JPH0424909A - Electromagnetic induction apparatus - Google Patents

Electromagnetic induction apparatus

Info

Publication number
JPH0424909A
JPH0424909A JP12604990A JP12604990A JPH0424909A JP H0424909 A JPH0424909 A JP H0424909A JP 12604990 A JP12604990 A JP 12604990A JP 12604990 A JP12604990 A JP 12604990A JP H0424909 A JPH0424909 A JP H0424909A
Authority
JP
Japan
Prior art keywords
winding
wire
cross
temperature distribution
wire material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12604990A
Other languages
Japanese (ja)
Inventor
Tomonori Hirayama
友則 平山
Shinichiro Hayashi
伸一郎 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP12604990A priority Critical patent/JPH0424909A/en
Publication of JPH0424909A publication Critical patent/JPH0424909A/en
Pending legal-status Critical Current

Links

Landscapes

  • Transformer Cooling (AREA)

Abstract

PURPOSE:To make temperature distribution in winding uniform by making the cross section of each wire material vary along the Length direction of the wire material according to the temperature distribution of a cooling medium. CONSTITUTION:Although winding 3 indicates only a wound layer, each wire material 4 increases its cross section gradually as the wire material is wound upward. Then the wire material 4 makes the cross section vary in the direction of length continuously or stepwise and winding 3 is made up by performing winding of a Prescribed number of turns. As the wire material makes the cross section larger as it is wound upward, the heating density of wire materials decreases as they are wound upward even though the same electric current flows. In this way, the inclined characteristics of local temperature distribution that increases as air 5 cooling the wire materials 4 flows upward offset the inclined characteristics of heating density distribution and the compensation of both characteristics makes the vertical temperature distribution of the wire materials 4 almost uniform.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は変圧器等の電磁誘導機器に係り、特にその冷
却性能を改善したものに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to electromagnetic induction equipment such as transformers, and particularly to equipment with improved cooling performance.

〔従来の技術および発明が解決しようとする課題〕第3
図はこの種従来の変圧器の概略構造および巻線の温度分
布を示す図である。同図(A)において、(1)は鉄心
で、その鉛直部分は後述の巻線(3)が巻回される鉄心
脚[2]を形成している。巻線(3)は、例えば電気書
院昭和35年8月発行“°変圧器の設計工作法”P、5
7〜59に示されているように、その断面積か一定の平
角線(または丸線)からなる線材4を、鉛直方向に所定
の複数回数、また径方向に所定の複数層巻回することに
より構成されている。
[Problems to be solved by conventional technology and invention] Part 3
The figure is a diagram showing the schematic structure of a conventional transformer of this type and the temperature distribution of the winding. In the same figure (A), (1) is an iron core, and the vertical part forms the iron core leg [2] around which the later-described winding (3) is wound. The winding (3) is, for example, described in "° Transformer Design and Construction Method" P. 5, published by Denkishoin August 1960.
As shown in 7 to 59, a wire rod 4 made of a rectangular wire (or round wire) whose cross-sectional area is constant is wound a predetermined number of times in the vertical direction and in a predetermined number of layers in the radial direction. It is made up of.

そして、鉄心(1)および巻線(31は図示しない容器
内に冷却媒体としての空気(51とともに収容されてい
る。
The iron core (1) and the winding (31) are housed in a container (not shown) together with air (51) as a cooling medium.

次にこの変圧器の冷却性能、特に巻線(3)内の温度分
布について説明する。第3図(B)は例えば巻線(3)
の最外巻回層の部分の高さ方向に沿った温度分布を示し
たもので、上方へいくに従い線材圃の温度か高くなって
いる。これは、線材(イ)の断面積は均一であるためそ
の発熱分布はほぼ均一となっているが、これら線材(2
)と接触してその冷却をrう空気(51の局部的温度分
布の影響によるものである。即ち、巻線(3)の下方か
らは比較的冷えた空襲(5)が供給されるが、これら空
気((5)が線材(イ)に沿って上昇していくにつれ、
線材(イ)からの発熱を吸取して次第にその温度が上昇
していく、従って、上方位置の線材(2)に接触する空
気(9の温度が下方位置の線材(2)に接触する空気(
5]の温度より高くなり結果としてこの空気(9を冷却
媒体として冷却される線材(2)に、図示するような温
度勾配が生じる訳である。
Next, the cooling performance of this transformer, particularly the temperature distribution within the winding (3), will be explained. Figure 3 (B) shows, for example, winding (3)
This figure shows the temperature distribution along the height direction of the outermost wound layer of the wire rod, and the temperature of the wire rod field increases as it goes upward. This is because the cross-sectional area of the wire (A) is uniform, so the heat distribution is almost uniform; however, these wires (2)
This is due to the influence of the local temperature distribution of the air (51) that contacts and cools the winding (3).In other words, a relatively cold air raid (5) is supplied from below the winding (3), As these air ((5) rises along the wire (a),
The temperature of the wire (A) gradually increases by absorbing the heat generated from the wire (A). Therefore, the temperature of the air (9) that comes into contact with the wire (2) in the upper position increases (the temperature of the air that contacts the wire (2) in the lower position
5], and as a result, a temperature gradient as shown in the figure occurs in the wire (2) that is cooled using this air (9) as a cooling medium.

第3図(C)は、例えば巻線(3)の上端部分の径方向
、従って巻回層方向の温度分布を示したものでこの場合
、鉄心脚(2)に近づくほど空気(51の流れが悪く結
果として線材(2)の温度が高くなっている。
Figure 3 (C) shows the temperature distribution in the radial direction of the upper end portion of the winding (3), that is, in the direction of the winding layer. As a result, the temperature of the wire (2) is high.

変圧器等の電気機器は、その絶縁材料の最高使用温度が
許容値以下になるようその冷却設計が行われるが、従来
の変圧器では、以上のように巻!(3)内に大きな温度
差が存在し、その最高部分の温度を許容値以下にする必
要があり、全体として線材(2)の使用量が増大したり
冷却装置が大形になる等、経済性に劣るという問題点か
あった。
Electrical equipment such as transformers are designed to be cooled so that the maximum operating temperature of the insulating material is below an allowable value. There is a large temperature difference between wires (3), and it is necessary to keep the temperature at the highest point below the allowable value. There was also the problem of being inferior in gender.

この発明は以上のような問題点を解消するためになされ
たもので、巻線内の温度分布の均一化を図るものである
This invention was made in order to solve the above-mentioned problems, and aims to equalize the temperature distribution within the winding.

〔課題を解決するための手段および作用〕この発明に係
る電磁誘導機器は、その線材の断面積を、上記線材と接
触する冷却媒体の局部的温度分布に応じてその長さ方向
に変化させるようにしたものである。
[Means and effects for solving the problem] The electromagnetic induction device according to the present invention changes the cross-sectional area of the wire in the length direction according to the local temperature distribution of the cooling medium that comes into contact with the wire. This is what I did.

冷却媒体の温度が高くなる部分の線材の断面積は大きく
してその発熱密度を下げ、逆に冷却媒体の温度が低くな
る部分の線材の断面積は小さくしてその発熱密度を上げ
、全体として線材の温度分布を均一とする。
The cross-sectional area of the wire in the part where the temperature of the cooling medium is high is increased to reduce its heat generation density, and conversely, the cross-sectional area of the wire in the part where the temperature of the cooling medium is low is decreased to increase its heat generation density, and the overall Make the temperature distribution of the wire uniform.

巻線の鉛直方向上方へいくに従い線材の断面積を大きく
していけば、特に、冷却媒体の自然対流により巻線の冷
却を行う場合、巻線の鉛直方向の温度差が抑制される。
By increasing the cross-sectional area of the wire as it goes upward in the vertical direction of the winding, the temperature difference in the vertical direction of the winding can be suppressed, especially when the winding is cooled by natural convection of the cooling medium.

また、巻線の径方向内方へいくに従い線材の断面積を大
きくしていけば、巻線の径方向の温度差が抑制される。
Further, by increasing the cross-sectional area of the wire as it goes inward in the radial direction of the winding, the temperature difference in the radial direction of the winding can be suppressed.

〔実施例〕〔Example〕

第1図はこの発明の一実施例による変圧器の概略構造お
よび巻線の温度分布を示す図である。なお、ここでは、
巻1!(3)は1巻回層分のみを示している。同図(A
)に断面で示すように、線材(イ)はその断面積が上方
へいくに従い次第に大きくなっている。即ち、この線材
4はその長さ方向に連続または階段状にその断面積を変
化させたもので、これを所定回数巻回することにより巻
線(3)を構成する。
FIG. 1 is a diagram showing the schematic structure and temperature distribution of the windings of a transformer according to an embodiment of the present invention. In addition, here,
Volume 1! (3) shows only one winding layer. The same figure (A
), the cross-sectional area of the wire (A) gradually increases as it goes upward. That is, the wire 4 has a cross-sectional area that changes continuously or stepwise in the length direction, and is wound a predetermined number of times to form a winding (3).

この場合、線材(2)は上方へいくに従いその断面積が
大きくなるので、同一電流が流れてもその発熱密度は上
方へいくに従い低減する。この結果、これら線材4を冷
却する空気(句の上方へいくに従い上昇する局部的温度
分布の傾斜特性と、上記した発熱密度分布の傾斜特性と
が互いに相殺し、同図(B)に示すように、線材(イ)
の上下方向の温度分布がほぼ均一になる。
In this case, the cross-sectional area of the wire (2) increases as it moves upward, so even if the same current flows, its heat generation density decreases as it moves upward. As a result, the air that cools these wires 4 (the slope characteristic of the local temperature distribution that increases as it goes upward) and the slope characteristic of the heat generation density distribution described above cancel each other out, as shown in Figure (B). , wire rod (a)
The temperature distribution in the vertical direction becomes almost uniform.

第2図は他の実施例を示すもので、ここでは巻線(3)
の径方向、従ってその巻回層方向の温度分布の改善を図
っている。即ち、最内層の線材(2)の断面積が最大で
、外層へいくに従いその断面積が低減するよう線材(4
)の長さ方向の断面積を変化させている。
Figure 2 shows another embodiment, in which winding (3)
The aim is to improve the temperature distribution in the radial direction of the winding layer, and thus in the direction of the wound layer. That is, the innermost layer wire (2) has the largest cross-sectional area, and the wire rod (4) is arranged so that the cross-sectional area decreases as it goes to the outer layer.
) is changing the cross-sectional area in the longitudinal direction.

従来の技術で説明したように、鉄心脚(21の近傍では
冷却条件か悪くこの部分の温度が高くなる傾向があるか
、この実施例では、この内層側に位置する線材(イ)の
断面積を大きくしたのでその発熱密度が低減し、上記冷
却条件の傾向を相殺して径方向の温度分布かほぼ均一と
なる(第2図(B))。
As explained in the conventional technology, the cooling conditions in the vicinity of the iron core leg (21) tend to be poor and the temperature of this part tends to rise. By increasing the temperature, the heat generation density is reduced, and the temperature distribution in the radial direction becomes almost uniform by offsetting the above-mentioned tendency of the cooling conditions (FIG. 2(B)).

以上のように、巻線(3)内の温度分布を均等化するこ
とかできるので、例えばこの発明によるものの巻線温度
を従来の最高温度と同し値に設定すれば、線材量の大幅
な低減が可能となり製品の経済性が改善される。また、
線材量を従来と同一とすれば温度分布の均一化によりそ
の最高温度が低くなりその分絶縁物の熱的寿命が増大し
て製品の信頼性が向上する。
As described above, it is possible to equalize the temperature distribution within the winding (3). For example, if the winding temperature of the device according to the present invention is set to the same value as the conventional maximum temperature, the amount of wire material can be significantly reduced. This makes it possible to reduce the amount of water and improve the economic efficiency of the product. Also,
If the amount of wire is the same as before, the maximum temperature will be lowered due to uniform temperature distribution, the thermal life of the insulator will be correspondingly increased, and the reliability of the product will be improved.

なお、上記各実施例では1本の線材(2)を巻回して巻
線(3)を形成する場合について説明したが、複数本の
線材を巻回していくものであってもよい。
In each of the above embodiments, a case has been described in which one wire rod (2) is wound to form the winding wire (3), but a plurality of wire rods may be wound.

また、上記各実施例は冷却媒体として空気(51を使用
したいわゆる自冷式の自然対流循環の冷却方式によるも
のを説明したが、ファン等を使用したいわゆる強制循環
風冷式や冷却媒体に絶縁油を使用したもの等にもこの発
明は同様に適用でき同等の効果を奏する。ここで強制循
環風冷式の場合、一般にその風下側にいくに従い風温度
が上昇するので線材の断面積もその方向に従い大きくす
る。
In addition, in each of the above embodiments, a so-called self-cooling type natural convection circulation cooling method using air (51) as the cooling medium has been described, but a so-called forced circulation air cooling type using a fan or the like or an insulated cooling medium This invention can be similarly applied to those using oil, and the same effect can be achieved.In the case of forced circulation air cooling, the wind temperature generally increases as you go downwind, so the cross-sectional area of the wire also increases. Increase the size according to the direction.

更に、第1図に示す巻線上下方向と第2図に示す巻線径
方向との両方向の温度分布を共に考慮して線材の断面積
を変化させるようにすれば、巻線内の温度分布の均一化
が一層改善されることになる。
Furthermore, if the cross-sectional area of the wire is changed by considering both the temperature distribution in the vertical direction of the winding shown in Fig. 1 and the radial direction of the winding shown in Fig. 2, the temperature distribution inside the winding can be improved. This results in further improvement in uniformity.

〔発明の効果〕〔Effect of the invention〕

この発明は以上のように、冷却媒体の温度分布に応じて
線材の長さ方向に沿ってその断面積を変化させるように
したので、線材の局部的な発p!!、密度がその冷却条
件に見合った値となり結果として巻線内の温度分布が均
一化される。
As described above, in this invention, the cross-sectional area of the wire is changed along the length of the wire according to the temperature distribution of the cooling medium. ! , the density becomes a value commensurate with the cooling conditions, and as a result, the temperature distribution within the winding becomes uniform.

また、線材の断面積を巻線の鉛直方向上方へいくに従い
大きくしていくことにより、特に自然対流冷却の場合に
巻線の鉛直方向の温度差が抑制される。
Furthermore, by increasing the cross-sectional area of the wire as it goes upward in the vertical direction of the winding, the temperature difference in the vertical direction of the winding can be suppressed, especially in the case of natural convection cooling.

更に、巻線の径方向内方へいくに従い線材の断面積を大
きくしていくことにより、巻線の径方向の温度差が抑制
される。
Furthermore, by increasing the cross-sectional area of the wire as it goes inward in the radial direction of the winding, the temperature difference in the radial direction of the winding is suppressed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図はそれぞれこの発明の一実施例によ
る変圧器の概略構造およびその巻線の温度分布を示す区
、第3図は従来のものを示す同様の図である。 図において、(2)は鉄心脚、(3)は巻線、(2)は
線材、(5)は冷却媒体としての空気である。 なお、各図中同一符号は同一または相当部分を示す。 代 理 人    弁理士   大台 増雄第1図 2:鉄心脚 4:&!材 3:巻線 5:空気 (A> 第2図 (B) 第3 図
FIGS. 1 and 2 are diagrams showing the schematic structure and temperature distribution of the windings of a transformer according to an embodiment of the present invention, respectively, and FIG. 3 is a similar diagram showing a conventional transformer. In the figure, (2) is an iron core leg, (3) is a winding, (2) is a wire, and (5) is air as a cooling medium. Note that the same reference numerals in each figure indicate the same or corresponding parts. Agent Patent Attorney Masuo Odai Figure 1 2: Iron core leg 4: &! Material 3: Winding 5: Air (A> Figure 2 (B) Figure 3

Claims (3)

【特許請求の範囲】[Claims] (1)鉄心脚とこの鉄心脚の外周に線材を所定の回数巻
回してなる巻線とを冷却媒体内に設置してなるものにお
いて、 上記線材の断面積を、上記線材と接触する上記冷却媒体
の局部的温度分布に応じてその長さ方向に変化させるよ
うにしたことを特徴とする電磁誘導機器。
(1) In a core leg and a winding made by winding a wire a predetermined number of times around the outer periphery of the core leg, the cross-sectional area of the wire is equal to the cooling An electromagnetic induction device characterized in that the temperature is changed in the length direction of the medium according to the local temperature distribution of the medium.
(2)巻線の鉛直方向上方へいくに従い線材の断面積を
大きくしたことを特徴とする請求項1記載の電磁誘導機
器。
(2) The electromagnetic induction device according to claim 1, characterized in that the cross-sectional area of the wire increases as it goes upward in the vertical direction of the winding.
(3)巻線の径方向内方へいくに従い線材の断面積を大
きくしたことを特徴とする請求項1記載の電磁誘導機器
(3) The electromagnetic induction device according to claim 1, wherein the cross-sectional area of the wire increases as it goes inward in the radial direction of the winding.
JP12604990A 1990-05-15 1990-05-15 Electromagnetic induction apparatus Pending JPH0424909A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12604990A JPH0424909A (en) 1990-05-15 1990-05-15 Electromagnetic induction apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12604990A JPH0424909A (en) 1990-05-15 1990-05-15 Electromagnetic induction apparatus

Publications (1)

Publication Number Publication Date
JPH0424909A true JPH0424909A (en) 1992-01-28

Family

ID=14925385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12604990A Pending JPH0424909A (en) 1990-05-15 1990-05-15 Electromagnetic induction apparatus

Country Status (1)

Country Link
JP (1) JPH0424909A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU726018B2 (en) * 1997-02-03 2000-10-26 Abb Ab Winding in transformer or inductor
US6815618B2 (en) * 2001-06-06 2004-11-09 Nexans Metallic wire

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU726018B2 (en) * 1997-02-03 2000-10-26 Abb Ab Winding in transformer or inductor
US6815618B2 (en) * 2001-06-06 2004-11-09 Nexans Metallic wire

Similar Documents

Publication Publication Date Title
US2947957A (en) Transformers
US3559126A (en) Means to provide electrical and mechanical separation between turns in windings of a superconducting device
CN107045922A (en) A kind of multichannel circulating cooling epoxy cast dry transformer
CN206480467U (en) A kind of multichannel circulating cooling epoxy cast dry transformer
CN106783038A (en) A kind of outside circulating cooling epoxy cast dry transformer
US3551863A (en) Transformer with heat dissipator
US2783441A (en) Transformer
JPH0424909A (en) Electromagnetic induction apparatus
JP6012170B2 (en) Superconducting coil and superconducting transformer
JPH0927426A (en) Stationary induction device wiring
CN206480466U (en) A kind of inner side circulating cooling epoxy cast dry transformer
US3045195A (en) Induction apparatus
US1677681A (en) Transformer
WO2022151910A1 (en) Dry-type transformer with elliptical coil
JP7272999B2 (en) oil-filled transformer
WO2016070393A1 (en) Cooling method and apparatus for forced-directed cooling mixing type transformer winding
JP2001509960A (en) Horizontal air cooling in transformer
WO1999028927A2 (en) A power transformer/reactor
JP3147577B2 (en) Superconducting magnet
JPS6218005Y2 (en)
US2387947A (en) Means for cooling current limiting reactors
JPS59123210A (en) Winding for natural cooling induction apparatus
SU1610514A1 (en) Multilayer vertical winding of induction device
US1901767A (en) Lightning or surge absorber
JPS6179209A (en) Duct spacer for foil wound transformer