JP2827055B2 - Polymer - Google Patents

Polymer

Info

Publication number
JP2827055B2
JP2827055B2 JP2416416A JP41641690A JP2827055B2 JP 2827055 B2 JP2827055 B2 JP 2827055B2 JP 2416416 A JP2416416 A JP 2416416A JP 41641690 A JP41641690 A JP 41641690A JP 2827055 B2 JP2827055 B2 JP 2827055B2
Authority
JP
Japan
Prior art keywords
polymer
lactic acid
acid
calcium
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2416416A
Other languages
Japanese (ja)
Other versions
JPH04249527A (en
Inventor
隆雄 岡田
陽一 永岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TAKI KAGAKU KK
Original Assignee
TAKI KAGAKU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TAKI KAGAKU KK filed Critical TAKI KAGAKU KK
Priority to JP2416416A priority Critical patent/JP2827055B2/en
Publication of JPH04249527A publication Critical patent/JPH04249527A/en
Application granted granted Critical
Publication of JP2827055B2 publication Critical patent/JP2827055B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Polyesters Or Polycarbonates (AREA)
  • Materials For Medical Uses (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、高分子量の乳酸及び/
又はグリコール酸の重合体又は共重合体のカルシウム塩
からなる重合体であって、殊に生体吸収性の補綴材料等
の医用高分子材料として有用なる重合体に関する。
The present invention relates to high molecular weight lactic acid and / or lactic acid.
Or a polymer comprising a calcium salt of a polymer or copolymer of glycolic acid, particularly a polymer useful as a medical polymer material such as a bioabsorbable prosthetic material.

【0002】[0002]

【従来の技術】整形外科等に使用される補綴材料とし
て、骨接合に際してプレート、ねじ、ピン、釘、ワイヤ
ー等の材料が使用される。また、これら材料に使用され
る素材としては、一般にステンレス、チタン合金、コバ
ルト−クロム合金等の金属材料がある。
2. Description of the Related Art Materials such as plates, screws, pins, nails, wires, and the like are used for osteosynthesis as prosthetic materials used in orthopedic surgery and the like. Materials used for these materials include metal materials such as stainless steel, titanium alloy, and cobalt-chromium alloy.

【0003】しかし、これら素材の力学的強度は充分で
はあるが、素材が骨等の硬組織と比べ高剛性率であるた
め、素材の接合部に応力が集中し、骨修復時に骨の変
形、骨折、あるいは材料の疲労劣化等を生ずる。また、
素材が非分解性であるため、骨の自己修復を阻害させな
いように、損傷部が完治した後、再手術によってその材
料を取り出す必要がある。更に、素材と生体との相互作
用によって治療部の耐久性、生体親和性、発癌性等の問
題を生じることがある。
[0003] However, although the mechanical strength of these materials is sufficient, since the materials have a higher rigidity than hard tissues such as bones, stress concentrates on the joints of the materials, and deformation and deformation of the bone during bone repair. Fractures or fatigue deterioration of materials occur. Also,
Since the material is non-degradable, it is necessary to remove the material by re-operation after the injury is completely repaired so as not to hinder the self-healing of the bone. Further, the interaction between the material and the living body may cause problems such as durability, biocompatibility, and carcinogenicity of the treatment section.

