JPH04249527A - Polymer - Google Patents

Polymer

Info

Publication number
JPH04249527A
JPH04249527A JP2416416A JP41641690A JPH04249527A JP H04249527 A JPH04249527 A JP H04249527A JP 2416416 A JP2416416 A JP 2416416A JP 41641690 A JP41641690 A JP 41641690A JP H04249527 A JPH04249527 A JP H04249527A
Authority
JP
Japan
Prior art keywords
polymer
lactic acid
copolymer
calcium
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2416416A
Other languages
Japanese (ja)
Other versions
JP2827055B2 (en
Inventor
Takao Okada
隆雄 岡田
Yoichi Nagaoka
陽一 永岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taki Chemical Co Ltd
Original Assignee
Taki Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taki Chemical Co Ltd filed Critical Taki Chemical Co Ltd
Priority to JP2416416A priority Critical patent/JP2827055B2/en
Publication of JPH04249527A publication Critical patent/JPH04249527A/en
Application granted granted Critical
Publication of JP2827055B2 publication Critical patent/JP2827055B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Materials For Medical Uses (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

PURPOSE:To prevent the mol.wt. decrease on thermal melting of a polymer or copolymer of lactic acid and/or glycolic acid. CONSTITUTION:A polymer or copolymer having a mol.wt. of 10,000 or higher and prepd. from lactic acid and/or glycolic acid is reacted with a calcium salt of a higher fatty acid, etc., to give a calcium salt of the polymer or copolymer contg. calcium in an equivalent ratio to calcium contained in the polymer or copolymer before the reaction of 0.1-4.0. The prepd. polymer salt causes little decrease in mol.wt. on thermal melting during molding and is used as prosthetic material in organism, etc.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、高分子量の乳酸及び/
又はグリコール酸の重合体又は共重合体のカルシウム塩
からなる重合体であって、殊に生体吸収性の補綴材料等
の医用高分子材料として有用なる重合体に関する。
[Industrial Application Field] The present invention relates to high molecular weight lactic acid and/or
The present invention also relates to a polymer comprising a calcium salt of a polymer or copolymer of glycolic acid, which is particularly useful as a medical polymer material such as a bioabsorbable prosthetic material.

【0002】0002

【従来の技術】整形外科等に使用される補綴材料として
、骨接合に際してプレート、ねじ、ピン、釘、ワイヤー
等の材料が使用される。また、これら材料に使用される
素材としては、一般にステンレス、チタン合金、コバル
ト−クロム合金等の金属材料がある。
2. Description of the Related Art Plates, screws, pins, nails, wires, and other materials are used as prosthetic materials used in orthopedic surgery and the like for bone joining. In addition, the materials used for these materials generally include metal materials such as stainless steel, titanium alloy, and cobalt-chromium alloy.

【0003】しかし、これら素材の力学的強度は充分で
はあるが、素材が骨等の硬組織と比べ高剛性率であるた
め、素材の接合部に応力が集中し、骨修復時に骨の変形
、骨折、あるいは材料の疲労劣化等を生ずる。また、素
材が非分解性であるため、骨の自己修復を阻害させない
ように、損傷部が完治した後、再手術によってその材料
を取り出す必要がある。更に、素材と生体との相互作用
によって治療部の耐久性、生体親和性、発癌性等の問題
を生じることがある。
However, although these materials have sufficient mechanical strength, their stiffness is higher than that of hard tissues such as bones, so stress is concentrated at the joints of the materials, causing bone deformation and deformation during bone repair. This may result in fractures or fatigue deterioration of the material. In addition, since the material is non-degradable, it is necessary to remove the material by repeat surgery after the damaged area has completely healed so as not to inhibit the self-repair of the bone. Furthermore, the interaction between the material and the living body may cause problems such as durability of the treated area, biocompatibility, carcinogenicity, etc.

