JPH04249074A - Manufacture of non-aqueous electrolyte secondary battery - Google Patents

Manufacture of non-aqueous electrolyte secondary battery

Info

Publication number
JPH04249074A
JPH04249074A JP3035507A JP3550791A JPH04249074A JP H04249074 A JPH04249074 A JP H04249074A JP 3035507 A JP3035507 A JP 3035507A JP 3550791 A JP3550791 A JP 3550791A JP H04249074 A JPH04249074 A JP H04249074A
Authority
JP
Japan
Prior art keywords
positive electrode
battery
oxygen concentration
electrolyte secondary
aqueous electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3035507A
Other languages
Japanese (ja)
Inventor
Naoyuki Kato
尚之 加藤
Yoshikatsu Yamamoto
佳克 山本
Toru Nagaura
亨 永浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP3035507A priority Critical patent/JPH04249074A/en
Publication of JPH04249074A publication Critical patent/JPH04249074A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To prevent drop of the capacity and achieve excellent charging/ discharging cycle characteristics by synthesizing LiMO2 as pos. electrode active substance from Li compound and a compound incl. transfer metal in an atmosphere which has a specific oxygen concentration value in %. CONSTITUTION:LixMO2 as active substance of pos. electrode 2, where M is one or more sorts of transfer metal, and 0.05<=x<=1.10), is synthesized in an atmosphere whose oxygen concentration ranges 0.01-1.0%. That is, the synthetization is made by mixing and baking according to the composition of Li/transfer metal composite oxides with Li2CO3, Li2O, etc., and the atmosphere is prepared by including the oxygen in an inert gas such as Ar. Metal Li, Li alloy, etc., are used to neg. electrode 1, while a solution of the electrolyte such as Li salt in a non-aqueous (organic) solvent is used to the non-aqueous electrolyte. Thereby drop of the capacity associate with progress of the charging/discharging cycles is precluded, and a lightweight battery with excellent cycle characteristic is obtained.

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、Lix MO2 (M
は少なくとも1種類の遷移金属である)を正極活物質と
する非水電解液二次電池の製造方法に関し、特にLix
 MO2 の製造方法に関するものである。 【0002】 【従来の技術】近年、ビデオカメラレコーダーやラップ
トップパソコン等に見られる様に、ポータブル用の電子
機器が増加しており、これに伴いポータブル用電源とし
ての電池の需要が急増している。これらのポータブル電
源として普及している電池としては、Ni−Cd電池、
鉛電池等の二次電池が挙げられるが、軽量化が難しいと
いう問題を残している。かかる状況から二硫化チタン、
二硫化モリブデンなどの金属硫化物を正極活物質とする
非水電解液二次電池が提案されている。しかしこられの
金属硫化物系の正極活物質によると、電池電圧が3V以
下の電池しか得られず、エネルギー密度の高い電池を得
る観点からは電池電圧が低いという問題があった。 【0003】そこで、よりエネルギー密度が高い電池を
得るために、特公昭63−59507号公報等において