【0004】従って、近年再手術の必要のない素材材料
として、生体内で分解性のある乳酸、グリコール酸等の
重合体の使用が検討されており、また臨床では生体吸収
性の縫合糸として使用されている。また、骨接合用とし
ては、乳酸の重合体がプレート、ねじ等の骨折接合材料
としてビーグル犬で検討されていることが知られている
(J.Oral.Surgery,30,344(1972))。しかし、乳酸の重合
体を接合材料に使用するに際しては、これを溶融して成
形するために、熱分解による分子量低下という問題を生
じる。従って、そのために乳酸の重合体の熱分解触媒と
して作用する重合体中の残留モノマー、オリゴマー等を
乳酸重合体中から抽出除去する方法(Biomaterials,8,31
1(1987))が検討され、或いは熱劣化を防ぐために、溶媒
を使用した湿式法で乳酸重合体を成形する方法(Gogolew
ski,P.ら,J.Appli.Polym.Sci.28,1045(1983))が検討さ
れているが、未だ熱劣化防止の充分な効果を得るまでに
は至っていない。
Accordingly, in recent years, the use of polymers such as lactic acid and glycolic acid which are degradable in vivo has been studied as a raw material which does not require reoperation, and is used as a bioabsorbable suture in clinical practice. Have been. In addition, for osteosynthesis, it is known that polymers of lactic acid have been studied in beagle dogs as fracture bonding materials such as plates and screws.
(J. Oral. Surgery, 30, 344 (1972)). However, when a lactic acid polymer is used as a bonding material, it is melted and molded, which causes a problem of a reduction in molecular weight due to thermal decomposition. Therefore, a method of extracting and removing residual monomers, oligomers, and the like in the polymer acting as a catalyst for thermal decomposition of the lactic acid polymer from the lactic acid polymer (Biomaterials, 8, 31)
1 (1987)), or a method of molding a lactic acid polymer by a wet method using a solvent (Gogolew
Ski, P. et al., J. Appli. Polym. Sci. 28, 1045 (1983)), but have not yet achieved sufficient effects of preventing thermal degradation.

【0005】また、乳酸重合体を各種の医用材料に適用
するために、乳酸重合体の各種の改質方法が知られてい
る。例えば、特開昭52-5711号には、医薬品等の薬物混
合に際する乳酸重合体基剤の融点低下を目的とする改質
方法として、低分子量の乳酸重合体と炭酸ナトリウム等
のアルカリ金属塩を反応させる方法が開示されている。
また、特開昭53-83381号には、外科用縫合糸の結さく
性、潤滑性を改善することを目的に、乳酸等の重合体か
らなる縫合糸に乳酸等の重合体とカルシウム等の脂肪酸
塩混合物を被覆する方法が開示されている。しかしなが
ら、これらの方法を利用しても乳酸重合体の熱劣化防止
の改善には効果がなく、補綴材料用として成形時の耐熱
性に優れた、乳酸重合体を素材とする医用高分子材料は
未だ得られていないのが現状である。
In order to apply the lactic acid polymer to various medical materials, various methods for modifying the lactic acid polymer are known. For example, JP-A-52-5711 discloses a low molecular weight lactic acid polymer and an alkali metal such as sodium carbonate as a modification method aimed at lowering the melting point of a lactic acid polymer base upon mixing a drug such as a drug. A method for reacting a salt is disclosed.
Japanese Patent Application Laid-Open No. 53-83381 discloses that a suture made of a polymer such as lactic acid and a polymer such as lactic acid and calcium are used to improve the knotting property and lubricity of a surgical suture. A method for coating a fatty acid salt mixture is disclosed. However, even if these methods are used, there is no effect in improving the prevention of thermal degradation of the lactic acid polymer, and a medical polymer material using a lactic acid polymer as a prosthetic material, which has excellent heat resistance during molding, is not available. At present, it has not been obtained yet.

【0006】[0006]

【発明が解決しようとする課題】本発明者らは前述の課
題を解決すべく、安全性が高く、また生体親和性に優れ
た材料であって、溶融成形時の熱分解、熱劣化の少ない
材料を得るべく鋭意研究を重ねた結果、本発明を完成さ
せるに至ったものである。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present inventors have made a material which is highly safe and has excellent biocompatibility, and has less thermal decomposition and thermal degradation during melt molding. As a result of intensive studies to obtain materials, the present invention has been completed.

【0007】[0007]

【課題を解決するための手段】即ち本発明は、分子量10
0,000以上の乳酸及び/又はグリコール酸の重合体又は
共重合体のカルシウム塩からなる重合体であって、乳酸
及び/又はグリコール酸の重合体又は共重合体に対する
カルシウムの当量比が0.1〜4.0の範囲である重合体に関
する。
That is, the present invention provides a compound having a molecular weight of 10
A polymer comprising a calcium salt of a polymer or copolymer of lactic acid and / or glycolic acid of 000 or more, wherein the equivalent ratio of calcium to the polymer or copolymer of lactic acid and / or glycolic acid is 0.1 to 4.0. Range of polymers.

【0008】[0008]

【作用】以下、本発明を更に詳細に説明する。本発明の
乳酸及び/又はグリコール酸の重合体又は共重合体のカ
ルシウム塩は、乳酸及び/又はグリコール酸の重合体又
は共重合体とカルシウム塩との反応によって得ることが
できる。また、使用する乳酸及び/又はグリコール酸の
重合体又は共重合体は、一般的な方法により製造される
ものであれば何れのものであってもよい。例えば、乳
酸、グリコール酸を減圧下で直接脱水重縮合することに
より、重合体又は共重合体を得ることができる(湯原ら,
工化,68(5),983(1965))。また、乳酸、グリコール酸を
酸化亜鉛等の触媒存在下で減圧蒸留を行い、ラクチド、
グリコリドを得た後、これらをテトラフェニルスズ、塩
化第二スズ等の触媒存在下で重合反応を行うことによっ
ても製造できる(Kulkarni,j.Biomed.Mater.Res.,5,169
(1971))。更に、これらの場合に使用する乳酸のモノマ
ーは、D体、L体、DL体のいずれのものであってもよい。
Hereinafter, the present invention will be described in more detail. The calcium salt of a polymer or copolymer of lactic acid and / or glycolic acid of the present invention can be obtained by reacting a polymer or copolymer of lactic acid and / or glycolic acid with a calcium salt. The lactic acid and / or glycolic acid polymer or copolymer to be used may be any polymer or copolymer as long as it is produced by a general method. For example, a polymer or copolymer can be obtained by directly dehydrating and polycondensing lactic acid and glycolic acid under reduced pressure (Yuhara et al.,
Engineering, 68 (5), 983 (1965)). In addition, lactic acid, glycolic acid is distilled under reduced pressure in the presence of a catalyst such as zinc oxide, lactide,
After obtaining glycolide, they can also be produced by carrying out a polymerization reaction in the presence of a catalyst such as tetraphenyltin or stannic chloride (Kulkarni, j. Biomed. Mater.Res., 5, 169).
(1971)). Further, the lactic acid monomer used in these cases may be any of D-form, L-form and DL-form.

【0009】本発明ではこのようにして得られる乳酸及
び/又はグリコール酸の重合体の分子量が100,000以上
のものを使用する。この場合に、これら重合体の分子量
が100,000を下廻ると、後述のカルシウム塩との反応を
行っても、重合体の熱劣化防止への効果は殆どないもの
となる。
In the present invention, a polymer of lactic acid and / or glycolic acid thus obtained having a molecular weight of 100,000 or more is used. In this case, if the molecular weight of these polymers is less than 100,000, the effect of preventing the polymer from being thermally degraded will hardly be obtained even if the polymer is reacted with a calcium salt described below.

【0010】カルシウム塩に関して云えば、使用するカ
ルシウム塩の種類として、高級脂肪酸のカルシウム塩の
使用が最も好ましく、その種類としては、ペラルゴン
酸、2−エチルヘキサン酸、ラウリン酸、パルミチン
酸、ステアリン酸、オレイン酸等のカルシウム塩のいず
れのものでも使用できるが、好ましくはステアリン酸カ
ルシウムの使用が反応性の面より最も好ましい。また、
これら以外のカルシウム塩として、例えば乳酸カルシウ
ム、プロピオン酸カルシウム、塩化カルシウム等の使
用、あるいはステアリン酸マグネシウム等の他の塩種の
使用では、本発明の効果は全く得られないものとなる。
With respect to the calcium salt, the most preferred type of calcium salt to be used is a calcium salt of a higher fatty acid, such as pelargonic acid, 2-ethylhexanoic acid, lauric acid, palmitic acid, stearic acid. Any of calcium salts such as oleic acid and oleic acid can be used, but the use of calcium stearate is most preferred from the viewpoint of reactivity. Also,
Use of calcium salts other than these, for example, calcium lactate, calcium propionate, calcium chloride, and the like, or the use of other salt species such as magnesium stearate, will not provide any effect of the present invention.

【0011】これらの原料を用いて本発明の重合体を得
る方法に関して云えば、先ず乳酸及び/又はグリコール
酸の重合体又は共重合体を有機溶媒に溶解する。使用す
る有機溶媒の種類としては、クロロホルム、ジクロロメ
タン、ジオキサン、トルエン、ヘキサフルオロイソプロ
パノール、トリフルオロ酢酸、ベンジルアルコール等が
挙げられる。また、上記の重合体又は共重合体の濃度
は、概ね1〜20重量%の範囲となるように使用する。
As for the method for obtaining the polymer of the present invention using these raw materials, first, a polymer or copolymer of lactic acid and / or glycolic acid is dissolved in an organic solvent. Examples of the type of the organic solvent used include chloroform, dichloromethane, dioxane, toluene, hexafluoroisopropanol, trifluoroacetic acid, and benzyl alcohol. Further, the concentration of the above-mentioned polymer or copolymer is used so as to be generally in the range of 1 to 20% by weight.

【0012】この溶液に、次いでカルシウム塩を同溶媒
に溶解し、上記重合体溶液に添加して反応を行う。カル
シウム塩の使用量に関して云えば、前記の乳酸及び/又
はグリコール酸の重合体又は共重合体に対するカルシウ
ムの当量比が、0.1〜4.0の範囲となるように使用する。
尚、この場合に於いて、乳酸及び/又はグリコール酸の
重合体又は共重合体の当量は、ポリマー鎖末端のカルボ
キシル基数(平均)に基づくものである。また、両者の使
用割合が上記の範囲を逸脱し、両者の当量が0.1を下廻
ると本発明の重合体の耐熱性は殆ど改善されず、また反
対に4.0を上廻る過剰のカルシウム塩の使用は、重合体
の溶融成形時に未反応のカルシウム塩が熱分解し、生成
する酸によって重合体の熱劣化を促進し、いずれの場合
も本発明の耐熱性に優れた重合体は得られない。有機溶
媒に溶解するカルシウム塩の濃度は、概ね0.1〜1重量%
の範囲とする。
In this solution, a calcium salt is dissolved in the same solvent, and the solution is added to the polymer solution to carry out a reaction. With respect to the amount of calcium salt used, the calcium salt is used such that the equivalent ratio of calcium to the polymer or copolymer of lactic acid and / or glycolic acid is in the range of 0.1 to 4.0.
In this case, the equivalent of the polymer or copolymer of lactic acid and / or glycolic acid is based on the number of carboxyl groups (average) at the terminal of the polymer chain. Further, when the use ratio of both deviates from the above range and the equivalent of both is less than 0.1, the heat resistance of the polymer of the present invention is hardly improved, and conversely, the use of excess calcium salt exceeding 4.0 The unreacted calcium salt is thermally decomposed during melt molding of the polymer, and the generated acid promotes thermal deterioration of the polymer. In any case, the polymer having excellent heat resistance of the present invention cannot be obtained. The concentration of calcium salt dissolved in organic solvents is generally 0.1-1% by weight
Range.

【0013】重合体又は共重合体とカルシウム塩との反
応は、両者の溶液を混合し、反応を促進させるために、
通常常温からその使用する溶媒の沸点程度の温度まで加
熱して行う。反応の進行に伴い、溶液は白濁状態から透
明となり、溶液の粘度は増大する。反応時間は、使用す
る原料の種類、分子量、濃度等によって異なり一概に云
えないが、概ね2時間程度である。
The reaction between the polymer or copolymer and the calcium salt is carried out by mixing the two solutions and accelerating the reaction.
Usually, the heating is carried out from normal temperature to a temperature of about the boiling point of the solvent used. As the reaction proceeds, the solution becomes clear from a cloudy state, and the viscosity of the solution increases. The reaction time varies depending on the type, molecular weight, concentration, etc. of the raw materials used, and cannot be unconditionally determined, but is generally about 2 hours.

【0014】反応の終了後、生成物をメタノール、エタ
ノール、ヘキサン等の有機溶媒に入れ、溶媒中で重合体
を析出させ、遊離した高級脂肪酸を除去する。この析出
した重合体を減圧乾燥等の適当な乾燥手段を用いて乾燥
を行うことにより、本発明の溶融成形時の耐熱性に優れ
た重合体を得ることができる。
After completion of the reaction, the product is put into an organic solvent such as methanol, ethanol, hexane, etc., and a polymer is precipitated in the solvent to remove free higher fatty acids. By drying the precipitated polymer using an appropriate drying means such as drying under reduced pressure, the polymer of the present invention having excellent heat resistance during melt molding can be obtained.

【0015】[0015]

【実施例】以下に本発明の実施例を掲げて更に説明を行
うが、本発明はこれらに限定されるものではない。ま
た、本発明実施例に於いて、%は特に断らない限り全て
重量%を示す。 (実施例1)L-乳酸の重合体(分子量30×104)の2gにク
ロロホルム(関東化学(株)製試薬)を加えて全量100gと
し、これを35℃に加熱して重合体を溶解した。次いでこ
の重合体溶液に、ステアリン酸カルシウム(関東科学
(株)製試薬)の0.1%クロロホルム分散液の所定量を加
え、溶液を約50℃に加熱して反応を行った。この時重合
体の溶液は、反応の進行に伴って白濁から透明状態に変
化し、溶液の粘度も徐々に増大した。約1時間反応後、
蒸発した溶媒量と同量のクロロホルムを反応液に加え、
次いでこれをメタノール(関東化学(株)製試薬)中に攪拌
下で添加し、反応後の重合体を析出させた。次に、析出
した重合体をメタノールで洗浄、濾過した後、析出物を
約70℃で2日間減圧乾燥を行うことにより、本発明の重
合体を得た。また、前記のステアリン酸カルシウムのL
-乳酸重合体に対する当量比をそれぞれ変えて同様に処
理を行い、カルシウム当量比の異なる本発明の重合体を
得た。
The present invention will be further described below with reference to examples of the present invention, but the present invention is not limited to these examples. In Examples of the present invention, all percentages are by weight unless otherwise specified. (Example 1) Chloroform (a reagent manufactured by Kanto Chemical Co., Ltd.) was added to 2 g of a polymer (molecular weight: 30 × 10 4 ) of L-lactic acid to make a total amount of 100 g, which was heated to 35 ° C. to dissolve the polymer. did. Next, add calcium stearate (Kanto Scientific
A predetermined amount of a 0.1% chloroform dispersion of Reagent Co., Ltd.) was added, and the solution was heated to about 50 ° C. to perform a reaction. At this time, the polymer solution changed from cloudy to a transparent state with the progress of the reaction, and the viscosity of the solution gradually increased. After reacting for about 1 hour,
The same amount of chloroform as the amount of the evaporated solvent was added to the reaction solution,
Then, this was added to methanol (a reagent manufactured by Kanto Chemical Co., Ltd.) with stirring to precipitate a polymer after the reaction. Next, the precipitated polymer was washed with methanol and filtered, and the precipitate was dried under reduced pressure at about 70 ° C. for 2 days to obtain a polymer of the present invention. In addition, the calcium stearate L
-The same treatment was carried out while changing the equivalent ratio to the lactic acid polymer to obtain polymers of the present invention having different calcium equivalent ratios.

【0016】このようにして得られた本発明の重合体を
使用し、重合体を加熱溶融成形した際の重合体の熱劣化
試験を行った。試験方法は、前記重合体の0.5gを、重合
体に対する熱伝導効率を一定に保持するために流動パラ
フィン(関東化学(株)製試薬)の7g中に浸漬し、これを温
度200℃で1時間溶融加熱を行った。加熱後、重合体に付
着した流動パラフィンをn-ヘキサン(関東化学(株)製試
薬)で洗浄し、重合体を50℃で減圧乾燥を行った。この
ように溶融加熱した後の重合体の固有粘度を測定(Eling
ら,Polymer,23,1587((1982))し、この結果より重合体の
分子量を求めた。結果を表1に示した。
Using the thus obtained polymer of the present invention, a heat deterioration test was performed on the polymer when the polymer was heated and melt molded. In the test method, 0.5 g of the polymer was immersed in 7 g of liquid paraffin (a reagent manufactured by Kanto Chemical Co., Ltd.) in order to keep the heat transfer efficiency to the polymer constant. Melting heating was performed for hours. After heating, the liquid paraffin attached to the polymer was washed with n-hexane (a reagent manufactured by Kanto Chemical Co., Ltd.), and the polymer was dried at 50 ° C. under reduced pressure. The intrinsic viscosity of the polymer after melting and heating is measured (Eling
Polymer, 23 , 1587 ((1982)), and the molecular weight of the polymer was determined from the results. The results are shown in Table 1.

【0017】[0017]

【表1】 注) *1 PLLAはL-乳酸重合体の略[Table 1] Note) * 1 PLLA is an abbreviation for L-lactic acid polymer

【0018】(実施例2)L-乳酸とグリコール酸の共
重合体(L-乳酸含量80%,分子量15×104)の20gに塩化メ
チレンを加えて全量を200gとし、これを25℃に加熱して
共重合体を溶解した。次いで、この共重合体溶液に、共
重合体に対するカルシウムの当量比が1.0となるよう
に、ステアリン酸カルシウムの0.1%塩化メチレン分散
液を76g加え、この溶液を約30℃に加熱して反応を行っ
た。約1時間の反応を行った後、蒸発した溶媒量と同量
の塩化メチレンを反応液に加え、次いでこれをメタノー
ル中に攪拌下で添加し、反応後の重合体を析出させた。
次に、析出した重合体をメタノールで洗浄、濾過した
後、析出物を約70℃で2日間減圧乾燥を行うことによ
り、本発明の重合体を得た。
Example 2 Methylene chloride was added to 20 g of a copolymer of L-lactic acid and glycolic acid (L-lactic acid content: 80%, molecular weight: 15 × 10 4 ) to make the total amount 200 g. Heated to dissolve the copolymer. Next, 76 g of a 0.1% methylene chloride dispersion of calcium stearate was added to the copolymer solution so that the equivalent ratio of calcium to the copolymer was 1.0, and the solution was heated to about 30 ° C. to perform a reaction. Was. After the reaction was carried out for about 1 hour, the same amount of methylene chloride as the amount of the evaporated solvent was added to the reaction solution, which was then added to methanol with stirring to precipitate the polymer after the reaction.
Next, the precipitated polymer was washed with methanol and filtered, and the precipitate was dried under reduced pressure at about 70 ° C. for 2 days to obtain a polymer of the present invention.

【0019】また比較のために、前記のステアリン酸カ
ルシウムに代えて、ステアリン酸ナトリウム、ステアリ
ン酸マグネシウム(関東化学(株)製試薬)を使用して同様
に反応を行い、重合体を得た。この様にして得られた本
発明及び比較のために得た重合体を使用し、実施例1と
同様にして重合体の加熱溶融成形時の熱劣化試験を行
い、その結果を表2に示した。
For comparison, a reaction was carried out in the same manner using sodium stearate and magnesium stearate (reagents manufactured by Kanto Chemical Co., Ltd.) in place of the above calcium stearate to obtain a polymer. Using the thus obtained present invention and the polymer obtained for comparison, a heat deterioration test was performed on the polymer during heat melting and molding in the same manner as in Example 1, and the results are shown in Table 2. Was.

【0020】[0020]

【表2】 [Table 2]

【0021】(実施例3)L-乳酸の重合体(分子量90×
104)、カルシウム塩として2-エチルヘキサン酸カルシウ
ムを使用し、L-乳酸重合体に対するカルシウム塩の当
量比が1.0となるように使用して、実施例1と同様に本
発明の重合体を得た。得られた重合体の熱劣化試験を実
施例1と同様に行い、その結果を表3に示した。
Example 3 L-lactic acid polymer (molecular weight 90 ×
10 4 ) The polymer of the present invention was prepared in the same manner as in Example 1 by using calcium 2-ethylhexanoate as the calcium salt and using the calcium salt to the L-lactic acid polymer in an equivalent ratio of 1.0. Obtained. The obtained polymer was subjected to a thermal deterioration test in the same manner as in Example 1, and the results are shown in Table 3.

【0022】[0022]

【表3】 [Table 3]

【0023】[0023]

【発明の効果】以上説明したように、本発明の重合体
は、溶融成形加工時の重合体の熱分解、熱劣化が極めて
少なく、殊に生体吸収性の補綴材料として、例えば溶融
成形によるピン、ロッド、プレート等の医用高分子材料
として有用なるものである。また、本発明の重合体は、
生体内分解を促進させる目的で、これに水溶性無機塩粉
末、水溶性の高分子等を併用してもよく、あるいは生体
活性を有するヒドロキシアパタイトの粉末等を混合して
使用することもできる。更に、本発明の重合体は、制癌
剤、局所麻酔剤、抗生物質等の添加を行なうことによ
り、医用分野に於いて極めて有用な生体内分解性の医用
材料となる。
As described above, the polymer of the present invention has extremely low thermal decomposition and thermal deterioration of the polymer during the melt molding process. , Rods, plates, etc. are useful as medical polymer materials. Further, the polymer of the present invention,
For the purpose of accelerating biodegradation, a water-soluble inorganic salt powder, a water-soluble polymer, or the like may be used in combination with the powder, or a powder of hydroxyapatite having bioactivity may be mixed and used. Furthermore, the polymer of the present invention becomes an extremely useful biodegradable medical material in the medical field by adding a carcinostatic agent, a local anesthetic, an antibiotic and the like.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 分子量100,000以上の乳酸及び/又はグ
リコール酸の重合体又は共重合体のカルシウム塩からな
る重合体であって、 乳酸及び/又はグリコール酸の重
合体又は共重合体に対するカルシウムの当量比が0.1〜
4.0の範囲である重合体。
1. A polymer comprising a calcium salt of a polymer or copolymer of lactic acid and / or glycolic acid having a molecular weight of 100,000 or more, wherein the equivalent of calcium to the polymer or copolymer of lactic acid and / or glycolic acid. Ratio 0.1 ~
Polymers in the range of 4.0.
JP2416416A 1990-12-28 1990-12-28 Polymer Expired - Fee Related JP2827055B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2416416A JP2827055B2 (en) 1990-12-28 1990-12-28 Polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2416416A JP2827055B2 (en) 1990-12-28 1990-12-28 Polymer

Publications (2)

Publication Number Publication Date
JPH04249527A JPH04249527A (en) 1992-09-04
JP2827055B2 true JP2827055B2 (en) 1998-11-18

Family

ID=18524640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2416416A Expired - Fee Related JP2827055B2 (en) 1990-12-28 1990-12-28 Polymer

Country Status (1)

Country Link
JP (1) JP2827055B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6005019A (en) * 1993-07-21 1999-12-21 United States Surgical Corporation Plasticizers for fibers used to form surgical devices
CA2127636C (en) * 1993-07-21 2009-10-20 Cheng-Kung Liu Plasticizers for fibers used to form surgical devices

Also Published As

Publication number Publication date
JPH04249527A (en) 1992-09-04

Similar Documents

Publication Publication Date Title
EP0608921B1 (en) Modified polyester composition and preparation process and use thereof
JP3481762B2 (en) Poly (alkylene diglycolate) s, copolymers, blends, their production methods and medical devices using them
EP0707044B1 (en) Absorbable polymer blends
EP0636639B1 (en) Copolymers of an aromatic anhydride and aliphatic ester
RU2435797C2 (en) Resorbable block copolymers of polyethers and polyesters and use thereof in producing medical implants
JP3161729B2 (en) Method for producing medically applicable article from copolymer of lactide and ε-caprolactone
EP0580386A1 (en) Aromatic polyanhydrides
JP3054451B2 (en) Hydrolysable resin composition
JP2005519654A (en) Poly (L-lactide-co-glycolide) copolymer and medical device containing said compound
AU5353086A (en) Medical putty for tissue augmentation
US8575301B2 (en) Absorbable polymer formulations
EP0617712B1 (en) Copolymer of lactone and carbonate and process for the preparation of such a copolymer
EP1642921B1 (en) Triblock copolymer, method for producing the same and biocompatible material
JP2827055B2 (en) Polymer
JPH0940766A (en) Method for removing catalyst from lactic acid polymer
Shalaby Polyaxial Crystalline Fiber-Forming Copolyester
PL191846B1 (en) Method of obtaining bioresorbable polymers by polymerisation of glycolyde and/or lactide or their copolymerisation with lactones
PL201558B1 (en) Method for the manufacture of bioresorptive aliphatic polycarbonates, particularly poly(trimethylene carbonate) and poly(dimethyltrimethylene carbonate) as well as carbonate copolymers with lactide and/or glycolide and/or lactones

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees