JPH04248896A - Method for suppressing oxidation of oil and fat - Google Patents

Method for suppressing oxidation of oil and fat

Info

Publication number
JPH04248896A
JPH04248896A JP3085699A JP8569991A JPH04248896A JP H04248896 A JPH04248896 A JP H04248896A JP 3085699 A JP3085699 A JP 3085699A JP 8569991 A JP8569991 A JP 8569991A JP H04248896 A JPH04248896 A JP H04248896A
Authority
JP
Japan
Prior art keywords
oil
sod
sodium caseinate
added
fatty acids
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3085699A
Other languages
Japanese (ja)
Other versions
JP2953091B2 (en
Inventor
Seishiyuu Matsuzaki
成秀 松崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ajinomoto Co Inc
Original Assignee
Ajinomoto Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ajinomoto Co Inc filed Critical Ajinomoto Co Inc
Priority to JP3085699A priority Critical patent/JP2953091B2/en
Publication of JPH04248896A publication Critical patent/JPH04248896A/en
Application granted granted Critical
Publication of JP2953091B2 publication Critical patent/JP2953091B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Grain Derivatives (AREA)
  • Edible Oils And Fats (AREA)
  • Seasonings (AREA)
  • Anti-Oxidant Or Stabilizer Compositions (AREA)
  • Fats And Perfumes (AREA)
  • Dairy Products (AREA)

Abstract

PURPOSE:To provide a new method for suppressing the oxidation of oil and fat. CONSTITUTION:Oxidation of oil and fat can be effectively suppressed by adding a superoxide dismutase and casein sodium to the aqueous phase of an O/W-type emulsion.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は多価不飽和脂肪酸を含む
脂肪酸で構成される油脂をその油相とする水中油型エマ
ルションにおいて、水相にスーパーオキシド・ディスム
ターゼ(以下SODと略する。)とカゼインナトリウム
を共存させることにより、SODの活性酸素消去活性を
飛躍的に増加させ、活性酸素による不飽和脂肪酸の酸化
劣化を抑制することで、本来不飽和脂肪酸が持つ生理活
性を有効に食品等に利用することができる油脂の酸化劣
化を抑制する新規な方法である。
[Industrial Application Field] The present invention provides an oil-in-water emulsion whose oil phase is composed of fatty acids including polyunsaturated fatty acids, in which the aqueous phase contains superoxide dismutase (hereinafter abbreviated as SOD). By coexisting with sodium caseinate, the active oxygen scavenging activity of SOD is dramatically increased, and by suppressing the oxidative deterioration of unsaturated fatty acids caused by active oxygen, the physiological activity of unsaturated fatty acids can be effectively utilized in foods, etc. This is a novel method for suppressing oxidative deterioration of oils and fats that can be used for

【0002】0002

【従来の技術】最近、多価不飽和脂肪酸の生理活性が明
らかになるに連れ、それらを含む油脂が注目を集めてい
る。例えば、α−リノレン酸を含むエゴマ油、γ−リノ
レン酸を含む月見草油、EPA(エイコサペンタエン酸
)・DHA(ドコサヘキサエン酸)を含む魚油、および
微生物発酵で産生される多価不飽和脂肪酸を含む油脂な
どがある。しかしながら、これらの多価不飽和脂肪酸を
含むような油脂は光や触媒などによって容易に過酸化物
を生成し、この分解によりラジカル連鎖反応である自動
酸化反応が進行し容易に品質の劣化を引き起こしてしま
い、実際の食品形態で利用すのは非常に困難であった。
BACKGROUND OF THE INVENTION Recently, as the physiological activities of polyunsaturated fatty acids have become clearer, oils and fats containing them have been attracting attention. For example, perilla oil containing α-linolenic acid, evening primrose oil containing γ-linolenic acid, fish oil containing EPA (eicosapentaenoic acid) and DHA (docosahexaenoic acid), and polyunsaturated fatty acids produced by microbial fermentation. There are oils and fats. However, these oils and fats containing polyunsaturated fatty acids easily generate peroxides when exposed to light or catalysts, and this decomposition causes autoxidation reactions, which are radical chain reactions, to progress, easily causing quality deterioration. Therefore, it was extremely difficult to use it in actual food form.

【0003】また、この酸化劣化を抑制する為に数多く
の抗酸化剤の検討がなされ、現在ではトコフェロールが
一般的によく用いられている。トコフェロールはその抗
酸化性はもとより安全性においても優れている。その中
でも特にα−トコフェロールはビタミンEとしての生理
的効果もあり優秀な抗酸化剤である。しかしながら、ト
コフェロールは油中ではその効果はすぐれているものの
、水分が共存する系では逆に酸化促進剤としてはたらく
ことも知られており  (JAOCS57:225(1
980),JAOCS  61:1212(1984)
)、水および油の共存する乳化食品での抗酸化剤として
はあまり効果が期待できない。
[0003] Further, in order to suppress this oxidative deterioration, many antioxidants have been investigated, and tocopherols are commonly used at present. Tocopherol is excellent not only in its antioxidant properties but also in safety. Among them, α-tocopherol in particular has physiological effects as vitamin E and is an excellent antioxidant. However, although tocopherol has excellent effects in oil, it is also known that it acts as an oxidation promoter in systems where water coexists (JAOCS57:225 (1)
980), JAOCS 61:1212 (1984)
), it is not expected to be very effective as an antioxidant in emulsified foods where water and oil coexist.

【0004】乳化系での抗酸化効果を持つものとしてス
パイス類が検討されているものの、その効果は多価不飽
和脂肪酸を多く含むような油脂では実用レベルには至っ
ておらず、現状では効果的に酸化反応を抑制する方法は
存在していない。
[0004] Although spices have been studied as having antioxidative effects in emulsification systems, their effects have not reached a practical level with oils and fats that contain a large amount of polyunsaturated fatty acids; There is no method to suppress the oxidation reaction.

【0005】この問題を解決する方法として、最近にな
って活性酸素消去活性をもつ酵素SODを利用して、油
脂類の酸化を抑制する方法が報告されている。例えば特
開昭60−1295に見られる方法では脂肪酸であるリ
シノール酸の酸化反応を抑制することが示されており、
J.Agric.Food  Chem.1989,3
7,23−28に示されている方法ではリノール酸等に
ついて検討がなされている。
As a method for solving this problem, a method has recently been reported that uses the enzyme SOD, which has active oxygen scavenging activity, to suppress the oxidation of fats and oils. For example, a method found in JP-A-60-1295 has been shown to inhibit the oxidation reaction of ricinoleic acid, a fatty acid.
J. Agric. Food Chem. 1989, 3
7, 23-28, linoleic acid and the like have been studied.

【0006】しかしながら、これらの実験例では酵素S
ODの活性酸素消去活性が十分には発現しておらず、S
ODの脂肪酸に対する添加量が多く、また多価不飽和脂
肪酸を含む油脂に適用しようと思うと更に添加量を増や
さざるをえなくなり実際に食品に応用するには問題があ
った。
However, in these experimental examples, the enzyme S
The active oxygen scavenging activity of OD is not fully expressed, and S
The amount of OD added to the fatty acid was large, and if the method was to be applied to fats and oils containing polyunsaturated fatty acids, the amount added would have to be further increased, creating a problem in actually applying it to foods.

【0007】また本発明の実施例1に示すように、実際
に乳化剤(シュガーエステル・レシチン)存在下水中油
型エマルションでの多価不飽和脂肪酸に対する酸化抑制
力はほんのわずかしか認められないという問題があった
In addition, as shown in Example 1 of the present invention, there is a problem in that an oil-in-water emulsion in the presence of an emulsifier (sugar ester/lecithin) has only a slight oxidation inhibitory effect on polyunsaturated fatty acids. there were.

【0008】[0008]

【発明が解決しようとする課題】解決しようとする課題
は、生体内酵素であるSODの活性酸素消去能を食品形
態下で十分に発現させ、多価不飽和脂肪酸を含む油脂の
酸化を抑制することにより本来多価不飽和脂肪酸が持つ
生理活性を有効に食品等に利用することができるように
することである。
[Problem to be solved by the invention] The problem to be solved is to sufficiently express the active oxygen scavenging ability of SOD, which is an in vivo enzyme, in food form, and to suppress the oxidation of fats and oils containing polyunsaturated fatty acids. By doing so, it is possible to effectively utilize the physiological activity inherent in polyunsaturated fatty acids in foods and the like.