、正極活物質としてリチウム複合酸化物(例えばLiC
oO2 を用いた非水電解液二次電池が提案されている
。この電池は、高い充放電電圧を示すため、高エネルギ
ー密度が得られる利点を有している。 【0004】正極活物質としてのリチウム複合酸化物を
得るためには、例えばLiCoO2 の場合、上記特許
公報に示されているように炭酸リチウムと炭酸コバルト
とを空気中で焼成することによって製造できる。 【0005】 【発明が解決しようとする課題】上述のような電子機器
におけるポータブル用電源は、できるだけ長寿命である
ことが要求される。すなわち、二次電池においては充放
電サイクルの繰返しに伴う容量低下の防止が必要となる
。この点において、上述のようなリチウム複合酸化物を
正極活物質とする非水電解液二次電池は必ずしも十分な
特性と言えなかった。 【0006】本発明の目的は、容量低下を防止し得てサ
イクル特性の優れた非水電解質二次電池を製造する方法
を提供することである。 【0007】 【課題を解決するための手段】上記目的を達成するため
に、本発明は、LixMO2 (Mは少なくとも1種類
の遷移金属であり、xは0.05≦x≦1.10である
)を正極活物質とする非水電解質二次電池を製造する方
法において、リチウム化合物と前記遷移金属を含む化合
物とから前記Lix MO2 を酸素濃度0.01%以
上でかつ1.0%未満の雰囲気中で合成することを特徴
とする非水電解液二次電池の製造方法である。 【0008】前記リチウム化合物としては、炭酸リチウ
ム(Li2 CO3 )、酸化リチウム(Li2 O)
や水酸化リチウム(LiOH)などを挙げることができ
る。また、前記遷移金属を含む化合物としては、この遷
移金属の炭酸塩、酸化物又は水酸化物などがある。 【0009】上述のような各化合物を、得ようとするリ
チウムと遷移金属との複合酸化物の組成に応じて混合し
て焼成することによって、Lix MO2 を合成でき
る。 この場合、雰囲気としては、アルゴンなどの不活性ガス
が好ましい。このガスが上述の範囲で酸素を含む。また
、焼成温度は、出発原料としての上述の各化合物に応じ
て適宜設定されるが、通常、600〜1100℃の範囲
が好ましい。 【0010】以上のようにして得られるLix MO2
 の具体例としては、リチウム・コバルト酸化物(Li
CoO2 )、リチウム・ニッケル酸化物(Lix N
iO2 )、リチウム・ニッケル・コバルト酸化物(L
ixNiy Co(1−y) O2 ;0<y<1)な
どを挙げることができる。なお、これらの各酸化物から
わかるように、Lix MO2 におけるMはCoおよ
び/またはNiが好ましい。 【0011】なお、本発明の非水電解質二次電池におけ
る負極には、金属リチウム、リチウム合金(例えばリチ
ウム−アルミニウム合金)あるいはピッチ、タール、コ
ークス等の有機物焼成体などのような炭素材料を用いる
ことができる。これらはすべて、リチウムをドープしか
つ脱ドープし得るものである。 【0012】また、本発明に関する非水電解質二次電池
の非水電解質としては、例えばリチウム塩等の電解質を
非水溶媒(有機溶媒)に溶解した非水電解液を用いるこ
とができる。 【0013】ここで有機溶媒としては、特に限定される
ものではないが、例えばプロピレンカーボネート、エチ
レンカーボネート、1,2−ジメトキシエタン、1,2
−ジエトキシエタン、γ−ブチロラクトン、テトラヒド
ロフラン、1,3−ジオキソラン、4−メチル−1,3
−ジオキソラン、ジエチルエーテル、スルホラン、メチ
ルスルホラン、アセトニトリル、プロピオニトリル等を
単独であるいは二種類以上を混合して使用できる。 【0014】また、有機溶剤に溶解させる電解質も従来
より公知のものがいずれも使用でき、LiClO4 、
LiAsF6 、LiPF6 、LiBF4 、LiB
(C6 H5 )4 、LiCl、LiBr、CH3 
SO3 Li、CF3 SO3 Li等がある。 【0015】また、前記非水電解質は固定であってもよ
く、例えば高分子錯体固体電解質などがある。 【0016】 【作用】上述のように、酸素濃度が0.01%以上でか
つ1.0%未満である雰囲気中において合成することに
よって得られるLix MO2 を正極活物質とする非
水電解質二次電池によれば、充放電サイクルに伴う容量
低下が少ない。この理由は明らかではないが、前記Li
x MO2 の比表面積が合成時の酸素濃度によって変
化するためと推定される。そして、合成時の酸素濃度が
適切な範囲内であると、非水電解質二次電池において正
極活物質の比表面積が適切な値になるものと考えられる
。 【0017】 【実施例】以下に本発明による実施例について、図面を
参照しながら説明する。図1は本実施例の非水電解液二
次電池の概略的な縦断面図であるが、この電池を以下の
ように作製した。 【0018】正極2は次のようにして作製した。炭酸リ
チウムと炭酸コバルトとを、リチウムとコバルトとの原
子の比率が1:1となるように計量し、振動ミルを用い
て充分に混合した。この混合物を酸素濃度0.1%の不
活性ガス雰囲気中にて900℃で48時間焼成すること
によって、LiCoO2 を得てから、このLiCoO
2 を粉砕した。 【0019】以上の粉末状のLiCoO2 を正極活物
質とし、このLiCoO2 91重量部に導電剤として
のグラファイト6重量部と結着剤としてのポリフッ化ビ
ニリデン(PVDF)3重量部とを混合して、正極合剤
とした。この正極合剤を溶剤N−メチル−2−ピロリド
ンに分散させてスラリー(ペースト状)にした。この正
極合剤スラリーを、帯状のアルミニウム箔である正極集
電体10の両面に均一に塗布して乾燥し、この乾燥後に
ローラプレス機により圧縮成型して両面に正極合剤層2
aを有する帯状の正極2を得た。LiCoO2 は、正
極合剤層2a中に結着剤によって導電剤とともに結合さ
れて、粉末状態で存在している。 【0020】次に、負極1は次のようにして作製した。 ピッチコークス(炭素質材料)を負極活物質担持体とし
、このピッチコークスを粉砕して粉末状にした。このよ
うな粉末状のピッチコークス90重量部と、結着剤とし
てのポリフッ化ビニリデン(PVDF)10重量部とを
混合し、負極合剤とした。この負極合剤を、溶剤である
N−メチル−2−ピロリドンに分散させてスラリー(ペ
ースト状)にした。この負極合剤スラリーを帯状の銅箔
である負極集電体9の両面に均一に塗布して乾燥させた
。乾燥後、ローラプレス機により圧縮成型して帯状の負
極1を作製した。 【0021】以上のように作製した帯状の負極1、帯状
の正極2と、厚さが25μmの微多孔性ポリプロピレン
フィルムから成る一対のセパレータ3a、3bを、負極
1、セパレータ3a、正極2、セパレータ3bの順に積
層させた4層構造の積層電極体を、その長さ方向に沿っ
て負極1を内側にして渦巻状に多数回巻回することによ
って、渦巻状の巻回電極体15を作製した。なお、33
は巻芯である。 【0022】上述のように1製した渦巻状の巻回電極体
15を図1に示すように、ニッケルめっきを施した鉄製
の電池缶5に収容した。 【0023】また、負極1及び正極2の集電をそれぞれ
行うために、ニッケル製の負極リード11を予め負極集
電体9に取付け、これを負極1から導出して電池缶5の
底面に溶接し、またアルミニウム製の正極リード12を
予め正極集電体10に取付け、これを正極2から導出し
て金属製の安全弁34の突起部34aに溶接した。 【0024】その後、電池缶5の中にプロピレンカーボ
ネートと1,2−ジメトキシエタンとの等容量混合溶媒
にリチウム塩のLiPF6 を1モル/リットルの割合
で溶解した非水電解液を注入して、巻回電極体15に含
浸させた。 【0025】この前後に、巻回電極体15の上端面及び
下端面に対向するように、電池缶5内に円板状の絶縁板
4a及び4bをそれぞれ配設した。 【0026】この後、電池缶5、互いに外周が密着して
いる安全弁34及び金属製の電池蓋7のそれぞれを、表
面にアスファルトを塗布した絶縁封口ガスケット6を介
してかしめることによって、電池缶5を封口した。これ
により電池蓋7及び安全弁34を固定するとともに電池
缶5内の気密性を保持させた。また、このとき、ガスケ
ット6の図1における下端が絶縁板4aの外周面と当接
することによって、絶縁板4aが巻回電極体15の上端
側と密着する。 【0027】以上のようにして、直径13.8mm、高
さ50mmの円筒型非水電解液二次電池を製造した。こ
の電池を後掲の表1に示すように、便宜上電池Aとする
。 【0028】なお、上記円筒型非水電解液二次電池は、
二重の安全装置を構成するために、安全弁34、ストリ
ッパ36、これらの安全弁34とストリッパ36とを一
体にするための絶縁材料から成る中間嵌合体35を備え
ている。図示省略するが、安全弁34にはこの安全弁3
4が変形したときに開裂する開裂部が、電池蓋7には孔
が設けられている。 【0029】万一、電池内圧が何らかの原因で上昇した
場合、安全弁34がその突起部34aを中心にして図1
の上方へ変形することによって、正極リード12と突起
部34aとの接続が断たれて電池電流を遮断するように
、あるいは安全弁34の開裂部が開裂して電池内に発生
したガスを排気するように夫々構成されている。 【0030】次に、上述のLiCoO2 を焼成する際
の酸素濃度をそれぞれ0.5%、0.8%、0.01%
としたこと以外は、上記電池Aと同様にして後掲の表1
に示すように円筒型非水電解液二次電池B、C及びDを
それぞれ作製した。 【0031】また、本発明の効果を確認するための比較
例として、上述のLiCoO2 を焼成する際の酸素濃
度をそれぞれ1.0%、5%、10%、20%、0.0
05%としたこと以外は、上記電池Aと同様にして後掲
の表1に示すように円筒型非水電解液二次電池E、F、
G、H及びIをそれぞれ作製した。なお、上述の9種類
の電池におけるLiCoO2 の粉砕条件はすべて同じ
にした。 【0032】以上の9種類の各電池A〜Iについて、上
限電圧を4.1Vに設定し500mAの定電流で2時間
の充電をした後、18Ωの定負荷で終止電圧2.75V
まで放電させる充放電サイクルを繰り返した。この充放
電サイクルにおいて10サイクル時の容量を初期容量と
して測定し、さらに200サイクル時の容量を測定し、
200サイクル時の容量と初期容量との比(200サイ
クル時の容量/初期容量)を求め、これを容量保持率と
した。各電池における容量保持率を下記表1に示す。 【0033】 【表1】       【0034】表1からわかるように、Li
CoO2 の合成時における酸素濃度と200サイクル
時の容量保持率との間には、明確な相関関係がみられる
。すなわち、酸素濃度が0.005%では容量保持率は
低いが、0.01%から0.08%にかけては容量保持
率は約97%以上となって良好な結果を示す。酸素濃度
が1.0%以上となると、容量保持率は低下してしまう
。したがって、LiCoO2 の合成時における酸素濃
度は0.01%以上でかつ1.0%未満が最適であるこ
とがわかる。 【0035】次に、正極活物質としてのリチウム複合酸
化物の合成時における好ましい酸素濃度が存在すること
について、次のような測定および考察を行った。 【0036】上述の各電池A、B、C、E、F、Gおよ
びHにおけるLiCoO2 の比表面積を測定したとこ
ろ、それぞれ0.07、0.22、0.35、0.44
、0.61、0.7、0.73m2 /gであった。各
電池のLiCoO2 の合成時における酸素濃度と上述
の比表面積との関係を図2に示す。 【0037】図2からわかるように、酸素濃度が大きく
なると、LiCoO2 の比表面積が大きくなる。この
傾向は酸素濃度が1%未満において特に著しく、1%以
上では比表面積はゆるやかに増える。正極活物質として
のLiCoO2 を酸素濃度が1%未満の雰囲気中で合
成することによって、比表面積は小さくなり、このため
正極活物質の必要以上の微細化が抑制されると推定され
る。 【0038】非水電解液二次電池の容量低下の原因とし
て、正極活物質の比表面積が必要以上に大きい(すなわ
ち、正極活物質の粒子が必要以上に微細化されている)
と、正極活物質と電解液との酸化反応等によって電解液
が酸化され易くなるということが考えられる。正極活物
質の合成時における酸素濃度が適切な範囲であると、上
述のように、正極活物質の比表面積が必要以上に大きく
ならず(すなわち、正極活物質の必要以上の微細化が抑
制される)、正極活物質と電解液との反応面積が適切な
ものとなって電解液の劣化が少なくなると推定される。 【0039】なお、上述の各電池におけるLiCoO2
 について、X線回折測定を行ったところ、合成時にお
ける酸素濃度が0.005%であるLiCoO2 (電
池Iに使用したもの)には、コバルト酸化物(Co3 
O4 )が残存していることがわかった。これは、酸素
濃度が0.01%未満になると、雰囲気中における酸素
が不十分なためにコバルト酸化物が残存していると考え
られる。このようなコバルト酸化物は正極活物質として
のLiCoO2 においては不純物であり、電池の充放
電反応には寄与しない。また、これ以外のLiCoO2
 のX線回折測定では、各LiCoO2 には有意な差
はみられなかった。 【0040】また、本実施例における電池は、円筒型非
水電解液二次電池であったが、本発明はこれに限定され
るものではなく、例えば角筒型であってもよく、また、
ボタン型やコイン型の電池にも適用し得る。 【0041】 【発明の効果】本発明の非水電解質二次電池の製造方法
によれば、充放電サイクルの進行に伴う容量低下を防止
することのできる電池を製造することができる。したが
って、高エネルギー密度、軽量といった特性に加えて、
容量低下が少なくてサイクル特性の優れた非水電解質二
次電池を提供できる。
Detailed Description of the Invention [0001] [Industrial Application Field] The present invention provides Lix MO2 (M
is at least one type of transition metal) as a positive electrode active material, particularly Lix
The present invention relates to a method for producing MO2. [0002] In recent years, the number of portable electronic devices such as video camera recorders and laptop computers has been increasing, and with this, the demand for batteries as portable power sources has rapidly increased. There is. Batteries that are popular as these portable power sources include Ni-Cd batteries,
Secondary batteries such as lead batteries are examples, but they still have the problem of being difficult to reduce weight. Due to this situation, titanium disulfide,
Non-aqueous electrolyte secondary batteries using metal sulfides such as molybdenum disulfide as positive electrode active materials have been proposed. However, with these metal sulfide-based positive electrode active materials, only batteries with a battery voltage of 3 V or less can be obtained, and there is a problem in that the battery voltage is low from the viewpoint of obtaining a battery with high energy density. Therefore, in order to obtain a battery with higher energy density, in Japanese Patent Publication No. 63-59507, etc., lithium composite oxide (for example, LiC) is used as a positive electrode active material.
A non-aqueous electrolyte secondary battery using oO2 has been proposed. This battery exhibits a high charge/discharge voltage and has the advantage of providing high energy density. In order to obtain a lithium composite oxide as a positive electrode active material, for example, in the case of LiCoO2, it can be produced by firing lithium carbonate and cobalt carbonate in air as shown in the above-mentioned patent publication. [0005] Portable power supplies for electronic devices such as those described above are required to have as long a lifespan as possible. That is, in a secondary battery, it is necessary to prevent a decrease in capacity due to repeated charge/discharge cycles. In this respect, the non-aqueous electrolyte secondary batteries using the above-mentioned lithium composite oxide as a positive electrode active material cannot necessarily be said to have sufficient characteristics. An object of the present invention is to provide a method for manufacturing a non-aqueous electrolyte secondary battery that can prevent a decrease in capacity and has excellent cycle characteristics. [Means for Solving the Problems] In order to achieve the above object, the present invention provides LixMO2 (M is at least one type of transition metal, and x satisfies 0.05≦x≦1.10). ) as a positive electrode active material, the Lix MO2 is made from a lithium compound and a compound containing the transition metal in an atmosphere with an oxygen concentration of 0.01% or more and less than 1.0%. This is a method for manufacturing a non-aqueous electrolyte secondary battery, which is characterized in that the non-aqueous electrolyte secondary battery is synthesized in a liquid electrolyte. [0008] Examples of the lithium compound include lithium carbonate (Li2 CO3) and lithium oxide (Li2O).
and lithium hydroxide (LiOH). In addition, examples of compounds containing the transition metal include carbonates, oxides, and hydroxides of the transition metal. [0009] Lix MO2 can be synthesized by mixing the above-mentioned compounds according to the composition of the composite oxide of lithium and transition metal to be obtained and firing the mixture. In this case, the atmosphere is preferably an inert gas such as argon. This gas contains oxygen in the range mentioned above. Further, the firing temperature is appropriately set depending on each of the above-mentioned compounds as starting materials, but is usually preferably in the range of 600 to 1100°C. [0010] Lix MO2 obtained as above
As a specific example, lithium cobalt oxide (Li
CoO2 ), lithium nickel oxide (Lix N
iO2 ), lithium nickel cobalt oxide (L
Examples include ixNiyCo(1-y)O2;0<y<1). As can be seen from these oxides, M in Lix MO2 is preferably Co and/or Ni. [0011] For the negative electrode in the non-aqueous electrolyte secondary battery of the present invention, a carbon material such as metallic lithium, a lithium alloy (for example, a lithium-aluminum alloy), or a fired body of organic matter such as pitch, tar, or coke is used. be able to. All of these can be doped and dedoped with lithium. Furthermore, as the nonaqueous electrolyte of the nonaqueous electrolyte secondary battery according to the present invention, a nonaqueous electrolyte in which an electrolyte such as a lithium salt is dissolved in a nonaqueous solvent (organic solvent) can be used. [0013] The organic solvent here is not particularly limited, but includes, for example, propylene carbonate, ethylene carbonate, 1,2-dimethoxyethane, 1,2
-diethoxyethane, γ-butyrolactone, tetrahydrofuran, 1,3-dioxolane, 4-methyl-1,3
-Dioxolane, diethyl ether, sulfolane, methylsulfolane, acetonitrile, propionitrile, etc. can be used alone or in combination of two or more. [0014] Furthermore, any conventionally known electrolyte can be used as the electrolyte to be dissolved in the organic solvent, including LiClO4,
LiAsF6, LiPF6, LiBF4, LiB
(C6 H5)4, LiCl, LiBr, CH3
There are SO3 Li, CF3 SO3 Li, etc. [0015] Furthermore, the non-aqueous electrolyte may be fixed, such as a polymer complex solid electrolyte. [Operation] As mentioned above, a non-aqueous electrolyte secondary using Lix MO2 as a positive electrode active material synthesized in an atmosphere with an oxygen concentration of 0.01% or more and less than 1.0%. According to the battery, there is little decrease in capacity due to charge/discharge cycles. The reason for this is not clear, but the Li
This is presumed to be because the specific surface area of x MO2 changes depending on the oxygen concentration during synthesis. It is believed that when the oxygen concentration during synthesis is within an appropriate range, the specific surface area of the positive electrode active material in a nonaqueous electrolyte secondary battery will be an appropriate value. [Embodiments] Examples according to the present invention will be described below with reference to the drawings. FIG. 1 is a schematic vertical cross-sectional view of the non-aqueous electrolyte secondary battery of this example, and this battery was manufactured as follows. The positive electrode 2 was produced as follows. Lithium carbonate and cobalt carbonate were weighed so that the atomic ratio of lithium to cobalt was 1:1, and thoroughly mixed using a vibration mill. This mixture was fired at 900°C for 48 hours in an inert gas atmosphere with an oxygen concentration of 0.1% to obtain LiCoO2.
2 was crushed. The above powdered LiCoO2 is used as a positive electrode active material, and 91 parts by weight of this LiCoO2 is mixed with 6 parts by weight of graphite as a conductive agent and 3 parts by weight of polyvinylidene fluoride (PVDF) as a binder. This was used as a positive electrode mixture. This positive electrode mixture was dispersed in a solvent N-methyl-2-pyrrolidone to form a slurry (paste). This positive electrode mixture slurry is uniformly applied to both sides of the positive electrode current collector 10, which is a band-shaped aluminum foil, and dried. After drying, compression molding is performed using a roller press machine to form a positive electrode mixture layer 2 on both sides.
A strip-shaped positive electrode 2 having a was obtained. LiCoO2 is present in a powder state in the positive electrode mixture layer 2a, bound together with a conductive agent by a binder. Next, negative electrode 1 was produced as follows. Pitch coke (carbonaceous material) was used as a negative electrode active material carrier, and this pitch coke was ground into powder. 90 parts by weight of such powdered pitch coke and 10 parts by weight of polyvinylidene fluoride (PVDF) as a binder were mixed to prepare a negative electrode mixture. This negative electrode mixture was dispersed in N-methyl-2-pyrrolidone, which is a solvent, to form a slurry (paste). This negative electrode mixture slurry was uniformly applied to both sides of the negative electrode current collector 9, which was a strip-shaped copper foil, and dried. After drying, compression molding was performed using a roller press machine to produce a strip-shaped negative electrode 1. The strip-shaped negative electrode 1, the strip-shaped positive electrode 2, and a pair of separators 3a and 3b made of a microporous polypropylene film having a thickness of 25 μm, which were prepared as described above, were assembled into a negative electrode 1, a separator 3a, a positive electrode 2, and a separator. A spirally wound electrode body 15 was produced by winding a stacked electrode body having a four-layer structure in the order of 3b in a spiral shape along the length direction with the negative electrode 1 inside. . In addition, 33
is the winding core. The spirally wound electrode body 15 manufactured as described above was housed in a nickel-plated iron battery can 5, as shown in FIG. Further, in order to collect current from the negative electrode 1 and the positive electrode 2, a nickel negative electrode lead 11 is attached to the negative electrode current collector 9 in advance, led out from the negative electrode 1, and welded to the bottom surface of the battery can 5. In addition, an aluminum positive electrode lead 12 was attached to the positive electrode current collector 10 in advance, led out from the positive electrode 2, and welded to the protrusion 34a of the metal safety valve 34. [0024] Thereafter, a non-aqueous electrolyte in which lithium salt LiPF6 was dissolved at a ratio of 1 mole/liter in an equal volume mixed solvent of propylene carbonate and 1,2-dimethoxyethane was injected into the battery can 5. The wound electrode body 15 was impregnated. Before and after this, disc-shaped insulating plates 4a and 4b were disposed inside the battery can 5 so as to face the upper and lower end surfaces of the wound electrode body 15, respectively. Thereafter, the battery can 5, the safety valve 34 whose outer peripheries are in close contact with each other, and the metal battery lid 7 are each caulked through an insulating sealing gasket 6 whose surface is coated with asphalt. 5 was sealed. As a result, the battery lid 7 and the safety valve 34 were fixed, and the airtightness inside the battery can 5 was maintained. Further, at this time, the lower end of the gasket 6 in FIG. 1 comes into contact with the outer peripheral surface of the insulating plate 4a, so that the insulating plate 4a comes into close contact with the upper end side of the wound electrode body 15. In the manner described above, a cylindrical non-aqueous electrolyte secondary battery having a diameter of 13.8 mm and a height of 50 mm was manufactured. This battery will be referred to as Battery A for convenience, as shown in Table 1 below. [0028] The cylindrical non-aqueous electrolyte secondary battery has the following characteristics:
In order to constitute a double safety device, a safety valve 34, a stripper 36, and an intermediate fitting body 35 made of an insulating material for integrating these safety valves 34 and the stripper 36 are provided. Although not shown, the safety valve 34 has this safety valve 3
A hole is provided in the battery lid 7 to form a cleavage portion that ruptures when the battery 4 is deformed. In the unlikely event that the internal pressure of the battery rises for some reason, the safety valve 34 will move around its protrusion 34a as shown in FIG.
By deforming upward, the connection between the positive electrode lead 12 and the protrusion 34a is severed and the battery current is cut off, or the cleavage part of the safety valve 34 is ruptured and the gas generated in the battery is exhausted. They are each composed of . Next, the oxygen concentration when firing the LiCoO2 mentioned above was set to 0.5%, 0.8%, and 0.01%, respectively.
Table 1 below was performed in the same manner as for Battery A above, except that
Cylindrical nonaqueous electrolyte secondary batteries B, C, and D were prepared as shown in FIG. In addition, as a comparative example for confirming the effect of the present invention, the oxygen concentration when firing the LiCoO2 mentioned above was 1.0%, 5%, 10%, 20%, and 0.0%, respectively.
Cylindrical non-aqueous electrolyte secondary batteries E, F,
G, H and I were produced respectively. Note that the LiCoO2 pulverization conditions in the nine types of batteries described above were all the same. For each of the above nine types of batteries A to I, after setting the upper limit voltage to 4.1V and charging at a constant current of 500mA for 2 hours, the final voltage was 2.75V at a constant load of 18Ω.
The charge/discharge cycle was repeated until the battery was discharged. In this charge/discharge cycle, the capacity at 10 cycles was measured as the initial capacity, and the capacity at 200 cycles was further measured,
The ratio of the capacity at 200 cycles to the initial capacity (capacity at 200 cycles/initial capacity) was determined, and this was taken as the capacity retention rate. The capacity retention rate of each battery is shown in Table 1 below. [Table 1] [0034] As can be seen from Table 1, Li
There is a clear correlation between the oxygen concentration during CoO2 synthesis and the capacity retention rate after 200 cycles. That is, when the oxygen concentration is 0.005%, the capacity retention rate is low, but when the oxygen concentration ranges from 0.01% to 0.08%, the capacity retention rate becomes about 97% or more, showing good results. When the oxygen concentration becomes 1.0% or more, the capacity retention rate decreases. Therefore, it can be seen that the optimal oxygen concentration during synthesis of LiCoO2 is 0.01% or more and less than 1.0%. Next, the following measurements and considerations were made regarding the existence of a preferable oxygen concentration during the synthesis of a lithium composite oxide as a positive electrode active material. When the specific surface area of LiCoO2 in each of the above-mentioned batteries A, B, C, E, F, G and H was measured, they were 0.07, 0.22, 0.35, and 0.44, respectively.
, 0.61, 0.7, 0.73 m2/g. FIG. 2 shows the relationship between the oxygen concentration and the above-mentioned specific surface area during the synthesis of LiCoO2 for each battery. As can be seen from FIG. 2, as the oxygen concentration increases, the specific surface area of LiCoO2 increases. This tendency is particularly remarkable when the oxygen concentration is less than 1%, and when the oxygen concentration is 1% or more, the specific surface area increases slowly. It is presumed that by synthesizing LiCoO2 as a positive electrode active material in an atmosphere with an oxygen concentration of less than 1%, the specific surface area is reduced, and therefore, unnecessarily finer size of the positive electrode active material is suppressed. [0038] The cause of the capacity reduction of non-aqueous electrolyte secondary batteries is that the specific surface area of the positive electrode active material is larger than necessary (that is, the particles of the positive electrode active material are made finer than necessary).
It is conceivable that the electrolyte becomes more likely to be oxidized due to an oxidation reaction between the positive electrode active material and the electrolyte. If the oxygen concentration during the synthesis of the positive electrode active material is within an appropriate range, as mentioned above, the specific surface area of the positive electrode active material will not become larger than necessary (i.e., the unnecessarily finer size of the positive electrode active material will be suppressed). ), it is estimated that the reaction area between the positive electrode active material and the electrolyte becomes appropriate, reducing deterioration of the electrolyte. Note that LiCoO2 in each of the above-mentioned batteries
When we performed X-ray diffraction measurements on LiCoO2 (used in Battery I), the oxygen concentration at the time of synthesis was 0.005%, we found that cobalt oxide (Co3
It was found that O4) remained. This is considered to be because when the oxygen concentration is less than 0.01%, cobalt oxide remains due to insufficient oxygen in the atmosphere. Such cobalt oxide is an impurity in LiCoO2 as a positive electrode active material, and does not contribute to the charging/discharging reaction of the battery. In addition, other LiCoO2
In the X-ray diffraction measurement, no significant difference was observed between each LiCoO2. Furthermore, although the battery in this example was a cylindrical non-aqueous electrolyte secondary battery, the present invention is not limited to this; for example, it may be of a prismatic type;
It can also be applied to button-type and coin-type batteries. [0041] According to the method for manufacturing a non-aqueous electrolyte secondary battery of the present invention, a battery can be manufactured that can prevent a decrease in capacity as the charge/discharge cycle progresses. Therefore, in addition to the characteristics of high energy density and light weight,
It is possible to provide a non-aqueous electrolyte secondary battery with little capacity loss and excellent cycle characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明による実施例の円筒型非水電解液二次電
池の概略的な縦断面図である。
FIG. 1 is a schematic vertical cross-sectional view of a cylindrical non-aqueous electrolyte secondary battery according to an embodiment of the present invention.

【図2】本実施例において得られた各LiCoO2 の
合成時の酸素濃度と各LiCoO2 の比表面積との関
係を示す図である。
FIG. 2 is a diagram showing the relationship between the oxygen concentration during synthesis of each LiCoO2 obtained in this example and the specific surface area of each LiCoO2.

【符号の説明】[Explanation of symbols]

1    負極 2    正極 2a  正極合剤層 1 Negative electrode 2 Positive electrode 2a Positive electrode mixture layer

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】Lix MO2 (Mは少なくとも1種類
の遷移金属であり、xは0.05≦x≦1.10である
)を正極活物質とする非水電解質二次電池を製造する方
法において、リチウム化合物と前記遷移金属を含む化合
物とから前記Lix MO2 を酸素濃度0.01%以
上でかつ1.0%未満の雰囲気中で合成することを特徴
とする非水電解液二次電池の製造方法。
Claim 1: A method for manufacturing a nonaqueous electrolyte secondary battery using Lix MO2 (M is at least one type of transition metal, and x satisfies 0.05≦x≦1.10) as a positive electrode active material. , manufacturing a nonaqueous electrolyte secondary battery, characterized in that the Lix MO2 is synthesized from a lithium compound and a compound containing the transition metal in an atmosphere with an oxygen concentration of 0.01% or more and less than 1.0%. Method.
JP3035507A 1991-02-05 1991-02-05 Manufacture of non-aqueous electrolyte secondary battery Pending JPH04249074A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3035507A JPH04249074A (en) 1991-02-05 1991-02-05 Manufacture of non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3035507A JPH04249074A (en) 1991-02-05 1991-02-05 Manufacture of non-aqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JPH04249074A true JPH04249074A (en) 1992-09-04

Family

ID=12443679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3035507A Pending JPH04249074A (en) 1991-02-05 1991-02-05 Manufacture of non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JPH04249074A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0782206A1 (en) 1995-12-29 1997-07-02 Japan Storage Battery Company Limited Positive electrode active material for lithium secondary battery, method of producing thereof, and lithium secondary battery
WO2003086975A1 (en) * 2002-04-08 2003-10-23 Council Of Scientific And Industrail Research Process for preparing cathode material for lithium batteries
US6953566B2 (en) 2002-03-29 2005-10-11 Council Of Scientific & Industrial Research Process for preparing cathode material for lithium batteries
US8208677B2 (en) * 2005-10-17 2012-06-26 Alpine Electronics, Inc. Suspension member for speaker

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0782206A1 (en) 1995-12-29 1997-07-02 Japan Storage Battery Company Limited Positive electrode active material for lithium secondary battery, method of producing thereof, and lithium secondary battery
US6953566B2 (en) 2002-03-29 2005-10-11 Council Of Scientific & Industrial Research Process for preparing cathode material for lithium batteries
WO2003086975A1 (en) * 2002-04-08 2003-10-23 Council Of Scientific And Industrail Research Process for preparing cathode material for lithium batteries
US8208677B2 (en) * 2005-10-17 2012-06-26 Alpine Electronics, Inc. Suspension member for speaker

Similar Documents

Publication Publication Date Title
JP4623786B2 (en) Non-aqueous secondary battery
US7462422B2 (en) Positive electrode active material and non-aqueous electrolyte secondary cell
JP3010781B2 (en) Non-aqueous electrolyte secondary battery
JP4412304B2 (en) Secondary battery
JP2009076468A (en) Nonaqueous electrolyte secondary battery
JPH0935715A (en) Manufacture of positive electrode active material and nonaqueous electrolyte secondary battery
JP3436600B2 (en) Rechargeable battery
JP7469434B2 (en) Nonaqueous electrolyte battery and method of manufacturing same
JP2001143762A (en) Cylindrical lithium ion battery
JP3160920B2 (en) Non-aqueous electrolyte secondary battery
JPH08171917A (en) Cell
JPH0412471A (en) Secondary battery
JP4591674B2 (en) Lithium ion secondary battery
JPH10208777A (en) Non-aqueous electrolyte secondary battery
JP3049727B2 (en) Non-aqueous electrolyte secondary battery
JPH0973885A (en) Nonaqueous electrolyte secondary battery
JP3103899B2 (en) Non-aqueous electrolyte secondary battery
JP4447831B2 (en) Positive electrode active material and non-aqueous electrolyte secondary battery
JPH11273738A (en) Nonaqueous electrolyte secondary battery
JPH04249074A (en) Manufacture of non-aqueous electrolyte secondary battery
JP2002203606A (en) Nonaqueous electrolyte solution battery
JP2004342459A (en) Nonaqueous electrolyte battery
JP2003282143A (en) Nonaqueous electrolyte secondary battery
JP2000149953A (en) Nonaqueous electrolyte secondary battery
JPH0434855A (en) Spiral type non-aqueous electrolyte battery