JPH04249114A - Method for cutting single crystal for optics - Google Patents

Method for cutting single crystal for optics

Info

Publication number
JPH04249114A
JPH04249114A JP3514091A JP3514091A JPH04249114A JP H04249114 A JPH04249114 A JP H04249114A JP 3514091 A JP3514091 A JP 3514091A JP 3514091 A JP3514091 A JP 3514091A JP H04249114 A JPH04249114 A JP H04249114A
Authority
JP
Japan
Prior art keywords
single crystal
plane
cutting
wafer
wafers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3514091A
Other languages
Japanese (ja)
Inventor
Yukihisa Osugi
幸久 大杉
Akihiko Honda
昭彦 本多
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP3514091A priority Critical patent/JPH04249114A/en
Publication of JPH04249114A publication Critical patent/JPH04249114A/en
Pending legal-status Critical Current

Links

Landscapes

  • Processing Of Stones Or Stones Resemblance Materials (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To cut out an optic not containing a core and having the area larger than those heretofore available by cutting said simple crystal body along the plane in parallel substantially in the pickup direction of the single crystal for optics. CONSTITUTION:A single crystal 1 is cut along the plane 3 in parallel substantially in the pickup direction A to manufacture a number of wafers 4 of almost rectangular shape. At that time, although a number of lattice faces corresponding to the plane 3 are considered, practically a blade is fed into the single crystal 1 along the plane vertically in the direction [100] and cutting is carried out to form the lattice faces of wafers 4 as 100. When the single crystal 1 is cut along the plane vertical in the direction [010], the lattice faces of wafers 4 are formed as [010]. In the cubic system, respective lattice faces of [001], [010] and [100] are equivalent in physical properties each other, and it is not necessary to discriminate them and also said respective lattice faces are rectangular each other. When the single crystal 1 is cut along the plane vertical in the direction [110], the lattice faces of [110] are formed.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、酸化ケイ素ビスマスB
i12SiO20(BS0)単結晶等の立方晶系の光学
素子用単結晶体を切断し、ウエハーを作製する方法に関
するものである。
[Industrial Field of Application] The present invention relates to silicon oxide bismuth B
The present invention relates to a method of cutting a cubic single crystal for an optical element such as an i12SiO20 (BS0) single crystal to produce a wafer.

【0002】0002

【従来の技術】酸化ケイ素ビスマスBi12SiO20
(BS0)単結晶は優れた光学特性を有し、磁界センサ
ー、画像変換素子、ボリュームホログラム素子等の光機
能素子として期待されている。BSO は体心立方晶で
あり、空間群23に属するビスマスシレナイト族に属す
る。
[Prior art] Silicon oxide bismuth Bi12SiO20
(BS0) single crystals have excellent optical properties and are expected to be used as optical functional devices such as magnetic field sensors, image conversion devices, and volume hologram devices. BSO is a body-centered cubic crystal and belongs to the bismuth sirenite family, which belongs to space group 23.

【0003】こうした BSO単結晶を作製するには、
酸化ビスマスと二酸化ケイ素との融液を白金ルツボ中に
溜め、種単結晶を融液中に浸漬し、種単結晶を回転させ
ながら引き上げ、略丸棒状(略円柱状)の BSO単結
晶体を作製する。そして、略円柱状のBSO単結晶体を
スライスし、図3に示すような円形ウエハー6を切り出
す。
[0003] To produce such a BSO single crystal,
A melt of bismuth oxide and silicon dioxide is collected in a platinum crucible, a seed single crystal is immersed in the melt, and the seed single crystal is pulled up while rotating to form a BSO single crystal in the shape of an approximately round rod (approximately cylindrical). Create. Then, the approximately cylindrical BSO single crystal is sliced to cut out circular wafers 6 as shown in FIG.