【0004】従って、近年再手術の必要のない素材材料
として、生体内で分解性のある乳酸、グリコール酸等の
重合体の使用が検討されており、また臨床では生体吸収
性の縫合糸として使用されている。また、骨接合用とし
ては、乳酸の重合体がプレート、ねじ等の骨折接合材料
としてビーグル犬で検討されていることが知られている
(J.Oral.Surgery,30,344(19
72))。しかし、乳酸の重合体を接合材料に使用する
に際しては、これを溶融して成形するために、熱分解に
よる分子量低下という問題を生じる。従って、そのため
に乳酸の重合体の熱分解触媒として作用する重合体中の
残留モノマー、オリゴマー等を乳酸重合体中から抽出除
去する方法(Biomaterials,8,311(
1987))が検討され、或いは熱劣化を防ぐために、
溶媒を使用した湿式法で乳酸重合体を成形する方法(G
ogolewski,P.ら,J.Appli.Pol
ym.Sci.28,1045(1983))が検討さ
れているが、未だ熱劣化防止の充分な効果を得るまでに
は至っていない。
Therefore, in recent years, the use of biodegradable polymers such as lactic acid and glycolic acid has been studied as materials that do not require reoperation, and in clinical practice, they have been used as bioabsorbable sutures. has been done. In addition, for osteosynthesis, it is known that lactic acid polymers are being studied for use in beagle dogs as fracture-synthesis materials for plates, screws, etc. (J. Oral. Surgery, 30, 344 (1999).
72)). However, when a lactic acid polymer is used as a bonding material, since it is melted and molded, a problem arises in that the molecular weight decreases due to thermal decomposition. Therefore, for this purpose, there is a method for extracting and removing residual monomers, oligomers, etc. in the polymer that acts as a thermal decomposition catalyst for the lactic acid polymer (Biomaterials, 8, 311).
1987)), or to prevent thermal deterioration.
Method of molding lactic acid polymer by wet method using solvent (G
Ogolewski, P. et al., J. Appli. Pol
ym. Sci. 28, 1045 (1983)), but a sufficient effect of preventing thermal deterioration has not yet been achieved.

【0005】また、乳酸重合体を各種の医用材料に適用
するために、乳酸重合体の各種の改質方法が知られてい
る。例えば、特開昭52−5711号には、医薬品等の
薬物混合に際する乳酸重合体基剤の融点低下を目的とす
る改質方法として、低分子量の乳酸重合体と炭酸ナトリ
ウム等のアルカリ金属塩を反応させる方法が開示されて
いる。 また、特開昭53−83381号には、外科用縫合糸の
結さく性、潤滑性を改善することを目的に、乳酸等の重
合体からなる縫合糸に乳酸等の重合体とカルシウム等の
脂肪酸塩混合物を被覆する方法が開示されている。しか
しながら、これらの方法を利用しても乳酸重合体の熱劣
化防止の改善には効果がなく、補綴材料用として成形時
の耐熱性に優れた、乳酸重合体を素材とする医用高分子
材料は未だ得られていないのが現状である。
Furthermore, various methods for modifying lactic acid polymers are known in order to apply them to various medical materials. For example, JP-A-52-5711 describes a method for modifying a lactic acid polymer base with a low molecular weight lactic acid polymer and an alkali metal such as sodium carbonate as a modification method for lowering the melting point of a lactic acid polymer base when mixing drugs such as pharmaceuticals. A method of reacting salts is disclosed. In addition, Japanese Patent Application Laid-Open No. 53-83381 discloses that a polymer such as lactic acid and calcium etc. are added to a suture thread made of a polymer such as lactic acid in order to improve the ligation properties and lubricity of surgical suture thread. A method of coating a fatty acid salt mixture is disclosed. However, even if these methods are used, they are not effective in improving the prevention of thermal deterioration of lactic acid polymers, and medical polymer materials made from lactic acid polymers that have excellent heat resistance during molding and are used as prosthetic materials are not available. The current situation is that this has not been achieved yet.

【0006】[0006]

【発明が解決しようとする課題】本発明者らは前述の課
題を解決すべく、安全性が高く、また生体親和性に優れ
た材料であって、溶融成形時の熱分解、熱劣化の少ない
材料を得るべく鋭意研究を重ねた結果、本発明を完成さ
せるに至ったものである。
[Problems to be Solved by the Invention] In order to solve the above-mentioned problems, the present inventors have developed a material that is highly safe and has excellent biocompatibility, and has little thermal decomposition and thermal deterioration during melt molding. As a result of extensive research in order to obtain materials, the present invention has been completed.