【0009】[0009]

【課題を解決するための手段】本発明者等はは、水中油
型エマルションにおいて水相にカゼインナトリウムを共
存させることによりSODの活性酸素消去活性が著しく
向上することを見いだし本発明を完成するに到った。即
ち本発明は水中油型エマルションにおいて、水相にSO
Dとカゼインナトリウムを共存させることを特徴とする
油脂の酸化抑制方法である。本発明の方法を用いると、
食品中でSODの活性酸素消去能を利用し多価不飽和脂
肪酸を含む油脂の酸化劣化を抑制するという目的を、簡
便な手法で、味・色調・匂い等食品としての特質を損な
うことなしに実現した。以下に本発明を更に詳細に説明
する。
[Means for Solving the Problems] The present inventors have discovered that the active oxygen scavenging activity of SOD is significantly improved by coexisting sodium caseinate in the aqueous phase of an oil-in-water emulsion, and have completed the present invention. It has arrived. That is, the present invention provides an oil-in-water emulsion in which SO is added to the aqueous phase.
This is a method for suppressing the oxidation of fats and oils, which is characterized by coexisting D and sodium caseinate. Using the method of the invention,
The purpose of using the active oxygen scavenging ability of SOD in foods to suppress the oxidative deterioration of fats and oils containing polyunsaturated fatty acids is achieved using a simple method without impairing the characteristics of foods such as taste, color, and odor. It was realized. The present invention will be explained in more detail below.

【0010】多価不飽和脂肪酸は、光・金属触媒・熱な
どにより容易に酸化をうけることはよく知られるところ
であるが、その初期反応において活性酸素種であるスー
パー
It is well known that polyunsaturated fatty acids are easily oxidized by light, metal catalysts, heat, etc., but in the initial reaction, active oxygen species such as super

【0011】SODは超酸化物不均化酵素とも呼ばれ(
EC1.15.1.1.)、上記スーパーオキシドアニ
オンラジカルの不均化反応を触媒する酵素として知られ
ており、生体内での脂質等の酸化反応を抑制している(
酵素ハンドブックによる)。またSODは広く生物界に
存在しており、生物の種類によって鉄・マンガン・銅・
亜鉛などの金属を活性中心に持つが、金属の種類にかか
わらず同一の活性を示すことが知られている。
[0011] SOD is also called superoxide dismutation enzyme (
EC1.15.1.1. ), is known as an enzyme that catalyzes the disproportionation reaction of the superoxide anion radical, and suppresses the oxidation reaction of lipids, etc. in vivo (
(according to Enzyme Handbook). In addition, SOD exists widely in the living world, and depending on the type of living thing, it may contain iron, manganese, copper, etc.
Although it has a metal such as zinc as its active center, it is known to exhibit the same activity regardless of the type of metal.

【0012】本発明で用いられるSODは特にその起源
に制限されるものではなく、たとえば牛の赤血球および
肝臓から得られたものや、酵母・細菌などの微生物など
から得られたものを用いることができる。
[0012] The SOD used in the present invention is not particularly limited in its origin; for example, those obtained from bovine red blood cells and liver, or those obtained from microorganisms such as yeast and bacteria can be used. can.

【0013】本発明において、SODの添加量は油脂中
の多価不飽和脂肪酸の種類と含有量によって異なるが一
般的に油脂に対し5〜100ユニット/グラム、好まし
くは10〜50ユニット/グラムに相当する量を、水中
油型エマルションを形成する水相に添加すればよい。
[0013] In the present invention, the amount of SOD added varies depending on the type and content of polyunsaturated fatty acids in the fat and oil, but is generally 5 to 100 units/g, preferably 10 to 50 units/g of the fat. A corresponding amount may be added to the aqueous phase forming the oil-in-water emulsion.

【0014】本発明で用いられるSODと共存させるカ
ゼインナトリウムとしては、市販のものをそのまま用い
ることができ、その添加量は水中油型エマルションを形
成する水相に対し0.01%〜10%、好ましくは0.
1%〜3%添加すればよい。カゼインナトリウムの過剰
添加はSODの活性を抑制することはないが、雑菌汚染
を考えると過剰添加は好ましくない。
[0014] As sodium caseinate to be coexisted with SOD used in the present invention, commercially available sodium caseinate can be used as is, and the amount added is 0.01% to 10%, based on the aqueous phase forming the oil-in-water emulsion. Preferably 0.
It may be added in an amount of 1% to 3%. Although excessive addition of sodium caseinate does not inhibit SOD activity, excessive addition is not preferable in view of bacterial contamination.

【0015】多価不飽和脂肪酸を含む油脂としては、α
−リノレン酸を含むエゴマ油、γ−リノレン酸を含む月
見草油、EPA・DHAを含む魚油、および微生物発酵
で産生される多価不飽和脂肪酸を含む油脂や、それらか
ら多価不飽和脂肪酸を濃縮したものなどを用いることが
できるが、特にこれらの油脂に制限されるものではなく
、一般的に食用油として用いられる紅花油・なたね油・
大豆油などを用いてもなんら問題はない。
[0015] As the fats and oils containing polyunsaturated fatty acids, α
- Perilla oil containing linolenic acid, evening primrose oil containing γ-linolenic acid, fish oil containing EPA/DHA, and fats and oils containing polyunsaturated fatty acids produced by microbial fermentation, and concentrated polyunsaturated fatty acids from them. However, there are no particular restrictions on these oils and fats, such as safflower oil, rapeseed oil, etc., which are generally used as edible oils.
There is no problem in using soybean oil or the like.

【0016】さて水中油型エマルションを製造するには
、多価不飽和脂肪酸を含む油脂を乳化剤・カゼインナト
リウム・SODを含む水溶液中で水中油型に乳化すれば
よい。SODを添加する方法としては、乳化処理前に水
相に溶解させておく上記の方法と、乳化処理後添加する
方法とがあるが、後者の場合酵素粉末を乳化物に直接添
加すると均一に分散溶解させるのが困難なことがあり、
この場合あらかじめSODを蒸留水もしくは緩衝液に溶
解させておき乳化物に添加するのが好ましい。
In order to produce an oil-in-water emulsion, an oil or fat containing a polyunsaturated fatty acid may be emulsified into an oil-in-water emulsion in an aqueous solution containing an emulsifier, sodium caseinate, and SOD. There are two ways to add SOD: the above-mentioned method in which it is dissolved in the aqueous phase before emulsification treatment, and the method in which it is added after emulsification treatment.In the latter case, adding enzyme powder directly to the emulsion results in uniform dispersion. May be difficult to dissolve;
In this case, it is preferable to dissolve SOD in distilled water or a buffer solution in advance and add it to the emulsion.

【0017】本発明で用いる乳化剤は特にその種類の制
限はないが、通常食品添加物として認可されているショ
糖脂肪酸エステル、ポリグリセリン脂肪酸エステル、レ
シチン、ソルビタン脂肪酸エステル等を単独または混合
して用いればよい。また乳化剤の添加量についても特に
制限はないが、通常エマルションに対し0.1〜5.0
重量%,好ましくは0.4〜3.0%添加すればよい。 以下、この発明の実施例について説明し、実施例に示す
多価不飽和脂肪酸を含む油脂の酸化が、カゼインナトリ
ウムの共存下SODによって顕著に抑制されることを明
らかにする。もちろん、本発明は実施例に限定されるも
のではない。
The emulsifier used in the present invention is not particularly limited in type, but sucrose fatty acid esters, polyglycerin fatty acid esters, lecithin, sorbitan fatty acid esters, etc., which are usually approved as food additives, can be used alone or in combination. Bye. There is also no particular restriction on the amount of emulsifier added, but it is usually 0.1 to 5.0 to the emulsion.
It may be added in an amount of 0.4 to 3.0% by weight, preferably 0.4 to 3.0%. Examples of the present invention will be described below, and it will be clarified that the oxidation of fats and oils containing polyunsaturated fatty acids shown in the examples is significantly suppressed by SOD in the presence of sodium caseinate. Of course, the present invention is not limited to the examples.

【0018】[0018]

【実施例】実施例1 水中油型エマルションを調製する際、乳化剤にステアリ
ン酸シュガーエステル(HLB=11)を用いて、カゼ
インナトリウムを加えた系と加えない系でのSODの抗
酸化力の違いをみた。エマルションの油相成分には、多
価不飽和脂肪酸であるEPA・DHAを含むいわしから
得られた魚油を精製したものを用いた。尚、そのEPA
・DHA含量はトータルで21%であった。蒸留水20
0gに乳化剤であるステアリン酸シュガーエステルを4
gとカゼインナトリウムを2g添加し加熱撹  下十分
に溶解させた後室温まで冷却し、牛の肝臓から得られた
精製粉末SODを4000ユニット(20ユニット/オ
イル.g)添加し撹  溶解させた。この酵素水溶液に
上記の魚油200gを撹  下滴下し予備乳化を行ない
、次いで高圧均質乳化機で水中油型エマルションに乳化
した。 またこれとは別に、上記調製条件のうちカゼインナトリ
ウムとSODの両方無添加のもの、SODのみ無添加の
もの、カゼインナトリウムだけ無添加のもの、これらを
対照として同様な方法で調製した(表1)。この4つの
乳化溶液を35℃暗所に保存し、油脂成分をクロロホル
ム−メタノールの混合溶剤で抽出・脱溶剤したのち過酸
化物価を測定し酸化速度をみた。その結果を表2に示す
[Example] Example 1 When preparing an oil-in-water emulsion, using stearic acid sugar ester (HLB = 11) as an emulsifier, the difference in the antioxidant power of SOD between a system with and without sodium caseinate added. I saw it. For the oil phase component of the emulsion, purified fish oil obtained from sardines containing EPA and DHA, which are polyunsaturated fatty acids, was used. Furthermore, the EPA
- The total DHA content was 21%. distilled water 20
0g of stearic acid sugar ester as an emulsifier
After adding 2 g of sodium caseinate and heating and stirring to fully dissolve the mixture, the mixture was cooled to room temperature, and 4000 units (20 units/g of oil) of purified powder SOD obtained from cow liver was added and dissolved with stirring. 200 g of the above fish oil was added dropwise to this enzyme aqueous solution while stirring to perform preliminary emulsification, and then emulsified into an oil-in-water emulsion using a high-pressure homogeneous emulsifier. Separately, among the above-mentioned preparation conditions, the same method was used to prepare a sample without the addition of both sodium caseinate and SOD, a sample without the addition of only SOD, and a sample without the addition of only sodium caseinate (Table 1 ). These four emulsified solutions were stored in a dark place at 35°C, and the oil and fat components were extracted and removed with a mixed solvent of chloroform and methanol, and then the peroxide value was measured to determine the oxidation rate. The results are shown in Table 2.

【0019】[0019]

【表1】[Table 1]

【0020】[0020]

【表2】[Table 2]

【0021】表2には過酸化物価の経時変化を示してあ
るが、比較例1−1と比較例1−3をくらべると、酵素
SODを添加したにもかかわらず抗酸化効果はさほど認
められていない。しかしながら、酵素SODにカゼイン
ナトリウムを添加した実施例−1においては酸化反応は
実質上まったく進行しておらず、カゼインナトリウムの
添加により酵素活性が大幅に増大したことがわかる。 尚、比較例1−2において比較例1−1よりも酸化速度
が若干低下しているのは、カゼインナトリウムそのもの
にも抗酸化効果があるためであると思われる。
[0021] Table 2 shows the change in peroxide value over time, and when comparing Comparative Examples 1-1 and 1-3, the antioxidant effect was not so significant despite the addition of the enzyme SOD. Not yet. However, in Example 1 in which sodium caseinate was added to the enzyme SOD, the oxidation reaction did not substantially proceed at all, indicating that the enzyme activity was significantly increased by the addition of sodium caseinate. The reason why the oxidation rate is slightly lower in Comparative Example 1-2 than in Comparative Example 1-1 is probably because sodium caseinate itself also has an antioxidative effect.

【0022】実施例2 次に、乳化剤であるステアリン酸シュガーエステルをレ
シチンに変えて実施例1と同様な方法で水中油型エマル
ションを調製し、SOD活性におよぼすカゼインナトリ
ウムの添加効果をしらべた。実施例1と同様に、比較例
としてカゼインナトリウムとSOD無添加のもの、SO
Dのみ無添加のもの、カゼインナトリウムだけを除いた
もの3点を同手法で調製した(表3)。それぞれの過酸
化物価の経時変化を表4に示した。
Example 2 Next, an oil-in-water emulsion was prepared in the same manner as in Example 1 except that the emulsifier stearic acid sugar ester was replaced with lecithin, and the effect of adding sodium caseinate on SOD activity was examined. As in Example 1, as comparative examples, sodium caseinate and SOD were not added, SO
Three samples were prepared using the same method, one with no addition of D and one with only sodium caseinate removed (Table 3). Table 4 shows the change in peroxide value over time.

【0023】[0023]

【表3】[Table 3]

【0024】[0024]

【表4】[Table 4]

【0025】乳化剤にレシチンを用いた場合、カゼイン
ナトリウムを添加しないとSODの酵素活性は全く発現
しなかった(比較例2−3)。乳化剤にシュガーエステ
ルを用いた実施例1においては、カゼインナトリウムを
添加しない系でもわずかに抗酸化効果が認められたこと
を考え合わせると、SODの活性発現が乳化状態に大き
く影響されることが明らかである。しかしながら表4に
示すように、乳化剤にレシチンを用いた場合でもカゼイ
ンナトリウムを添加することにより酵素活性を発現させ
完全に酸化反応を抑えることが可能となる。
When lecithin was used as an emulsifier, SOD enzyme activity was not expressed at all unless sodium caseinate was added (Comparative Example 2-3). Considering that in Example 1, in which sugar ester was used as an emulsifier, a slight antioxidant effect was observed even in the system without sodium caseinate, it is clear that the expression of SOD activity is greatly influenced by the emulsification state. It is. However, as shown in Table 4, even when lecithin is used as an emulsifier, addition of sodium caseinate makes it possible to express enzyme activity and completely suppress the oxidation reaction.

【0026】実施例3 次に、SODの添加量を変えてその効果をみた。添加量
はSOD無添加、5ユニット/オイル.g、10ユニッ
ト/オイル.g、20ユニット/オイル.gで行なった
。用いた油脂としては精製イワシ油200g、水相成分
は蒸留水200gにカゼインナトリウム4g、レシチン
2gを添加して用いた。調製方法としては実施例1と同
様に行ない、同様な方法で酸化抑制効果をみた。結果を
表5に示す。
Example 3 Next, the effect of changing the amount of SOD added was examined. The amount added is 5 units/oil, no SOD added. g, 10 units/oil. g, 20 units/oil. I did it with g. The oil and fat used were 200 g of purified sardine oil, and the aqueous phase component was 200 g of distilled water with 4 g of sodium caseinate and 2 g of lecithin added. The preparation method was the same as in Example 1, and the oxidation inhibiting effect was examined in the same manner. The results are shown in Table 5.

【0027】[0027]

【表5】[Table 5]

【0028】表5に見られるようにSOD添加区では有
意に効果が認められた。特にSOD10ユニット/オイ
ル.g以上の添加では効果は顕著であった。
As shown in Table 5, a significant effect was observed in the SOD-added group. Especially SOD10 units/oil. The effect was significant when adding more than 1 g.

【0029】実施例4 乳化調製する油脂にα−リノレン酸を含むエゴマ油を用
いSODの添加効果をみた。エゴマ油は圧搾により採油
されたものをシリカゲルカラム処理し、中性油区分を分
取し試験に用いた。乳化剤および調製は実施例1と同様
な方法で行ないSODの添加量は20ユニット/オイル
.gとした。比較対照として、乳化しないエゴマ油その
ものとSODおよびカゼインナトリウム無添加の乳化溶
液中でのエゴマ油の結果をあわせて表6に示す。
Example 4 The effect of adding SOD was examined using perilla oil containing α-linolenic acid as the fat and oil to be emulsified. Perilla oil was extracted by pressing and treated with a silica gel column, and the neutral oil fraction was collected and used for the test. The emulsifier and preparation were carried out in the same manner as in Example 1, and the amount of SOD added was 20 units/oil. It was set as g. As a comparison, Table 6 shows the results for perilla oil itself that is not emulsified and for perilla oil in an emulsified solution without addition of SOD or sodium caseinate.

【0030】[0030]

【表6】[Table 6]

【0031】表6より、乳化されたエゴマ油は乳化剤シ
ュガーエステルのみではエゴマ油そのものよりも若干酸
化を受けやすい傾向が示されているが、このものにSO
Dとカゼインナトリウムを添加したものは全く酸化が進
行しておらず効果の高さがわかる。
Table 6 shows that emulsified perilla oil tends to be slightly more susceptible to oxidation than perilla oil itself when only the emulsifier sugar ester is used;
The product to which D and sodium caseinate were added did not undergo any oxidation, indicating its high effectiveness.

【0032】実施例5 次に微生物起源のSODを用いて、牛の肝臓から得られ
たSODとの比較を行なった。微生物の起源としては酵
母菌であるSaccharomyces  cerev
isiae  var.ellipsoidus  A
TCC560よりJ.Agric.Food  Che
m.1989,37,23−28に示されている方法に
より得られたものを用いた。乳化溶液の調製は実施例1
と同じ油脂原料と乳化剤を用い、SODの添加量を10
ユニット/オイル.gにした以外は同様な方法で行なっ
た。比較例として牛の肝臓から得られたSODを同条件
で行なった。結果を7に示すが、微生物起源のSODの
ほうが同添加ユニット数にもかかわらず高い抗酸化効果
を示した。
Example 5 Next, SOD of microbial origin was used for comparison with SOD obtained from bovine liver. The origin of microorganisms is the yeast Saccharomyces cerev.
isiae var. ellipsoidus A
J. from TCC560. Agric. Food Che
m. 1989, 37, 23-28 was used. Preparation of emulsified solution is as in Example 1.
Using the same fat and oil raw materials and emulsifier, the amount of SOD added was 10
Unit/Oil. The same method was used except that the temperature was changed to g. As a comparative example, SOD obtained from bovine liver was tested under the same conditions. The results are shown in Figure 7, and the SOD of microbial origin showed a higher antioxidant effect despite the same number of added units.

【0033】[0033]

【表7】[Table 7]

【0034】[0034]

【発明の効果】以上説明したように本発明は、水中油型
エマルションにおいて水相にスーパーオキシド・ディス
ムターゼと安価でしかも食品としての特質を損なうこと
のないカゼインナトリウムを共存させスーパーオキシド
・ディスムターゼの活性酸素消去活性を飛躍的に増加さ
せ油脂の酸化を抑制することにより、本来多価不飽和脂
肪酸が持つ生理活性を有効に食品等に利用することがで
きるという利点がある。実際の食品において水中油型エ
マルションの形態をもつものには、ドレッシング・マヨ
ネーズ・クリーム・人工乳などがあり、今までは多価不
飽和脂肪酸の酸化劣化の為に添加が不可能であったこれ
らのものにも風味等の品質の低下なしに適用することが
できる。
As explained above, the present invention improves the activity of superoxide dismutase by coexisting superoxide dismutase and sodium caseinate, which is inexpensive and does not impair the characteristics as a food, in the aqueous phase of an oil-in-water emulsion. By dramatically increasing oxygen scavenging activity and suppressing oxidation of fats and oils, there is an advantage that the physiological activity originally possessed by polyunsaturated fatty acids can be effectively utilized in foods and the like. Actual foods that are in the form of oil-in-water emulsions include dressings, mayonnaise, cream, and artificial milk, and until now it was impossible to add these products due to oxidative deterioration of polyunsaturated fatty acids. It can also be applied to other foods without deteriorating quality such as flavor.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  水中油型エマルションにおいて、水相
にスーパーオキシド・ディスムターゼとカゼインナトリ
ウムを共存させることを特徴とする、油脂の酸化抑制方
法。
1. A method for inhibiting oxidation of fats and oils, which comprises coexisting superoxide dismutase and sodium caseinate in the aqueous phase of an oil-in-water emulsion.
JP3085699A 1991-01-24 1991-01-24 Method of controlling oxidation of fats and oils Expired - Lifetime JP2953091B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3085699A JP2953091B2 (en) 1991-01-24 1991-01-24 Method of controlling oxidation of fats and oils

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3085699A JP2953091B2 (en) 1991-01-24 1991-01-24 Method of controlling oxidation of fats and oils

Publications (2)

Publication Number Publication Date
JPH04248896A true JPH04248896A (en) 1992-09-04
JP2953091B2 JP2953091B2 (en) 1999-09-27

Family

ID=13866077

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3085699A Expired - Lifetime JP2953091B2 (en) 1991-01-24 1991-01-24 Method of controlling oxidation of fats and oils

Country Status (1)

Country Link
JP (1) JP2953091B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6132712A (en) * 1996-12-11 2000-10-17 A. Glenn Braswell Superoxide dismutase stabilized with fragments of casein and pharmaceutical compositions incorporating same
JP2018172291A (en) * 2017-03-31 2018-11-08 株式会社コーセー Cosmetic or skin external preparation

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6132712A (en) * 1996-12-11 2000-10-17 A. Glenn Braswell Superoxide dismutase stabilized with fragments of casein and pharmaceutical compositions incorporating same
JP2018172291A (en) * 2017-03-31 2018-11-08 株式会社コーセー Cosmetic or skin external preparation

Also Published As

Publication number Publication date
JP2953091B2 (en) 1999-09-27

Similar Documents

Publication Publication Date Title
RU2119751C1 (en) Lipid composition used as food products and method of its production, and food product on its base
Chaiyasit et al. Role of physical structures in bulk oils on lipid oxidation
US5006281A (en) Process for the production of a marine animal oil
US20100298435A1 (en) Stable Emulsions of Oils in Aqueous Solutions and Methods for Producing Same
JP5550147B2 (en) Deodorization and stabilization of marine oil
JPH024899A (en) Oxidation inhibitor
JP2017006123A (en) Method for improving or maintaining stable state in edible oil oxidation reaction
US9725675B2 (en) Lipid-soluble formulations containing mixtures of antioxidants
EP3213640B1 (en) Long-chain polyunsaturated fatty-acid-containing fat and food containing same
US20030149118A1 (en) Method and composition which inhibits the oxidation of omega-3 and omega-6 polyunsaturated lipids
JP6704683B2 (en) Method for producing liquid seasoning containing oil phase and water phase
JP5610187B2 (en) Antioxidant
JPH04248896A (en) Method for suppressing oxidation of oil and fat
JP2017060439A (en) Method for improving or maintaining stable state in oxidation reaction of edible oil
JP4209482B2 (en) Method for producing stabilized oil and fat, obtained oil and fat, and food containing the oil and fat
Jacobsen et al. Antioxidative strategies to minimize oxidation in formulated food systems containing fish oils and omega‐3 fatty acids
JP3543294B2 (en) Oil-containing food
Shahidi et al. Marine lipids as affected by processing and their quality preservation by natural antioxidants
KANNO et al. Antioxidant Effect of Tocopherols on Autoxidation of Milk Fat Part II. Antioxidant Activity of Tocopherols in the Churned and the Solvent-extracted Milk Fat
JP3352578B2 (en) Stable fats and oils, method for producing the same, and foods and beverages containing the same
JP3762026B2 (en) Antioxidant and fat and oil-containing food containing the antioxidant
JPS6170958A (en) Epa-enriched food
JP4207515B2 (en) Oil degradation inhibitor
JP6853979B2 (en) Aqueous solution containing plasmalogen
JPH02208390A (en) Antioxidant composition