【0004】0004

【発明が解決しようとする課題】しかし、本発明者が、
円形ウエハーから BSO板を切り出し空間光変調素子
を作製しようとした所、次の問題に直面した。即ち、円
形ウエハー6の中心付近にいわゆるコア2が発生し、こ
の部分は光学的特性等が周囲と異なるので、空間光変調
素子等として使用できない。このため、円形ウエハー6
から更に光学素子を切り出す際、コア2を避けるように
して例えば略正方形の光学素子7を切り出す必要がある
。一方、 BSO単結晶の成長条件から、略円柱状の単
結晶体の大きさに限界があり、円形ウエハー6の直径は
高々80mm程度である。これにより、光学素子7の一
辺の大きさも30mm以下にしかならず、光学素子7を
大型化、大面積化することが不可能である。
[Problem to be solved by the invention] However, the inventor of the present invention
When I tried to cut out a BSO plate from a circular wafer and fabricate a spatial light modulator, I encountered the following problem. That is, a so-called core 2 is generated near the center of the circular wafer 6, and this portion cannot be used as a spatial light modulator or the like because the optical characteristics etc. of this portion are different from those of the surrounding area. Therefore, the circular wafer 6
When further cutting out an optical element from the wafer, it is necessary to cut out, for example, a substantially square optical element 7 while avoiding the core 2. On the other hand, due to the growth conditions of the BSO single crystal, there is a limit to the size of the substantially cylindrical single crystal, and the diameter of the circular wafer 6 is approximately 80 mm at most. As a result, the size of one side of the optical element 7 is only 30 mm or less, making it impossible to increase the size and area of the optical element 7.

【0005】他方、コア2が形成される原因としては、
一応、不純物の偏析といわゆる「facet 」の出現
の二つが考えられる。不純物の偏析は、略円柱状の B
SO単結晶体の中心部での成長速度が周囲のそれよりも
大きくなり、かつ実効的な偏析係数が結晶成長速度に依
存するために生ずる。facet は、対称性が高く晶
癖の強い単結晶によく現われるものである。いずれにせ
よ、BSO 単結晶の育成時においてコアのない単結晶
体を得ることは、結晶成長に多くの要因が相互作用して
いるために、非常に困難である。
On the other hand, the reason why the core 2 is formed is as follows.
There are two possible causes: segregation of impurities and the appearance of so-called "facets." The segregation of impurities is approximately cylindrical B
This occurs because the growth rate in the center of the SO single crystal is greater than that in the surrounding area, and the effective segregation coefficient depends on the crystal growth rate. Facets often appear in single crystals with high symmetry and strong crystal habit. In any case, it is extremely difficult to obtain a single crystal without a core during the growth of a BSO single crystal because many factors interact with each other during crystal growth.

【0006】本発明の課題は、光学素子用単結晶体を切
断し、ウエハーを作製する際に、コアを含まずかつ従来
よりも大面積の光学素子を切り出すことができるような
ウエハーを製作できる、光学素子用単結晶体の切断方法
を提供することである。
[0006] An object of the present invention is to make it possible to produce a wafer that does not include a core and can cut out optical elements with a larger area than before when cutting a single crystal for optical elements to produce a wafer. An object of the present invention is to provide a method for cutting a single crystal for an optical element.

【0007】[0007]

【課題を解決するための手段】本発明は、引き上げ法に
よって作製した立方晶系の光学素子用単結晶体を切断し
、ウエハーを作製する切断方法において、前記光学素子
用単結晶体の引き上げ方向に対して実質的に平行な平面
に沿ってこの光学素子用単結晶体を切断する、光学素子
用単結晶体の切断方法に係るものである。
[Means for Solving the Problems] The present invention provides a cutting method for producing wafers by cutting a cubic system single crystal for an optical element produced by a pulling method, in which the pulling direction of the single crystal for an optical element is provided. This invention relates to a method for cutting a single crystal body for an optical element, which cuts the single crystal body for an optical element along a plane substantially parallel to the plane.

【0008】[0008]

【実施例】図1は、略円柱状の光学素子用単結晶体1の
切断部位を説明するための概略正面図、図2は同じく底
面図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a schematic front view for explaining the cutting portion of a substantially cylindrical single crystal body 1 for an optical element, and FIG. 2 is a bottom view thereof.

【0009】実施例では、まず従来の引き上げ法によっ
て立方晶系の光学素子用単結晶体1を作製する。この単
結晶体1は上部がすぼまった略円柱状であり、上端に吊
り部1aが形成されている。BSO 単結晶、Bi12
GeO20 単結晶等は〔001〕方向(即ち、引き上
げ方向A)に向って育成される。そして、従来は、引き
上げ方向Aに対して垂直な面に沿って単結晶体1を輪切
りにしており、このため円形ウエハーの中心部にコアが
残った。また、円形ウエハーの格子面は必然的に(00
1)面となった。
In the example, first, a cubic system single crystal body 1 for an optical element is produced by a conventional pulling method. This single crystal body 1 has a substantially cylindrical shape with a tapered upper part, and a hanging part 1a is formed at the upper end. BSO single crystal, Bi12
GeO20 single crystal etc. are grown in the [001] direction (ie, pulling direction A). Conventionally, the single crystal body 1 was sliced into rings along a plane perpendicular to the pulling direction A, so that a core remained at the center of the circular wafer. Also, the lattice plane of a circular wafer is necessarily (00
1) It became a face.

【0010】これに対し、本実施例では、引き上げ方向
Aに対して実質的に平行な平面3に沿って単結晶体1を
切断し、略長方形のウエハー4を多数枚得る。この際、
平面3に対応する格子面は数多く考えられるわけである
が、実際には、例えば図2に示すように、〔100 〕
方向に垂直な平面に沿ってブレード(刃)を単結晶体1
中へと送り、切断を行うと、ウエハー4の格子面は(1
00) となる。また、〔010 〕方向に垂直な平面
に沿って単結晶体1を切断すると、ウエハー4の格子面
は(010) となる。立方晶系においては、(001
) 、(010) 、(100) の各格子面は互いに
物性的に等価であり、区別する必要はなく、またこれら
の各格子面は互いに直交する。また、〔100 〕方向
と〔010 〕方向とに対して共に45°をなす方向が
〔110 〕方向であり、〔110 〕方向に対して垂
直な平面に沿って単結晶体1を切断すれば、(110)
 の格子面が得られる。
In contrast, in this embodiment, the single crystal body 1 is cut along a plane 3 substantially parallel to the pulling direction A to obtain a large number of substantially rectangular wafers 4. On this occasion,
Although there are many possible lattice planes corresponding to plane 3, in reality, as shown in FIG. 2, for example, [100]
Single crystal 1 blade along a plane perpendicular to the direction
When the wafer 4 is fed into the interior and cut, the lattice plane of the wafer 4 becomes (1
00) becomes. Furthermore, when the single crystal 1 is cut along a plane perpendicular to the [010] direction, the lattice plane of the wafer 4 becomes (010). In the cubic system, (001
), (010), and (100) are physically equivalent to each other and need not be distinguished, and these lattice planes are orthogonal to each other. Furthermore, the [110] direction is the direction that makes a 45° angle to both the [100] direction and the [010] direction, and if the single crystal 1 is cut along a plane perpendicular to the [110] direction, , (110)
lattice planes are obtained.

【0011】本実施例によれば、各ウエハー4の中央部
等にコア2が存在せず、コアをまったく含まないウエハ
ー4を取り出すことができる。また、従来の円形ウエハ
ーと異なり、中央部のコア2を避けて正方形、長方形等
の光学素子を切り出す必要がないので、各光学素子の大
面積化が可能となる。しかも、各ウエハー4が略長方形
なので、特に正方形、長方形の光学素子を切り出す際、
従来の円形ウエハーよりも不要な部分を一層少なくでき
る。
According to this embodiment, the core 2 is not present in the center of each wafer 4, and wafers 4 containing no core can be taken out. Further, unlike conventional circular wafers, there is no need to cut out square, rectangular, etc. optical elements while avoiding the core 2 in the center, so it is possible to increase the area of each optical element. Moreover, since each wafer 4 is approximately rectangular, especially when cutting out square or rectangular optical elements,
Unnecessary parts can be reduced even more than conventional circular wafers.

【0012】しかも、従来は、円形ウエハーの格子面は
必然的に単結晶の育成面、即ち本例では(001) 面
となった。これに対し、本実施例では、略円柱状の単結
晶体1をコア2を中心として回転させるだけで、ウエハ
ー4の格子面を(100) と面(110) 面との間
で簡単に選択することができる。
Moreover, in the past, the lattice plane of a circular wafer was inevitably the single crystal growth plane, that is, the (001) plane in this example. In contrast, in this embodiment, the lattice plane of the wafer 4 can be easily selected between the (100) plane and the (110) plane by simply rotating the substantially cylindrical single crystal body 1 around the core 2. can do.

【0013】以下、更に具体的な実施例について述べる
。切断機として内周波式スライシングマシンを使用し、
内周の径184mm φ、厚さ0.35mmのブレード
によって略円柱状の単結晶体1を切断線5に沿って切断
した。BSO 単結晶体1の寸法は、直径60mmφ、
円柱部分の長さ80mmとした。ブレード回転数は16
50rpm 、試料送り速度5mm/分、ウエハー4の
厚さは4mmとし、切断面としては、(100) 格子
面と(110) 格子面の双方について切断を実施した
。この結果、最大で55mm×80mmのコアのないウ
エハーを得ることができた。
More specific examples will be described below. Using an internal frequency slicing machine as a cutting machine,
A substantially cylindrical single crystal 1 was cut along the cutting line 5 with a blade having an inner diameter of 184 mm and a thickness of 0.35 mm. The dimensions of the BSO single crystal 1 are 60 mmφ in diameter,
The length of the cylindrical portion was 80 mm. Blade rotation speed is 16
The cutting speed was 50 rpm, the sample feeding speed was 5 mm/min, the thickness of the wafer 4 was 4 mm, and both the (100) lattice plane and the (110) lattice plane were cut. As a result, coreless wafers with a maximum size of 55 mm x 80 mm could be obtained.

【0014】[0014]

【発明の効果】本発明によれば、立方晶系の光学素子用
単結晶体を引き上げ法によって作製するので、この単結
晶体の引き上げ方向へと向うコアが発生する。そして、
光学素子用単結晶体の引き上げ方向に対して実質的に平
行な平面に沿って光学素子用単結晶体を切断するので、
コアの存在領域に当った僅かなウエハーを除き、コアを
まったく含まないウエハーを切り出すことができる。こ
れにより、従来の円形ウエハーは異なり、ウエハーの中
央部に存在するコアを避けて光学素子を切り出す必要が
ないので、従来より遥かに大面積の光学素子を切り出す
ことができる。
According to the present invention, since a cubic system single crystal for an optical element is produced by a pulling method, a core is generated that extends in the pulling direction of the single crystal. and,
Since the single crystal for optical elements is cut along a plane substantially parallel to the pulling direction of the single crystal for optical elements,
It is possible to cut out a wafer that does not contain any cores, except for a small portion of the wafer that falls on the area where the cores exist. As a result, unlike conventional circular wafers, there is no need to cut out optical elements while avoiding the core present in the center of the wafer, so it is possible to cut out optical elements with a much larger area than in the past.

【0015】しかも、光学素子用単結晶体の引き上げ方
向を軸としてこの単結晶体を回転させ、切断の方向を変
えるだけでウエハーの格子面を変え、選択することがで
きる。
Furthermore, the lattice plane of the wafer can be changed and selected simply by rotating the single crystal material for optical elements around the pulling direction of the single crystal material and changing the direction of cutting.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】略円柱状の光学素子用単結晶体1の切断部位を
説明するための概略正面図である。
FIG. 1 is a schematic front view for explaining a cutting portion of a substantially cylindrical single crystal body 1 for an optical element.

【図2】略円柱状の光学素子用単結晶体1の切断部位を
説明するための底面図である。
FIG. 2 is a bottom view illustrating a cutting portion of a substantially cylindrical single crystal body 1 for an optical element.

【図3】従来の円形ウエハーを示す平面図である。FIG. 3 is a plan view showing a conventional circular wafer.

【符号の説明】[Explanation of symbols]

1  略円柱状の光学素子用単結晶体 2  コア 3  引き上げ方向に対して実質的に平行な平面(切断
面) 4  ウエハー 5  切断線 6  円形ウエハー 7  光学素子
1 substantially cylindrical single crystal for optical element 2 core 3 plane (cut surface) substantially parallel to the pulling direction 4 wafer 5 cutting line 6 circular wafer 7 optical element

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  引き上げ法によって作製した立方晶系
の光学素子用単結晶体を切断し、ウエハーを作製する切
断方法において、前記光学素子用単結晶体の引き上げ方
向に対して実質的に平行な平面に沿ってこの光学素子用
単結晶体を切断する、光学素子用単結晶体の切断方法。
1. A cutting method for producing a wafer by cutting a cubic system single crystal for an optical element produced by a pulling method, wherein the cutting method comprises: A method for cutting a single crystal for optical elements, which cuts the single crystal for optical elements along a plane.
JP3514091A 1991-02-06 1991-02-06 Method for cutting single crystal for optics Pending JPH04249114A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3514091A JPH04249114A (en) 1991-02-06 1991-02-06 Method for cutting single crystal for optics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3514091A JPH04249114A (en) 1991-02-06 1991-02-06 Method for cutting single crystal for optics

Publications (1)

Publication Number Publication Date
JPH04249114A true JPH04249114A (en) 1992-09-04

Family

ID=12433611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3514091A Pending JPH04249114A (en) 1991-02-06 1991-02-06 Method for cutting single crystal for optics

Country Status (1)

Country Link
JP (1) JPH04249114A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7242133B2 (en) * 2002-04-17 2007-07-10 Sagem Sa Method for production of a mechanical resonator with a planar monolithic vibrating structure machined in a crystalline material and resonator produced thus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63301525A (en) * 1987-06-01 1988-12-08 Sumitomo Electric Ind Ltd Manufacture of bso wafer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63301525A (en) * 1987-06-01 1988-12-08 Sumitomo Electric Ind Ltd Manufacture of bso wafer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7242133B2 (en) * 2002-04-17 2007-07-10 Sagem Sa Method for production of a mechanical resonator with a planar monolithic vibrating structure machined in a crystalline material and resonator produced thus

Similar Documents

Publication Publication Date Title
Honjo et al. Irregular fractal-like crystal growth of ammonium chloride
US9328429B2 (en) Method for evaluating degree of crystal orientation in polycrystalline silicon, selection method for polycrystalline silicon rods, and production method for single crystal silicon
US5310531A (en) Polycrystalline silicon rod for floating zone method and process for making the same
KR100994320B1 (en) Single crystal silicon producing method, single crystal silicon wafer producing method, seed crystal for producing single crystal silicon, single crystal silicon ingot, and single crystal silicon wafer
WO2014185304A1 (en) METHOD FOR CULTIVATING β-Ga2O3SINGLE CRYSTAL, AND β-Ga2O3-SINGLE-CRYSTAL SUBSTRATE AND METHOD FOR PRODUCING SAME
JPS6317244Y2 (en)
US3788890A (en) Method of preparing dislocation-free crystals
Lian et al. Impurity adsorption and habit changes in aqueous solution grown KCl crystals
JPH04249114A (en) Method for cutting single crystal for optics
JP5416041B2 (en) Single crystal substrate and method for manufacturing single crystal substrate
Price Twinning in cadmium dendrites
Akizuki Origin of optical variation in chabazite
US3130040A (en) Dendritic seed crystals having a critical spacing between three interior twin planes
Newkirk et al. Studies on the formation of crystalline synthetic bromellite. I. Microcrystals
US3244488A (en) Plural directional growing of crystals
JP2005041740A (en) Manufacturing method of silicon wafer, and silicon wafer
Fiedler et al. Dislocation generation at surfaces of tin single crystals
JP2940779B2 (en) Single crystal manufacturing method
JPH0787186B2 (en) Method for manufacturing BSO wafer
Goetz On the Experimental Evidence of the Mosaic Structure of Bi-Single Crystals
JP3229559B2 (en) Method for producing iron garnet thick film by liquid phase epitaxial method
JPH04362084A (en) Wafer preparation of semiconductor material
RU1732701C (en) Method for production of seed plate
US20020013053A1 (en) Method of producing a microwave device
CN112048768A (en) Silicon carbide crystal and silicon carbide wafer