【0007】[0007]

【課題を解決するための手段】即ち本発明は、分子量1
00,000以上の乳酸及び/又はグリコール酸の重合
体又は共重合体のカルシウム塩からなる重合体であって
、乳酸及び/又はグリコール酸の重合体又は共重合体に
対するカルシウムの当量比が0.1〜4.0の範囲であ
る重合体に関する。
[Means for Solving the Problems] That is, the present invention has a molecular weight of 1
00,000 or more, the equivalent ratio of calcium to the polymer or copolymer of lactic acid and/or glycolic acid is 0.00,000 or more. 1 to 4.0.

【0008】[0008]

【作用】以下、本発明を更に詳細に説明する。本発明の
乳酸及び/又はグリコール酸の重合体又は共重合体のカ
ルシウム塩は、乳酸及び/又はグリコール酸の重合体又
は共重合体とカルシウム塩との反応によって得ることが
できる。また、使用する乳酸及び/又はグリコール酸の
重合体又は共重合体は、一般的な方法により製造される
ものであれば何れのものであってもよい。例えば、乳酸
、グリコール酸を減圧下で直接脱水重縮合することによ
り、重合体又は共重合体を得ることができる(湯原ら,
工化,68(5),983(1965))。また、乳酸
、グリコール酸を酸化亜鉛等の触媒存在下で減圧蒸留を
行い、ラクチド、グリコリドを得た後、これらをテトラ
フェニルスズ、塩化第二スズ等の触媒存在下で重合反応
を行うことによっても製造できる(Kulkarni,
j.Biomed.Mater.Res.,5,169
(1971))。更に、これらの場合に使用する乳酸の
モノマーは、D体、L体、DL体のいずれのものであっ
てもよい。
[Operation] The present invention will be explained in more detail below. The calcium salt of a polymer or copolymer of lactic acid and/or glycolic acid of the present invention can be obtained by reacting a polymer or copolymer of lactic acid and/or glycolic acid with a calcium salt. Further, the lactic acid and/or glycolic acid polymer or copolymer used may be any polymer or copolymer as long as it is produced by a common method. For example, a polymer or copolymer can be obtained by direct dehydration polycondensation of lactic acid or glycolic acid under reduced pressure (Yubara et al.
Koka, 68(5), 983 (1965)). In addition, by distilling lactic acid and glycolic acid under reduced pressure in the presence of a catalyst such as zinc oxide to obtain lactide and glycolide, these are subjected to a polymerization reaction in the presence of a catalyst such as tetraphenyltin or stannic chloride. can also be produced (Kulkarni,
j. Biomed. Mater. Res. ,5,169
(1971)). Furthermore, the lactic acid monomer used in these cases may be any of the D-form, L-form, and DL-form.

【0009】本発明ではこのようにして得られる乳酸及
び/又はグリコール酸の重合体の分子量が100,00
0以上のものを使用する。この場合に、これら重合体の
分子量が100,000を下廻ると、後述のカルシウム
塩との反応を行っても、重合体の熱劣化防止への効果は
殆どないものとなる。
In the present invention, the molecular weight of the lactic acid and/or glycolic acid polymer thus obtained is 100,000.
Use 0 or more. In this case, if the molecular weight of these polymers is less than 100,000, even if the reaction with the calcium salt described below is carried out, there will be almost no effect on preventing thermal deterioration of the polymer.

【0010】カルシウム塩に関して云えば、使用するカ
ルシウム塩の種類として、高級脂肪酸のカルシウム塩の
使用が最も好ましく、その種類としては、ペラルゴン酸
、2−エチルヘキサン酸、ラウリン酸、パルミチン酸、
ステアリン酸、オレイン酸等のカルシウム塩のいずれの
ものでも使用できるが、好ましくはステアリン酸カルシ
ウムの使用が反応性の面より最も好ましい。また、これ
ら以外のカルシウム塩として、例えば乳酸カルシウム、
プロピオン酸カルシウム、塩化カルシウム等の使用、あ
るいはステアリン酸マグネシウム等の他の塩種の使用で
は、本発明の効果は全く得られないものとなる。
Regarding calcium salts, it is most preferable to use calcium salts of higher fatty acids, such as pelargonic acid, 2-ethylhexanoic acid, lauric acid, palmitic acid,
Any calcium salt such as stearic acid or oleic acid can be used, but calcium stearate is most preferably used from the viewpoint of reactivity. In addition, other calcium salts such as calcium lactate,
If calcium propionate, calcium chloride, etc. are used, or other salts such as magnesium stearate are used, the effects of the present invention cannot be obtained at all.

【0011】これらの原料を用いて本発明の重合体を得
る方法に関して云えば、先ず乳酸及び/又はグリコール
酸の重合体又は共重合体を有機溶媒に溶解する。使用す
る有機溶媒の種類としては、クロロホルム、ジクロロメ
タン、ジオキサン、トルエン、ヘキサフルオロイソプロ
パノール、トリフルオロ酢酸、ベンジルアルコール等が
挙げられる。また、上記の重合体又は共重合体の濃度は
、概ね1〜20重量%の範囲となるように使用する。
Regarding the method for obtaining the polymer of the present invention using these raw materials, first, a polymer or copolymer of lactic acid and/or glycolic acid is dissolved in an organic solvent. Examples of the organic solvent used include chloroform, dichloromethane, dioxane, toluene, hexafluoroisopropanol, trifluoroacetic acid, and benzyl alcohol. Further, the concentration of the above-mentioned polymer or copolymer is generally in the range of 1 to 20% by weight.

【0012】この溶液に、次いでカルシウム塩を同溶媒
に溶解し、上記重合体溶液に添加して反応を行う。カル
シウム塩の使用量に関して云えば、前記の乳酸及び/又
はグリコール酸の重合体又は共重合体に対するカルシウ
ムの当量比が、0.1〜4.0の範囲となるように使用
する。 尚、この場合に於いて、乳酸及び/又はグリコール酸の
重合体又は共重合体の当量は、ポリマー鎖末端のカルボ
キシル基数(平均)に基づくものである。また、両者の
使用割合が上記の範囲を逸脱し、両者の当量が0.1を
下廻ると本発明の重合体の耐熱性は殆ど改善されず、ま
た反対に4.0を上廻る過剰のカルシウム塩の使用は、
重合体の溶融成形時に未反応のカルシウム塩が熱分解し
、生成する酸によって重合体の熱劣化を促進し、いずれ
の場合も本発明の耐熱性に優れた重合体は得られない。 有機溶媒に溶解するカルシウム塩の濃度は、概ね0.1
〜1重量%の範囲とする。
[0012] Next, a calcium salt is dissolved in the same solvent and added to the above polymer solution to carry out a reaction. Regarding the amount of calcium salt used, it is used so that the equivalent ratio of calcium to the polymer or copolymer of lactic acid and/or glycolic acid is in the range of 0.1 to 4.0. In this case, the equivalent weight of the polymer or copolymer of lactic acid and/or glycolic acid is based on the number (average) of carboxyl groups at the end of the polymer chain. Furthermore, if the ratio of both used exceeds the above range and the equivalent weight of both is less than 0.1, the heat resistance of the polymer of the present invention will hardly be improved; The use of calcium salts is
During melt molding of the polymer, unreacted calcium salts are thermally decomposed, and the generated acid accelerates thermal deterioration of the polymer, making it impossible to obtain the excellent heat resistant polymer of the present invention in either case. The concentration of calcium salt dissolved in an organic solvent is approximately 0.1
-1% by weight.

【0013】重合体又は共重合体とカルシウム塩との反
応は、両者の溶液を混合し、反応を促進させるために、
通常常温からその使用する溶媒の沸点程度の温度まで加
熱して行う。反応の進行に伴い、溶液は白濁状態から透
明となり、溶液の粘度は増大する。反応時間は、使用す
る原料の種類、分子量、濃度等によって異なり一概に云
えないが、概ね2時間程度である。
[0013] In the reaction between the polymer or copolymer and calcium salt, solutions of both are mixed and the reaction is accelerated by
This is usually carried out by heating from room temperature to a temperature around the boiling point of the solvent used. As the reaction progresses, the solution changes from cloudy to transparent, and the viscosity of the solution increases. Although the reaction time varies depending on the type, molecular weight, concentration, etc. of the raw materials used, it cannot be stated unconditionally, but it is approximately 2 hours.

【0014】反応の終了後、生成物をメタノール、エタ
ノール、ヘキサン等の有機溶媒に入れ、溶媒中で重合体
を析出させ、遊離した高級脂肪酸を除去する。この析出
した重合体を減圧乾燥等の適当な乾燥手段を用いて乾燥
を行うことにより、本発明の溶融成形時の耐熱性に優れ
た重合体を得ることができる。
After completion of the reaction, the product is placed in an organic solvent such as methanol, ethanol, hexane, etc., the polymer is precipitated in the solvent, and the liberated higher fatty acids are removed. By drying this precipitated polymer using a suitable drying means such as vacuum drying, it is possible to obtain a polymer having excellent heat resistance during melt molding according to the present invention.

【0015】[0015]

【実施例】以下に本発明の実施例を掲げて更に説明を行
うが、本発明はこれらに限定されるものではない。また
、本発明実施例に於いて、%は特に断らない限り全て重
量%を示す。 (実施例1)L−乳酸の重合体(分子量30×104)
の2gにクロロホルム(関東化学(株)製試薬)を加え
て全量100gとし、これを35℃に加熱して重合体を
溶解した。次いでこの重合体溶液に、ステアリン酸カル
シウム(関東科学(株)製試薬)の0.1%クロロホル
ム分散液の所定量を加え、溶液を約50℃に加熱して反
応を行った。この時重合体の溶液は、反応の進行に伴っ
て白濁から透明状態に変化し、溶液の粘度も徐々に増大
した。約1時間反応後、蒸発した溶媒量と同量のクロロ
ホルムを反応液に加え、次いでこれをメタノール(関東
化学(株)製試薬)中に攪拌下で添加し、反応後の重合
体を析出させた。次に、析出した重合体をメタノールで
洗浄、濾過した後、析出物を約70℃で2日間減圧乾燥
を行うことにより、本発明の重合体を得た。また、前記
のステアリン酸カルシウムのL−乳酸重合体に対する当
量比をそれぞれ変えて同様に処理を行い、カルシウム当
量比の異なる本発明の重合体を得た。
[Examples] The present invention will be further explained below with reference to Examples, but the present invention is not limited thereto. Further, in the examples of the present invention, all percentages indicate weight percentages unless otherwise specified. (Example 1) Polymer of L-lactic acid (molecular weight 30 x 104)
Chloroform (reagent manufactured by Kanto Kagaku Co., Ltd.) was added to 2 g of the solution to make a total amount of 100 g, and the mixture was heated to 35° C. to dissolve the polymer. Next, a predetermined amount of a 0.1% chloroform dispersion of calcium stearate (reagent manufactured by Kanto Kagaku Co., Ltd.) was added to this polymer solution, and the solution was heated to about 50° C. to perform a reaction. At this time, the polymer solution changed from cloudy to transparent as the reaction progressed, and the viscosity of the solution gradually increased. After reacting for about 1 hour, add chloroform in the same amount as the amount of evaporated solvent to the reaction solution, and then add this to methanol (reagent manufactured by Kanto Kagaku Co., Ltd.) under stirring to precipitate the polymer after the reaction. Ta. Next, the precipitated polymer was washed with methanol and filtered, and then the precipitated product was dried under reduced pressure at about 70° C. for 2 days to obtain the polymer of the present invention. Further, the same treatment was carried out while changing the equivalent ratio of calcium stearate to the L-lactic acid polymer to obtain polymers of the present invention having different calcium equivalent ratios.

【0016】このようにして得られた本発明の重合体を
使用し、重合体を加熱溶融成形した際の重合体の熱劣化
試験を行った。試験方法は、前記重合体の0.5gを、
重合体に対する熱伝導効率を一定に保持するために流動
パラフィン(関東化学(株)製試薬)の7g中に浸漬し
、これを温度200℃で1時間溶融加熱を行った。加熱
後、重合体に付着した流動パラフィンをn−ヘキサン(
関東化学(株)製試薬)で洗浄し、重合体を50℃で減
圧乾燥を行った。このように溶融加熱した後の重合体の
固有粘度を測定(Elingら,Polymer,23
,1587((1982))し、この結果より重合体の
分子量を求めた。結果を表1に示した。
Using the thus obtained polymer of the present invention, a thermal deterioration test was conducted on the polymer when the polymer was heat-melted and molded. The test method was to apply 0.5 g of the polymer to
In order to keep the heat conduction efficiency of the polymer constant, it was immersed in 7 g of liquid paraffin (reagent manufactured by Kanto Kagaku Co., Ltd.), and melted and heated at a temperature of 200° C. for 1 hour. After heating, the liquid paraffin attached to the polymer was dissolved in n-hexane (
The polymer was washed with a reagent manufactured by Kanto Kagaku Co., Ltd., and dried under reduced pressure at 50°C. Measurement of the intrinsic viscosity of the polymer after melting and heating in this way (Eling et al., Polymer, 23
, 1587 ((1982)), and the molecular weight of the polymer was determined from this result. The results are shown in Table 1.

【0017】[0017]

【表1】 注) *1 PLLAはL−乳酸重合体の略[Table 1] Note) *1 PLLA is an abbreviation for L-lactic acid polymer

【0018
】(実施例2)L−乳酸とグリコール酸の共重合体(L
−乳酸含量80%,分子量15×104)の20gに塩
化メチレンを加えて全量を200gとし、これを25℃
に加熱して共重合体を溶解した。次いで、この共重合体
溶液に、共重合体に対するカルシウムの当量比が1.0
となるように、ステアリン酸カルシウムの0.1%塩化
メチレン分散液を76g加え、この溶液を約30℃に加
熱して反応を行った。約1時間の反応を行った後、蒸発
した溶媒量と同量の塩化メチレンを反応液に加え、次い
でこれをメタノール中に攪拌下で添加し、反応後の重合
体を析出させた。 次に、析出した重合体をメタノールで洗浄、濾過した後
、析出物を約70℃で2日間減圧乾燥を行うことにより
、本発明の重合体を得た。
0018
] (Example 2) Copolymer of L-lactic acid and glycolic acid (L-lactic acid and glycolic acid)
- Methylene chloride was added to 20 g of lactic acid (80% content, molecular weight 15 x 104) to make a total amount of 200 g, and this was heated at 25
The copolymer was dissolved by heating to . This copolymer solution was then added with an equivalent ratio of calcium to copolymer of 1.0.
76 g of a 0.1% methylene chloride dispersion of calcium stearate was added so that the reaction was carried out by heating the solution to about 30°C. After reacting for about 1 hour, methylene chloride in an amount equal to the amount of the evaporated solvent was added to the reaction solution, and this was then added to methanol with stirring to precipitate the polymer after the reaction. Next, the precipitated polymer was washed with methanol and filtered, and then the precipitated product was dried under reduced pressure at about 70° C. for 2 days to obtain the polymer of the present invention.

【0019】また比較のために、前記のステアリン酸カ
ルシウムに代えて、ステアリン酸ナトリウム、ステアリ
ン酸マグネシウム(関東化学(株)製試薬)を使用して
同様に反応を行い、重合体を得た。この様にして得られ
た本発明及び比較のために得た重合体を使用し、実施例
1と同様にして重合体の加熱溶融成形時の熱劣化試験を
行い、その結果を表2に示した。
For comparison, the same reaction was carried out using sodium stearate and magnesium stearate (reagent manufactured by Kanto Kagaku Co., Ltd.) in place of the above-mentioned calcium stearate to obtain a polymer. Using the thus obtained polymers of the present invention and the polymers obtained for comparison, a thermal deterioration test during hot melt molding of the polymers was conducted in the same manner as in Example 1, and the results are shown in Table 2. Ta.

【0020】[0020]

【表2】[Table 2]

【0021】(実施例3)L−乳酸の重合体(分子量9
0×104)、カルシウム塩として2−エチルヘキサン
酸カルシウムを使用し、L−乳酸重合体に対するカルシ
ウム塩の当量比が1.0となるように使用して、実施例
1と同様に本発明の重合体を得た。得られた重合体の熱
劣化試験を実施例1と同様に行い、その結果を表3に示
した。
(Example 3) Polymer of L-lactic acid (molecular weight 9
The method of the present invention was carried out in the same manner as in Example 1, using calcium 2-ethylhexanoate as the calcium salt, and using it so that the equivalent ratio of the calcium salt to the L-lactic acid polymer was 1.0. A polymer was obtained. The obtained polymer was subjected to a thermal deterioration test in the same manner as in Example 1, and the results are shown in Table 3.

【0022】[0022]

【表3】[Table 3]

【0023】[0023]

【発明の効果】以上説明したように、本発明の重合体は
、溶融成形加工時の重合体の熱分解、熱劣化が極めて少
なく、殊に生体吸収性の補綴材料として、例えば溶融成
形によるピン、ロッド、プレート等の医用高分子材料と
して有用なるものである。また、本発明の重合体は、生
体内分解を促進させる目的で、これに水溶性無機塩粉末
、水溶性の高分子等を併用してもよく、あるいは生体活
性を有するヒドロキシアパタイトの粉末等を混合して使
用することもできる。更に、本発明の重合体は、制癌剤
、局所麻酔剤、抗生物質等の添加を行なうことにより、
医用分野に於いて極めて有用な生体内分解性の医用材料
となる。
As explained above, the polymer of the present invention has extremely low thermal decomposition and thermal deterioration during melt molding processing, and is particularly useful as a bioabsorbable prosthetic material, for example, as a pin by melt molding. It is useful as a medical polymer material such as rods, plates, etc. Furthermore, the polymer of the present invention may be combined with water-soluble inorganic salt powder, water-soluble polymer, etc., or bioactive hydroxyapatite powder, etc., for the purpose of promoting biodegradation. They can also be used in combination. Furthermore, the polymer of the present invention can be treated by adding anticancer agents, local anesthetics, antibiotics, etc.
It is a biodegradable medical material that is extremely useful in the medical field.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  分子量100,000以上の乳酸及び
/又はグリコール酸の重合体又は共重合体のカルシウム
塩からなる重合体であって、 乳酸及び/又はグリコー
ル酸の重合体又は共重合体に対するカルシウムの当量比
が0.1〜4.0の範囲である重合体。
Claim 1: A polymer consisting of a calcium salt of a polymer or copolymer of lactic acid and/or glycolic acid having a molecular weight of 100,000 or more, wherein the calcium salt of the polymer or copolymer of lactic acid and/or glycolic acid is A polymer having an equivalent ratio of from 0.1 to 4.0.
JP2416416A 1990-12-28 1990-12-28 Polymer Expired - Fee Related JP2827055B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2416416A JP2827055B2 (en) 1990-12-28 1990-12-28 Polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2416416A JP2827055B2 (en) 1990-12-28 1990-12-28 Polymer

Publications (2)

Publication Number Publication Date
JPH04249527A true JPH04249527A (en) 1992-09-04
JP2827055B2 JP2827055B2 (en) 1998-11-18

Family

ID=18524640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2416416A Expired - Fee Related JP2827055B2 (en) 1990-12-28 1990-12-28 Polymer

Country Status (1)

Country Link
JP (1) JP2827055B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0635274A3 (en) * 1993-07-21 1996-09-11 United States Surgical Corp Plasticizers for fibers used to form surgical devices.
US6005019A (en) * 1993-07-21 1999-12-21 United States Surgical Corporation Plasticizers for fibers used to form surgical devices

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0635274A3 (en) * 1993-07-21 1996-09-11 United States Surgical Corp Plasticizers for fibers used to form surgical devices.
US6005019A (en) * 1993-07-21 1999-12-21 United States Surgical Corporation Plasticizers for fibers used to form surgical devices

Also Published As

Publication number Publication date
JP2827055B2 (en) 1998-11-18

Similar Documents

Publication Publication Date Title
EP0608921B1 (en) Modified polyester composition and preparation process and use thereof
US4595713A (en) Medical putty for tissue augmentation
JP4515762B2 (en) Poly (L-lactide-co-glycolide) copolymer and medical device containing said compound
EP0747072B1 (en) Biodegradable moldable surgical material
JP3481762B2 (en) Poly (alkylene diglycolate) s, copolymers, blends, their production methods and medical devices using them
EP0707044B1 (en) Absorbable polymer blends
JP3428807B2 (en) Absorbable polyoxaester
US5321113A (en) Copolymers of an aromatic anhydride and aliphatic ester
RU2435797C2 (en) Resorbable block copolymers of polyethers and polyesters and use thereof in producing medical implants
US5700901A (en) Resorbable mouldings and process for producing them
JP3054451B2 (en) Hydrolysable resin composition
US8575301B2 (en) Absorbable polymer formulations
Tams et al. High-impact poly (L/D-lactide) for fracture fixation: in vitro degradation and animal pilot study
JP3290179B2 (en) Copolymer of lactone and carbonate and method for producing such copolymer
JP2827055B2 (en) Polymer
KR20200008225A (en) Biomedical implants comprising surface-modified basic ceramic particles and biodegradable polymers, and preparation method thereof
CN109970956B (en) Degradable polyester composite material prepared based on carboxylic acid related to Krebs cycle and preparation method and application thereof
JPH02203861A (en) Living body material
JP4404273B2 (en) Lead fixing resin composition
JP3980395B2 (en) Biomaterial

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees