a first conductivity type Ga I nP buffer layer 3, and a first conductivity type AlGa InP are grown on a first conductivity type GaAs substrate 1 by the MBE method. A cladding layer 4, a GaInP active layer 5, a second conductivity type AIGaInP second cladding layer 6, and a second conductivity type GaInP layer 20 are laminated in this order from the substrate 1 side.

第2導電型GaInP層20上には、絶縁性窒化シリコ
ン膜21が形成されており、窒化シリコン膜21には、
第2導電型Ga I nPP2O3達する幅10μmの
ストライブ状溝が形成されている。
An insulating silicon nitride film 21 is formed on the second conductivity type GaInP layer 20, and the silicon nitride film 21 includes:
Striped grooves with a width of 10 μm reaching the second conductivity type Ga I nPP2O3 are formed.

上記の積層構造の上面及び基板1の裏面には、電極23
.22が形成されている。
An electrode 23 is provided on the upper surface of the above laminated structure and the back surface of the substrate 1.
.. 22 is formed.

第5図の半導体レーザ素子は、ストライプ状の溝を有す
る絶縁性窒化シリコン膜21が電流を狭搾する利得導波
形半導体レーザ素子である。
The semiconductor laser device shown in FIG. 5 is a gain waveguide semiconductor laser device in which an insulating silicon nitride film 21 having striped grooves narrows the current.

この半導体レーザ素子は、発振閾値93mAを示し、ま
た、゛可視光を室温で連続的に発振することができる。
This semiconductor laser device exhibits an oscillation threshold of 93 mA and is also capable of continuously oscillating visible light at room temperature.

(発明が解決しようとする課題) しかしながら、上述の従来技術においては、以下に述べ
る問題点があった。
(Problems to be Solved by the Invention) However, the above-mentioned conventional technology has the following problems.

第5図の半導体レーザ素子は、発振時に、活性層で発生
した熱の放散が悪いため、最高連続発振温度が35°C
と低かった。これは、AIGaInP結晶の熱伝導率が
低いためである。
The semiconductor laser device shown in Figure 5 has a maximum continuous oscillation temperature of 35°C due to poor dissipation of heat generated in the active layer during oscillation.
It was low. This is because the thermal conductivity of AIGaInP crystal is low.

放熱性に優れた構造を有し、しかも、GaAs基板に格
子整合したAIGaInP結晶からなるダブルへテロ構
造を備えた半導体レーザ素子を製造するためには、Al
Ga1nP結晶層上に、比較的熱伝導率が大きく、放熱
性に優れた材料であるAlGaAs結晶層を、MBE法
により形成することができればよい。
In order to manufacture a semiconductor laser device that has a structure with excellent heat dissipation and a double heterostructure made of AIGaInP crystal lattice matched to a GaAs substrate, it is necessary to use Al
It is sufficient if an AlGaAs crystal layer, which is a material with relatively high thermal conductivity and excellent heat dissipation properties, can be formed on the Ga1nP crystal layer by the MBE method.

しかし、GaAs基板に格子整合するAIGaInP結
晶層上に、AlGaAs結晶層を、MB=4= E法により形成する場合、AIGaInP結晶層の表面
が不純物により汚染されると、そのAlGa1nP結晶
゛層上に、結晶性の優れたAlGaAs結晶層を成長さ
せることができないという問題がある。
However, when forming an AlGaAs crystal layer on an AIGaInP crystal layer that is lattice-matched to the GaAs substrate by the MB=4=E method, if the surface of the AIGaInP crystal layer is contaminated with impurities, the surface of the AlGaInP crystal layer may be contaminated with impurities. However, there is a problem in that an AlGaAs crystal layer with excellent crystallinity cannot be grown.

このような汚染は、AI Ga I nP結晶層とAl
GaAs結晶層とを、MBE法により連続的に形成する
場合に於て、AIGaInP結晶層の成長終了後に、P
の分子線照射から、Asの分子線照射への切り替えのた
め、層成長を一時的に停止するときにも生じる。
Such contamination can cause damage to the AI Ga InP crystal layer and the Al
When the GaAs crystal layer is formed continuously by the MBE method, after the growth of the AIGaInP crystal layer is completed, the P
This also occurs when layer growth is temporarily stopped in order to switch from molecular beam irradiation to As molecular beam irradiation.

これは、上述の一時的な結晶層成長の停止後数秒の内に
、MBE装置内雰囲気中の酸素、水蒸気等の不純物が、
成長の停止した結晶層表面を汚染するからである。
This is because impurities such as oxygen and water vapor in the atmosphere inside the MBE apparatus are removed within a few seconds after the above-mentioned temporary crystal layer growth stops.
This is because it contaminates the surface of the crystal layer where growth has stopped.

また、MBE法により高品質のAlGaAs層を成長さ
せる場合、基板温度を620°C程度に上昇させる必要
がある。この温度では、しかし、AlGa InP層か
らのIn又はPの蒸発が盛んに生じるために、AIGa
InP結晶層の表面が劣−5= 化してしまうという問題がある。このような表面の劣化
が生じたAIGaInP結晶層上に、AlGaAslG
aAs結晶古層ると、結晶性に優れたAlGaAs結晶
層を得ることはできない。
Furthermore, when growing a high quality AlGaAs layer by the MBE method, it is necessary to raise the substrate temperature to about 620°C. At this temperature, however, intensive evaporation of In or P from the AlGaInP layer causes the AIGa
There is a problem in that the surface of the InP crystal layer deteriorates. On the AIGaInP crystal layer with such surface deterioration, AlGaAslG
If the aAs crystal old layer is used, an AlGaAs crystal layer with excellent crystallinity cannot be obtained.

本発明は、上記課題を解決するためになされたものであ
り、その目的とするところは、GaAs基板に格子整合
する(A 1 yG a 1−Y) LSI ne、s
P結晶層の表面が汚染されたときでも、その(AI Y
G a I−Y) II、51 n lI、sP結晶層
上に、高品質のA I XG a +−*A s結晶層
を容易に形成することができる化合物半導体層の製造方
法を提供することにある。
The present invention has been made to solve the above problems, and its purpose is to lattice match (A 1 yG a 1-Y) LSI ne, s to a GaAs substrate.
Even when the surface of the P crystal layer is contaminated, its (AI Y
To provide a method for manufacturing a compound semiconductor layer that can easily form a high quality A I It is in.

本発明の他の目的は、GaAs基板に格子整合する( 
A I YG a +−y) e、s I n II、
sP結晶層の表面を劣化させることなく、その(A I
 YG a t−y) e51rz+、sP結晶層上に
、高品質のA I XG a 1−XAs結晶層を容易
に形成することができる化合物半導体層の製造方法を提
供することにある。
Another object of the present invention is to lattice match the GaAs substrate (
A I YG a +-y) e, s I n II,
Without deteriorating the surface of the sP crystal layer, its (AI
An object of the present invention is to provide a method for manufacturing a compound semiconductor layer that can easily form a high quality A I XG a 1-XAs crystal layer on a YG a ty) e51rz+, sP crystal layer.

(課題を解決するための手段) 本発明の化合物半導体層の製造方法は、GaA一 S基板に格子整合する(AlyGa+−y)s、51n
e5P結晶層(O≦Y≦1)を該基板上に形成する工程
と、該結゛晶層の表面にAs分子線を照射しながら、該
結晶層のInが蒸発する温度に該基板を昇温することに
より、該結晶層の表面を数分子層のA I yG a 
1−yA s結晶層(0≦Y≦1)に変化させる工程と
、A I XG a I−XA S結晶層(0≦X≦1
)を該A 1 yG a 1−vA s結晶層上に形成
する工程とを包含しており、そのことにより上記目的が
達成される。
(Means for Solving the Problems) The method for manufacturing a compound semiconductor layer of the present invention provides (AlyGa+-y)s, 51n, which is lattice matched to a GaA-S substrate.
A step of forming an e5P crystal layer (O≦Y≦1) on the substrate, and raising the substrate to a temperature at which In in the crystal layer evaporates while irradiating the surface of the crystal layer with an As molecular beam. By heating the surface of the crystal layer, several molecular layers of A I yG a
1-yA s crystal layer (0≦Y≦1), and A I
) on the A 1 yG a 1-vAs crystal layer, thereby achieving the above object.

(実施例) 以下に本発明を実施例について説明する。(Example) The present invention will be described below with reference to Examples.

最初に、第1図を参照しながら、第1の実施例を説明す
る。
First, a first embodiment will be described with reference to FIG.

第1図(a)に示すように、まず、GaAs基板ll上
に、GaAsバッファ層12、及び(AI 11.7G
 a i+、a) s、s I n T!、6P層14
を、この順番で基板11側からMBE法により成長させ
た。このときの基板温度は、510°Cとした。
As shown in FIG. 1(a), first, a GaAs buffer layer 12 and an (AI 11.7G
a i+, a) s, s I n T! , 6P layer 14
were grown in this order from the substrate 11 side by the MBE method. The substrate temperature at this time was 510°C.

次に、2分子線の照射を停止した後、 (AIθ7G 
a [1,3) e、s I n [!、5P層14に
対してAs分子線を照射しながら、基板温度を620 
’Cに上昇させ、その状態“を数分間維持するという工
程を行った。
Next, after stopping the bimolecular beam irradiation, (AIθ7G
a [1,3) e, s I n [! , while irradiating the 5P layer 14 with the As molecular beam, the substrate temperature was increased to 620°C.
A process was performed in which the temperature was raised to 'C' and this state was maintained for several minutes.

この工程によって、 (A 1 n、7G a 11.
3) 11.5 I n8.5P層14の表面近傍のI
n及びPが、As分子線のAsと置換することにより、
(A I [1,TG a 8、s) [1,5I n
 +!、sP層14の層面4傍の数分子層が、数分子層
のA l l!、7G a [1,3A 3層15に変
化した。
Through this process, (A 1 n, 7G a 11.
3) I near the surface of the 11.5 I n8.5P layer 14
By replacing n and P with As in the As molecular beam,
(A I [1, TG a 8, s) [1,5I n
+! , several molecular layers near the layer surface 4 of the sP layer 14 are several molecular layers A l l! , 7G a [1,3A 3-layer 15].

この数分子層のA l l!、7G a 11.aA 
3層15は、680°C程度以下では、組成元素の蒸発
がほとんど生じない熱的に安定な材料からなる層である
A l l of this few molecular layers! , 7G a 11. aA
The third layer 15 is a layer made of a thermally stable material whose constituent elements hardly evaporate at temperatures below about 680°C.

このため、620°C程度で通常盛んに生じるはずの(
A I 11.7G a s、3) s、s I n 
e、sP層14からのIn又はPの蒸発が、数分子層の
A l t+、yG a [1,3As層15に覆われ
ることによって防止された。
For this reason, the (
A I 11.7G a s, 3) s, s I n
e, evaporation of In or P from the sP layer 14 was prevented by being covered with several molecular layers of the Al t+,yG a [1,3As layer 15.

このように、上記工程を行うことによって、特に580
°C程度以上に於いて顕著となる(Ali!。
In this way, by performing the above steps, especially 580
It becomes noticeable at temperatures above about °C (Ali!).

7G a [1,3) [!、5 I n s、sP層
14のIn又はPの蒸発による劣化を、620°C程1
度に於いても防止するこ七ができた。
7G a [1,3) [! , 5 I n s, deterioration due to evaporation of In or P in the sP layer 14 is suppressed at about 620°C 1
There are seven things that can be done to prevent this from happening.

As分子線を照射しながら基板温度を620°Cに上昇
させる゛という上述の工程の後、その工程に連続させて
、A l 11,4G a 9.aA 3層16をAI
i!。
After the above-mentioned process of raising the substrate temperature to 620°C while irradiating the As molecular beam, in succession to that process, Al 11,4G a 9. aA AI 3 layer 16
i! .

7Gaa3As層15上に成長させる工程を行った。A step of growing on the 7Gaa3As layer 15 was performed.

このA 1 g、4G a e、eA 3層16の成長
は、As分子線の他に、A1分子線及びGa分子線を基
板11に向けて照射する通常のMBE法により行った。
The growth of this A 1 g, 4G a e, eA three layer 16 was performed by a normal MBE method in which the substrate 11 is irradiated with an A1 molecular beam and a Ga molecular beam in addition to the As molecular beam.

このときの基板温度は、620°Cとした。第1の実施
例の方法により形成したAIθ、4G a 8.aA 
s層16と、As分子線を照射しながら基板温度を62
0°Cに上昇させるという上述の工程のみを省略した方
法により形成したA I [1,4G a8.6As層
(比較例)とを比較するために、各々のA I 、、A
Gaθ、BA s層のフォトルミネッセンスを測定した
The substrate temperature at this time was 620°C. AIθ, 4G a formed by the method of the first example 8. aA
The substrate temperature is increased to 62°C while irradiating the S layer 16 and the As molecular beam.
In order to compare each A
Photoluminescence of the Gaθ, BA s layer was measured.

この結果、実施例の発光強度は、比較例のものの数倍の
大きさであった。このことは、実施例のA I 9,4
G a 9.aA 3層16の結晶性が、比較例のA 
I [1,4G a 6.BA s層の結晶性よりも優
れていることを示している。
As a result, the emission intensity of the example was several times higher than that of the comparative example. This is true for AI 9,4 in Example
G a 9. aA The crystallinity of the three layers 16 is that of Comparative Example A
I [1,4G a 6. This shows that the crystallinity is superior to that of the BAs layer.

上述の実施例の方法により、このように優れた結晶性を
有するA I 11.4G a g、6A s層16を
形成できた第1の理由は、A l e、aG a e、
6A s層16の成長前に、As分子線を照射しながら
基板温度を620°Cに上昇させるという上述の工程を
行うことにより、(A I e、rG a [1,3)
 [!、5 I n e、sP層14の表面近傍の数分
子層を数分子層のAlGaAs層15に変化させ、この
層によって、(A1[1,7G a 11.3) 11
.s I n 11.5P層14のIn及びPの蒸発に
よる劣化を防止したためである。
The first reason why the A I 11.4G a g, 6A s layer 16 having such excellent crystallinity could be formed by the method of the above-described embodiment is that A l e, aG a e,
By performing the above-mentioned process of increasing the substrate temperature to 620°C while irradiating As molecular beams before growing the 6A s layer 16, (A I e, rG a [1,3)
[! , 5 Ine, several molecular layers near the surface of the sP layer 14 are changed to several molecular layers of the AlGaAs layer 15, and by this layer, (A1[1,7G a 11.3) 11
.. This is because deterioration of the s I n 11.5P layer 14 due to evaporation of In and P was prevented.

第2の理由は、A I i!、4G a [1,eA 
s層16の成長前に、As分子線を照射しながら基板温
度を620°Cに上昇させるという上述の工程中に、(
A1 e、7G a 11.3) [1,5I n e
、sP層14の表面近傍のIn及びPが、As分子線の
Asと置換することにより、 (A 1 a、yG a
 e、3) [!、5 r n B、5P層14の表面
近傍に存在した酸化物などの不純物が除去され、それに
よって、その表面近傍が清浄化されたためである。
The second reason is A I i! ,4G a[1,eA
Before the growth of the s-layer 16, during the above-mentioned step of increasing the substrate temperature to 620°C while irradiating the As molecular beam, (
A1 e, 7G a 11.3) [1,5I n e
, By replacing In and P near the surface of the sP layer 14 with As in the As molecular beam, (A 1 a, yG a
e, 3) [! This is because impurities such as oxides existing near the surface of the , 5 r n B, 5P layer 14 were removed, thereby cleaning the surface area.

このように、本実施例では、たとえP分子線熱射の停止
からAs分子線照射を開始するまでの数秒の内に、MB
E装置内雰囲気中の酸素、水蒸気等の不純物力9、成長
の停止した結晶層表面を汚染しても、その汚染が上述の
方法により清浄化されるので、分子線照射の切り替えに
よる問題は生じなかった。
In this way, in this example, even if the MB is
Even if the surface of the crystal layer where growth has stopped is contaminated by impurities such as oxygen and water vapor in the atmosphere inside the E equipment, the contamination will be cleaned by the method described above, so problems caused by switching the molecular beam irradiation will not occur. There wasn't.

次に、第2図を参照しながら、第2の実施例を説明する
Next, a second embodiment will be described with reference to FIG.

第2図(a)が示すように、まず、GaAs基板ll上
に、GaAsバッファ層12、及びGaInP層13を
、この順番で基板11側からMBE法により成長させた
。このときの基板温度は、450〜570°Cの範囲と
した。
As shown in FIG. 2(a), first, a GaAs buffer layer 12 and a GaInP layer 13 were grown in this order on a GaAs substrate 11 from the substrate 11 side by the MBE method. The substrate temperature at this time was in the range of 450 to 570°C.

この後、表面観察のため、基板11をMBE装置外に取
り出した。その後、再び、基板11をMBE装置内に導
入し、GaInP層13に対してAs分子線を照射しな
がら、基板温度を620°Cに上昇させ、その状態を数
分間維持するという工程を行った。
Thereafter, the substrate 11 was taken out of the MBE apparatus for surface observation. Thereafter, the substrate 11 was introduced into the MBE apparatus again, and the GaInP layer 13 was irradiated with an As molecular beam, the substrate temperature was raised to 620°C, and this state was maintained for several minutes. .

この工程によって、GalnP層13の表面近傍のIn
及びPが、As分子線のAsと置換することにより、G
alnP層13の表面近傍の数分子層が、数分子層のG
aAs層17に変化した。
By this step, In near the surface of the GalnP layer 13
By substituting As and P for As in the As molecular beam, G
Several molecular layers near the surface of the alnP layer 13 are several molecular layers of G.
It changed to an aAs layer 17.

この数分子層のGaAs層17は、680°C程度以下
では、組成元素の蒸発がほとんど生じない熱的に安定な
材料からなる層である。このため、620℃程度で通常
盛んに生じるはずのGalnP層13からのIn又はP
の蒸発が、この数分子層のGaAs層17に覆われるこ
とによって防止された。
This several molecular layer GaAs layer 17 is a layer made of a thermally stable material in which almost no evaporation of the constituent elements occurs at temperatures below about 680°C. For this reason, In or P from the GalnP layer 13, which would normally occur actively at about 620°C,
This evaporation was prevented by covering the GaAs layer 17 with several molecular layers.

このように、上記工程を行うことによって、特に580
°C程度以上に於いて顕著となるGalnP層13のI
n又はPの蒸発による劣化を、620°C程度に於いて
も防止することができた。
In this way, by performing the above steps, especially 580
The I of the GalnP layer 13 becomes noticeable at temperatures above about °C.
Deterioration due to evaporation of n or P could be prevented even at about 620°C.

As分子線を照射しながら基板温度を620°Cに上昇
させるという上述の工程の後、その工程に連続させて、
A l 11.7G a 11.3A 6層18をGa
AS層17層間7上させる工程を行った。このA1[!
、7G a l!、3A s層18の成長は、As分子
線の他に、A1分子線及びGa分子線を基板11に向け
て照射する通常のMBE法により行った。このときの基
板温度は、690°Cとした。
After the above-mentioned step of raising the substrate temperature to 620°C while irradiating the As molecular beam, following that step,
A l 11.7G a 11.3A 6 layers 18 are Ga
A step of increasing the AS layer 17 between the layers 7 was performed. This A1[!
, 7G a l! , 3As The growth of the s layer 18 was performed by the usual MBE method in which the substrate 11 is irradiated with an A1 molecular beam and a Ga molecular beam in addition to the As molecular beam. The substrate temperature at this time was 690°C.

こうして形′成したAlGaAs層18も、第1の実施
例の方法により形成したAlGaAs層16と同様に、
優れた結晶性を有するものであった。
The AlGaAs layer 18 thus formed also has the same characteristics as the AlGaAs layer 16 formed by the method of the first embodiment.
It had excellent crystallinity.

次に、第3図を参照しながら、第3の実施例を説明する
Next, a third embodiment will be described with reference to FIG.

まず、第1導電型GaAs基板1上に、第1導電型Ga
Asバッファ層2、第1導電型GaInPバツフア層3
、第1導電型AIGaInPクラツド層4、Ga I 
nP活性層5、第2導電型AIGaInP第2クラツド
層6、及び第2導電型GaInP層7を、この順番で基
板1側から、MBE法により成長させた(第3図(a)
)。これらの層の成長は、Pを分子線源として扱うMB
E装置内で通常のMBE法により行った。なお、そのと
きの基板温度は、510°Cとした。また、第2導電型
GaInP層7の層厚は、100Aとした。
First, a first conductivity type GaAs substrate 1 is coated with a first conductivity type GaAs substrate 1.
As buffer layer 2, first conductivity type GaInP buffer layer 3
, first conductivity type AIGaInP cladding layer 4, Ga I
An nP active layer 5, a second conductivity type AIGaInP second cladding layer 6, and a second conductivity type GaInP layer 7 were grown in this order from the substrate 1 side by the MBE method (Fig. 3(a)).
). The growth of these layers is performed using MB, which treats P as a molecular beam source.
This was carried out using the usual MBE method in an E apparatus. Note that the substrate temperature at that time was 510°C. Further, the layer thickness of the second conductivity type GaInP layer 7 was set to 100A.

この後、基板1をそのMBE装置から外に取り出し、次
に、Asを分子線源として扱う他のMBE装置内に基板
1を導入した。
Thereafter, the substrate 1 was taken out of the MBE apparatus and then introduced into another MBE apparatus that uses As as a molecular beam source.

次に、このMBE装置内で、第2導電型Ga1nP層7
上1ごAs分子線を照射しながら、基板温度を620°
Cに上昇させ、その状態を数分間維持するという工程を
行った。
Next, in this MBE apparatus, the second conductivity type Ga1nP layer 7
Above 1: While irradiating the As molecular beam, increase the substrate temperature to 620°.
A step was performed in which the temperature was raised to C and this state was maintained for several minutes.

この工程によって、GalnP層7の表面近傍のIn及
びPが、As分子線のAsと置換することにより、Ga
 I nP層70表面近傍の数分子層が、数分子層のG
 a A ’s層8に変化した(第3図(b))。
Through this process, In and P near the surface of the GalnP layer 7 are replaced with As in the As molecular beam, so that Ga
Several molecular layers near the surface of the I nP layer 70 are several molecular layers of G
a A's layer 8 (FIG. 3(b)).

GaAs層8上に、第2導電型GaAsキャップ層9を
MBE法により成長させた後、第2導電型GaAsキャ
ップ層9上に、絶縁性窒化シリコン膜21をプラズマC
VD法により成長させた。
After growing a second conductivity type GaAs cap layer 9 on the GaAs layer 8 by the MBE method, an insulating silicon nitride film 21 is grown on the second conductivity type GaAs cap layer 9 by plasma C.
It was grown by the VD method.

窒化シリコン膜21をフォトエツチングすることにより
、第2導電型GaAsキャップ層9に達する幅10μm
のストライブ状溝を窒化シリコン膜21に形成した。
By photo-etching the silicon nitride film 21, a width of 10 μm is formed to reach the second conductivity type GaAs cap layer 9.
Striped grooves were formed in the silicon nitride film 21.

このようにして形成した積層構造の上面及び基板1の裏
面に、電極23.22を形成することにより、第3図(
C)に示す利得導波型の半導体レーザ素子を作成した。
By forming electrodes 23 and 22 on the top surface of the laminated structure thus formed and on the back surface of the substrate 1, as shown in FIG.
A gain waveguide type semiconductor laser device shown in C) was fabricated.

この半導体ル−ザ素子は、670nmの波長光を室温で
連続発振した。
This semiconductor laser device continuously oscillated light with a wavelength of 670 nm at room temperature.

この半導体レーザ素子は、GaInPよりも熱伝導性に
優れたGaAsからなる第2導電型GaAsキャップ層
9を有しているため、活性層5で発生した熱が効率的に
半導体レーザ素子外へ放散される。このため、第6図の
半導体レーザ素子の温度特性よりも、優れた温度特性を
達成することができた。
Since this semiconductor laser device has a second conductivity type GaAs cap layer 9 made of GaAs, which has better thermal conductivity than GaInP, the heat generated in the active layer 5 is efficiently dissipated to the outside of the semiconductor laser device. be done. Therefore, it was possible to achieve temperature characteristics superior to those of the semiconductor laser device shown in FIG.

上述の作成方法から、As分子線を照射しながら基板温
度を620°Cに上昇させる工程を省略した方法により
作成した半導体レーザ素子(比較例)では、その発振閾
値が上昇したため、室温での連続発振を実現することは
できなかった。これは、この半導体レーザ素子の第2導
電型Ga1nP層7の表面が大気との接触により汚染さ
れた後、MBE装置内で充分に清浄化されないまま、そ
の上に結晶層を成長させたためである。このため、比較
例の第2導電型GaInP層より上方に形成された結晶
層の結晶性が実施例のものに比べ劣ったものとなり、′
比較例のレーザ光の発光効率が低下するに至った。
In the semiconductor laser device (comparative example) fabricated using the above fabrication method that omitted the step of raising the substrate temperature to 620°C while irradiating the As molecular beam, the oscillation threshold increased, so continuous operation at room temperature was It was not possible to realize oscillation. This is because after the surface of the second conductivity type Ga1nP layer 7 of this semiconductor laser device was contaminated by contact with the atmosphere, a crystal layer was grown on it without being sufficiently cleaned in the MBE apparatus. . For this reason, the crystallinity of the crystal layer formed above the second conductivity type GaInP layer of the comparative example was inferior to that of the example;
The luminous efficiency of the laser beam of the comparative example decreased.

次に、第4図を参照しながら、第4の実施例を説明する
Next, a fourth embodiment will be described with reference to FIG.

まず、第1導電型GaAs基板l上に、第1導電型Ga
1nPバツフア層3、Ga I nP活性層5、及び第
2導電型GaInP層6を、この順番で基板側から、M
BE法により成長させた。これらの層の成長は、Pを分
子線源として扱うMBE装置内で通常のMBE法により
行った。
First, a first conductivity type GaAs substrate l is coated with a first conductivity type GaAs substrate l.
The 1nP buffer layer 3, the GaInP active layer 5, and the second conductivity type GaInP layer 6 are formed in this order from the substrate side by
It was grown by the BE method. The growth of these layers was performed by the usual MBE method in an MBE apparatus using P as a molecular beam source.

この後、基板1をそのMBE装置から外に取り出し、次
に、Asを分子線源として扱う他のMBE装置内に基板
1を導入した。
Thereafter, the substrate 1 was taken out of the MBE apparatus and then introduced into another MBE apparatus that uses As as a molecular beam source.

次に、このMBE装置内で、第2導電型Ga1nP層6
上にAs分子線を照射しながら、基板温度を620°C
に上昇させ、その状態を数分間維持するという工程を行
った。
Next, in this MBE device, the second conductivity type Ga1nP layer 6
While irradiating the top with As molecular beam, the substrate temperature was increased to 620°C.
The process involved raising the temperature to a certain temperature and maintaining that state for several minutes.

この工程によって、GaInP層6の表面近傍のIn及
びPが、As分子線のAsと置換することにより、Ga
 I nPPO2表面近傍の数分干潮が、数分干潮°の
GaAs層8に変化した。
Through this process, In and P near the surface of the GaInP layer 6 are replaced with As in the As molecular beam, so that Ga
The low tide of several minutes near the InPPO2 surface changed to the GaAs layer 8 of several minutes of low tide.

GaAs層8上に、第2導電型GaAs層9を成長させ
た後、第2導電型G a A’s層9及び基板1の裏面
に、電極23.22を形成した。
After growing a second conductivity type GaAs layer 9 on the GaAs layer 8, electrodes 23 and 22 were formed on the second conductivity type GaA's layer 9 and the back surface of the substrate 1.

この後、電極23及び第2導電型GaAs層9の所定領
域を第2導電型GaInP層6の表面までエツチングす
ることにより、フォトダイオードの受光部を形成した。
Thereafter, the electrode 23 and a predetermined region of the second conductive type GaAs layer 9 were etched to the surface of the second conductive type GaInP layer 6, thereby forming a light receiving part of the photodiode.

次に、電極23、第2導電型GaAs層9、GaAs層
8、GaInP層6、Ga I nP活性層5及び第1
導電型GaInPバツフア層3の所定部分をエツチング
することにより、第4図に示すpIn型フォトダイオー
ドを作成した。
Next, the electrode 23, the second conductivity type GaAs layer 9, the GaAs layer 8, the GaInP layer 6, the GaInP active layer 5 and the first
By etching a predetermined portion of the conductive GaInP buffer layer 3, a pIn type photodiode shown in FIG. 4 was fabricated.

MBE装置内で、上述の第2導電型Ga I nP層6
上にAs分子線を照射しながら、基板温度を620°C
に上昇させる工程を行わないで作製したpin型フォト
ダイオードの感度に比較して、本実施例のpln型フォ
トダイオードの感度は優れたものであった。これは、M
BE法による層成長を一時的に休止した部分の成長層界
面に於ても、本実施例の方′法により、界面順位の形成
が低減されたためである。
In the MBE apparatus, the second conductivity type Ga I nP layer 6 described above is
While irradiating the top with As molecular beam, the substrate temperature was increased to 620°C.
The sensitivity of the PLN photodiode of this example was superior to the sensitivity of the PIN photodiode manufactured without performing the step of increasing the sensitivity. This is M
This is because even at the interface of the grown layer where layer growth by the BE method was temporarily stopped, the formation of an interface layer was reduced by the method of this embodiment.

このように、製造工程中に、GaAs基板に格子整合す
るAIGaInP結晶層の表面が汚染されたときでも、
その上に、高品質のAlGaAs結晶層を容易に形成す
ることができるので、高品質の半導体レーザ素子のみな
らず、フォトダイオード等の各種の化合物半導体装置を
提供することができる。
In this way, even if the surface of the AIGaInP crystal layer, which is lattice-matched to the GaAs substrate, becomes contaminated during the manufacturing process,
Since a high-quality AlGaAs crystal layer can be easily formed thereon, not only high-quality semiconductor laser elements but also various compound semiconductor devices such as photodiodes can be provided.

(発明の効果) このように本発明では、GaAs基板に格子整合した(
 A 1 yG a I−Y) [1,51n e;s
P結晶層(0≦Y≦1)の表面にAs分子線を照射しな
がら、該結晶層のInが蒸発する温度に該基板を昇温す
ることにより、該結晶層の表面を数分干潮のAlvG 
a +−yA S結晶層(0≦Y≦1)に変化させるこ
とができる。このため、 (A l yG a I−Y
) [1,51n11.5P結晶層の表面を)n浄化し
、しかも、 (Al−18= yG a +−y) a、s I n 1!、5Pから
のIn及びPの蒸発を防ぐことができる。
(Effects of the Invention) As described above, in the present invention, the GaAs substrate is lattice-matched (
A 1 yG a I-Y) [1,51ne;s
While irradiating the surface of the P crystal layer (0≦Y≦1) with an As molecular beam, the substrate is heated to a temperature at which In in the crystal layer evaporates, and the surface of the crystal layer is heated at low tide for several minutes. AlvG
It can be changed to a + -yA S crystal layer (0≦Y≦1). For this reason, (A lyG a I-Y
) [The surface of the 1,51n11.5P crystal layer)n was purified, and (Al-18=yG a +-y) a,s I n 1! , evaporation of In and P from 5P can be prevented.

また、数分′子層の該A I yG a I−YA S
結晶層上に、A I XG a 1−XA S結晶層(
O≦X≦1)を形成すれば、該A 1 yG a +−
yA S結晶層の表面が清浄化されているため、該A 
I XG a I−XA S結晶層の結晶性は高品質な
ものとなる。
In addition, the A I yG a I-YA S of several molecular layers
On the crystal layer, an A I XG a 1-XA S crystal layer (
O≦X≦1), the A 1 yG a +−
yA Because the surface of the S crystal layer is cleaned, the A
The crystallinity of the IXG a I-XA S crystal layer is of high quality.

従って、本発明の化合物半導体層の製造方法によれば、
 (A 1 yG a I−Y) 11.5 I n 
8.sP結晶層上に優れた結晶性を有するA I XG
 a +−xA s結晶層を備えた高品質の化合物半導
体装置を提供することができる。
Therefore, according to the method for manufacturing a compound semiconductor layer of the present invention,
(A 1 yG a I-Y) 11.5 I n
8. A I XG with excellent crystallinity on the sP crystal layer
A high quality compound semiconductor device including an a + -xA s crystal layer can be provided.

4、   の。 な言I 第1図は本発明の第1の実施例を示す断面図、第2図は
第2の実施例を示す断面図、第3図は第3の実施例を示
す断面図、第4図は第4の実施例を示す断面図、第5図
は従来例を示す断面図である。
4. of. Nagoya I Fig. 1 is a sectional view showing the first embodiment of the present invention, Fig. 2 is a sectional view showing the second embodiment, Fig. 3 is a sectional view showing the third embodiment, and Fig. 4 is a sectional view showing the third embodiment. The figure is a sectional view showing the fourth embodiment, and FIG. 5 is a sectional view showing a conventional example.

I・・・第1導電型GaAs基板、2・・・第1導電型
GaAsバッファ層、3・・・第1導電型GaInPバ
ッファ層、4・・・第1導電型AIGaInP第1クラ
ツド層、5・・・GaInP活性層、6・・・第2導電
型AlGa’InP第2クラツド層、7・・・第2導電
型Ga I nP層、8− G a A s層、9・・
・第2導電型GaAsキャップ層、11・・・GaAs
基板、12−−・G a A sバッファ層、13−・
GalnP層、14−=AI Ga I nP層、15
・・・AlGaAs層、16−= A I G a A
 s層、17・−・GaAs層、18−−−AlGaA
s層、20 ・・・第2導電型GaInP層、21・・
・窒化シリコン22.23・・・電極。
I... GaAs substrate of first conductivity type, 2... GaAs buffer layer of first conductivity type, 3... GaInP buffer layer of first conductivity type, 4... AIGaInP first cladding layer of first conductivity type, 5 ...GaInP active layer, 6... second conductivity type AlGa'InP second cladding layer, 7... second conductivity type GaInP layer, 8-GaAs layer, 9...
・Second conductivity type GaAs cap layer, 11...GaAs
Substrate, 12--GaAs buffer layer, 13--
GalnP layer, 14-=AI Ga I nP layer, 15
...AlGaAs layer, 16-= AI Ga A
s layer, 17---GaAs layer, 18---AlGaA
s layer, 20... Second conductivity type GaInP layer, 21...
・Silicon nitride 22.23...electrode.

以上that's all

Claims (1)

【特許請求の範囲】 1、GaAs基板に格子整合する(Al_YGa_1_
−_Y)_0_._5In_0_._5P結晶層(0≦
Y≦1)を該基板上に形成する工程と、 該結晶層の表面にAs分子線を照射しながら、該結晶層
のInが蒸発する温度に該基板を昇温することにより、
該結晶層の表面を数分子層のAl_YGa_1_−_Y
As結晶層(0≦Y≦1)に変化させる工程と、 Al_XGa_1_−_XAs結晶層(0≦X≦1)を
該Al_YGa_1_−_YAs結晶層上に形成する工
程と、を包含する化合物半導体層の製造方法。
[Claims] 1. Lattice matching to GaAs substrate (Al_YGa_1_
-_Y)_0_. _5In_0_. _5P crystal layer (0≦
Y≦1) on the substrate, and heating the substrate to a temperature at which In in the crystal layer evaporates while irradiating the surface of the crystal layer with an As molecular beam.
The surface of the crystal layer is coated with several molecular layers of Al_YGa_1_-_Y
Manufacture of a compound semiconductor layer including a step of changing into an As crystal layer (0≦Y≦1), and a step of forming an Al_XGa_1_-_XAs crystal layer (0≦X≦1) on the Al_YGa_1_-_YAs crystal layer. Method.
JP2129914A 1990-05-09 1990-05-18 Method for manufacturing compound semiconductor layer Expired - Fee Related JPH0828326B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2129914A JPH0828326B2 (en) 1990-05-18 1990-05-18 Method for manufacturing compound semiconductor layer
EP95115775A EP0695006B1 (en) 1990-05-09 1991-05-09 A method for producing a compound semiconductor laser device
DE69133230T DE69133230T2 (en) 1990-05-09 1991-05-09 Semiconductor laser device and manufacturing method
US07/698,001 US5255279A (en) 1990-05-09 1991-05-09 Semiconductor laser device, and a method for producing a compound semiconductor device including the semiconductor laser device
DE69129047T DE69129047T2 (en) 1990-05-09 1991-05-09 Manufacturing method for a laser device made of semiconductor compounds
DE69120865T DE69120865T2 (en) 1990-05-09 1991-05-09 Method of manufacturing a semiconductor device
EP91304161A EP0456485B1 (en) 1990-05-09 1991-05-09 Method for producing a semiconductor device
EP97105580A EP0785603B1 (en) 1990-05-09 1991-05-09 A semiconductor laser device and a method of producing the same
US08/080,004 US5360762A (en) 1990-05-09 1993-06-21 Semiconductor laser device, and a method for producing a compound semiconductor device including the semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2129914A JPH0828326B2 (en) 1990-05-18 1990-05-18 Method for manufacturing compound semiconductor layer

Publications (2)

Publication Number Publication Date
JPH0425120A true JPH0425120A (en) 1992-01-28
JPH0828326B2 JPH0828326B2 (en) 1996-03-21

Family

ID=15021521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2129914A Expired - Fee Related JPH0828326B2 (en) 1990-05-09 1990-05-18 Method for manufacturing compound semiconductor layer

Country Status (1)

Country Link
JP (1) JPH0828326B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5441913A (en) * 1993-06-28 1995-08-15 Sumitomo Chemical Company, Limited Process of making a semiconductor epitaxial substrate
US6099640A (en) * 1997-09-03 2000-08-08 Nec Corporation Molecular beam epitaxial growth method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5441913A (en) * 1993-06-28 1995-08-15 Sumitomo Chemical Company, Limited Process of making a semiconductor epitaxial substrate
US6099640A (en) * 1997-09-03 2000-08-08 Nec Corporation Molecular beam epitaxial growth method

Also Published As

Publication number Publication date
JPH0828326B2 (en) 1996-03-21

Similar Documents

Publication Publication Date Title
JP3115775B2 (en) Manufacturing method of semiconductor laser
US5360762A (en) Semiconductor laser device, and a method for producing a compound semiconductor device including the semiconductor laser device
JP2002314203A (en) Group iii nitride semiconductor laser and its manufacturing method
JPH0425120A (en) Manufacture of compound semiconductor layer
US6631148B1 (en) Semiconductor laser and a manufacturing method for the same
JP4118025B2 (en) Gallium nitride semiconductor laser device
JPH0846283A (en) Manufacture of semiconductor laser
JPH09289358A (en) Netride semiconductor laser device and manufacturing method thereof
JPH0366188A (en) Multi-wavelength laser diode
JP2533962B2 (en) Semiconductor laser device and manufacturing method thereof
KR100363240B1 (en) Semiconductor laser diode and its manufacturing method
JP3196831B2 (en) Method for manufacturing semiconductor laser device
JP2664794B2 (en) Method for manufacturing semiconductor laser device
JPH05145195A (en) Surface light emitting semiconductor laser
JP2537295B2 (en) Semiconductor laser device and manufacturing method thereof
JP3446343B2 (en) Semiconductor light emitting device having V-groove structure
JPH0414277A (en) Semiconductor laser and its manufacture
JP3446344B2 (en) Semiconductor light emitting device having V-groove structure
JP2751356B2 (en) Manufacturing method of semiconductor laser
JPH0472687A (en) Manufacture of optical semiconductor device
JPH07321397A (en) Semiconductor laser and application thereof
JPH06268324A (en) Fabrication of semiconductor device
JPH07111365A (en) Semiconductor device and manufacture thereof
JPH08340151A (en) Manufacture of semiconductor laser element
JPH09148672A (en) Manufacture of semiconductor laser device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees