JPH04248335A - Voltage controller of ac generator for vehicle - Google Patents

Voltage controller of ac generator for vehicle

Info

Publication number
JPH04248335A
JPH04248335A JP592191A JP592191A JPH04248335A JP H04248335 A JPH04248335 A JP H04248335A JP 592191 A JP592191 A JP 592191A JP 592191 A JP592191 A JP 592191A JP H04248335 A JPH04248335 A JP H04248335A
Authority
JP
Japan
Prior art keywords
voltage
terminal
vehicle
charging line
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP592191A
Other languages
Japanese (ja)
Other versions
JP3021689B2 (en
Inventor
Fuyuki Maehara
冬樹 前原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP3005921A priority Critical patent/JP3021689B2/en
Publication of JPH04248335A publication Critical patent/JPH04248335A/en
Application granted granted Critical
Publication of JP3021689B2 publication Critical patent/JP3021689B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Control Of Charge By Means Of Generators (AREA)

Abstract

PURPOSE:To provide an inexpensive voltage controller of AC generator for vehicle having charging current detecting function. CONSTITUTION:The voltage controller comprises a drive circuit 5 for feeding a predetermined (700mA) exciting current to a charging line 27 when power generation is stopped prior to engine start, for example, and a circuit 8 for detecting the differential voltage between the terminal voltage 21 of a battery 2 and the output voltage 61 of a three-phase AC generator 6 and the magnitude of current 23 flowing through the charging line, during power generation, is detected based on a first differential voltage detected through the differential voltage detector 8 during operation of the drive circuit 5, the resistance of the charging line 22 which can be obtained based on the exciting current, and a second differential voltage detected through the differential voltage detecting circuit 8 during power generation after engine start, for example. According to the invention, a small and inexpensive voltage controller can be obtained and it can be installed at any position in the AC generator of vehicle because it is not subjected to magnetism.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、車両用交流発電機の電
圧制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a voltage control device for an alternator for a vehicle.

【0002】0002

【従来の技術】燃費向上やアイドル時のエンジン回転の
安定化の為、車両用交流発電機の出力端子とバッテリと
を繋ぐ充電線を流れる電流をホール素子を用いて求める
という技術が知られている。
[Prior Art] In order to improve fuel efficiency and stabilize engine rotation during idling, there is a known technology that uses a Hall element to determine the current flowing through a charging line that connects the output terminal of a vehicle alternator and a battery. There is.

【0003】0003

【発明が解決しようとする課題】しかしながら、ホール
素子で充電電流を求めようとすると、ホール素子は特殊
コアを使用するので製造コストが高く、また、磁気の影
響を受け易く配設位置が制限されるという課題があった
[Problem to be Solved by the Invention] However, when trying to determine the charging current using a Hall element, the Hall element uses a special core, which results in high manufacturing costs, and it is easily influenced by magnetism, which limits the installation position. There was an issue of

【0004】本発明は、充電電流の検出機能を有する、
安価な車両用交流発電機の電圧制御装置の提供を目的と
する。
[0004] The present invention has a charging current detection function.
The purpose of the present invention is to provide an inexpensive voltage control device for a vehicle alternator.

【0005】[0005]

【課題を解決するための手段】上記課題を解決する為、
本発明は、電機子巻線、励磁巻線、および整流器を備え
、車載エンジンにより駆動されて発電する車両用交流発
電機の出力端子と車両の電気負荷に電力供給する車載さ
れたバッテリとを充電線で電気接続し、前記バッテリの
端子電圧を検出するとともに、端子電圧が調整電圧にな
るように前記励磁巻線に流れる励磁電流を制御する車両
用交流発電機の電圧制御装置において、発電停止時に設
定量の励磁電流を前記充電線に流す通電手段と、前記バ
ッテリの端子電圧と前記車両用交流発電機の出力端子電
圧との差電圧を検出する差電圧検出手段とを備え、前記
通電手段の作動時に前記差電圧検出手段で検出される第
1差電圧と前記設定量の励磁電流により把握できる充電
線抵抗の抵抗値と、発電中に前記差電圧通電手段で検出
される第2差電圧とに基づいて、発電中の充電線電流の
電流値を検出する構成を採用した。
[Means for solving the problem] In order to solve the above problem,
The present invention charges an output terminal of a vehicle alternator that is equipped with an armature winding, an excitation winding, and a rectifier and that is driven by a vehicle engine to generate electricity, and a vehicle-mounted battery that supplies power to the vehicle's electrical load. In a voltage control device for a vehicle alternator, which is electrically connected to the battery through a wire, detects the terminal voltage of the battery, and controls the excitation current flowing through the excitation winding so that the terminal voltage becomes the regulated voltage, when power generation is stopped. energizing means for causing a set amount of excitation current to flow through the charging line; and differential voltage detecting means for detecting a voltage difference between the terminal voltage of the battery and the output terminal voltage of the vehicle alternator; A resistance value of a charging line resistance that can be determined from a first differential voltage detected by the differential voltage detection means during operation and the set amount of excitation current, and a second differential voltage detected by the differential voltage energization means during power generation. Based on this, we adopted a configuration that detects the current value of the charging line current during power generation.

【0006】[0006]

【作用】発電停止時、通電手段により設定量の励磁電流
を充電線に流すと、微小な充電線抵抗の存在によりバッ
テリと車両用交流発電機の出力端子との間に第1差電圧
が生じる。ここで、充電線に流す励磁電流の値は分かっ
ているので第1差電圧とこの励磁電流値から充電線の充
電線抵抗が求まる。発電中も上記充電線抵抗の抵抗値は
変化しないので、この抵抗値と、電圧通電手段で検出さ
れる第2差電圧とに基づいて発電中の充電電流の充電電
流値が検出できる。
[Operation] When power generation is stopped, when a set amount of excitation current is passed through the charging line by the energizing means, a first differential voltage is generated between the battery and the output terminal of the vehicle alternator due to the presence of minute charging line resistance. . Here, since the value of the excitation current flowing through the charging line is known, the charging line resistance of the charging line can be determined from the first differential voltage and this excitation current value. Since the resistance value of the charging line resistance does not change even during power generation, the charging current value of the charging current during power generation can be detected based on this resistance value and the second differential voltage detected by the voltage energizing means.

【0007】[0007]

【発明の効果】ホール素子を用いずに充電線を流れる充
電電流が求まるのでコア等が要らず、安価で、且つ小形
に製造できる。また、磁気の影響を受けないので、電圧
制御手段を車両用交流発電機内の任意箇所に配設するこ
とができる。
[Effects of the Invention] Since the charging current flowing through the charging wire is determined without using a Hall element, a core or the like is not required, and the device can be manufactured at low cost and in a small size. Furthermore, since it is not affected by magnetism, the voltage control means can be placed at any location within the vehicle alternator.

【0008】[0008]

【実施例】本発明の第1実施例を図1ないし図3に基づ
いて説明する。図1は本発明にかかる車両用交流発電機
の電圧制御装置を採用した車両用電源システムの構成図
であり、図2および図3はその車両用電源システムの各
部の出力波形図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the present invention will be described with reference to FIGS. 1 to 3. FIG. 1 is a configuration diagram of a vehicle power supply system employing a voltage control device for a vehicle alternator according to the present invention, and FIGS. 2 and 3 are output waveform diagrams of each part of the vehicle power supply system.

【0009】図1に示すように、車両用電源システムに
採用した、電圧制御装置1は、バッテリ2の端子電圧2
1を検出する電圧検出回路3と、パワーMOS  FE
T4を駆動する駆動回路5、三相交流発電機6の発電を
検出する発電検出回路7、バッテリ2の端子電圧21と
三相交流発電機6の出力電圧61との差を検出する差電
圧検出回路8と、コンパレータ入力回路9とを具備する
ことにより充電電流検知手段を構成している。また、こ
の電圧制御装置1は、三相交流発電機のハウジング(図
示せず)内に配設され、車両用交流発電機6の出力端子
を兼ねたB端子11、F端子12、E端子13、IG端
子14、S端子15、発電量出力端子16、発電検出端
子17を有する。
As shown in FIG. 1, a voltage control device 1 adopted in a vehicle power supply system controls a terminal voltage 2 of a battery 2.
1 and a power MOS FE.
A drive circuit 5 that drives T4, a power generation detection circuit 7 that detects power generation of the three-phase alternator 6, and a differential voltage detection circuit that detects the difference between the terminal voltage 21 of the battery 2 and the output voltage 61 of the three-phase alternator 6. By including the circuit 8 and the comparator input circuit 9, charging current detection means is configured. Further, this voltage control device 1 is arranged in a housing (not shown) of a three-phase alternator, and includes a B terminal 11, an F terminal 12, and an E terminal 13, which also serve as output terminals of the vehicle alternator 6. , an IG terminal 14, an S terminal 15, a power generation output terminal 16, and a power generation detection terminal 17.

【0010】三相交流発電機6は、整流出力側をB端子
11およびE端子13に接続した整流器であるブリッジ
ダイオード62と、このブリッジダイオード62の交流
入力側に接続した電機子巻線63と、F端子12および
E端子13に接続した励磁巻線64とを備え、車載エン
ジン(図示せず)により駆動される。
The three-phase AC generator 6 includes a bridge diode 62 which is a rectifier whose rectified output side is connected to the B terminal 11 and the E terminal 13, and an armature winding 63 connected to the AC input side of the bridge diode 62. , an excitation winding 64 connected to the F terminal 12 and the E terminal 13, and is driven by an on-vehicle engine (not shown).

【0011】バッテリ2は、車載された12Vの鉛蓄電
池であり、負荷スイッチ24を介して電気負荷25と電
気接続され、イグニッションスイッチ26を介してIG
端子14と電気接続されている。また、充電線27を介
してB端子11と電気接続されている。
The battery 2 is a 12V lead-acid battery mounted on the vehicle, and is electrically connected to an electric load 25 via a load switch 24 and connected to an IG via an ignition switch 26.
It is electrically connected to the terminal 14. Further, it is electrically connected to the B terminal 11 via a charging line 27.

【0012】電圧検出回路3において、定電圧回路31
はIG端子14と電気接続され、定電圧端子32に定電
圧(例えばDC5V)を発生させている。コンパレータ
33のマイナス側入力には上記定電圧を分圧抵抗34、
35で分圧した電圧が入力され、コンパレータ33のプ
ラス側入力にはS端子15に印加されるバッテリ2の端
子電圧21を分圧抵抗36、37で分圧した電圧が入力
されている。
In the voltage detection circuit 3, a constant voltage circuit 31
is electrically connected to the IG terminal 14 and generates a constant voltage (for example, DC5V) at the constant voltage terminal 32. The above constant voltage is applied to the negative input of the comparator 33 by a voltage dividing resistor 34,
A voltage obtained by dividing the terminal voltage 21 of the battery 2 applied to the S terminal 15 by voltage dividing resistors 36 and 37 is input to the positive input of the comparator 33.

【0013】パワーMOS  FET4は、小さなMO
S  FETを数万個並列接続して構成されており、ド
レインをB端子11に接続し、ソースをF端子12に接
続している。尚、ソース、E端子13間には、パワーM
OS  FET4の破壊防止用のフライホイールダイオ
ード42が接続されている。
[0013] Power MOS FET4 is a small MO
It is composed of tens of thousands of S FETs connected in parallel, with the drain connected to the B terminal 11 and the source connected to the F terminal 12. Note that power M is connected between the source and E terminal 13.
A flywheel diode 42 for preventing destruction of the OS FET 4 is connected.

【0014】駆動回路5において、2入力オア回路51
の一つの入力端子には電圧検出回路3の出力信号として
コンパレータ33の出力が入力され、2入力オア回路5
1の出力は、パワーMOS  FET4を駆動するトラ
ンジスタ52のベースにベース抵抗を介して入力されて
いる。トランジスタ52のコレクタは、IG端子14と
接続した昇圧回路50の出力側に接続されるとともに、
パワーMOSFET4のゲートに接続されている。検出
端子41には数個のMOS  FETのドレインが接続
され、該検出端子41を抵抗53、54、オペアンプ5
5により構成される励磁電流検出回路に接続することに
より励磁電流(=ドレイン電流)に比例した検出用電流
が取り出され、この検出端子41は、抵抗53、54、
オペアンプ55により構成される励磁電流検出回路に接
続されている。オペアンプ55のマイナス側入力には、
定電圧回路31で安定化した定電圧を2つの抵抗で分圧
した電圧が入力されている。オペアンプ55の出力端子
はコンパレータ56のマイナス側入力端子に接続され、
コンパレータ56のプラス側入力端子には鋸波発生回路
57が接続されている。コンパレータ56の出力端子は
2入力オア回路51のもう一つの入力端子に接続されて
いる。尚、トランジスタ58のコレクタは、検出端子4
1に接続され、三相交流発電機6の発電が発電検出回路
7で検出されたときオン(導通)して検出端子41を接
地する。
In the drive circuit 5, a two-input OR circuit 51
The output of the comparator 33 is input as the output signal of the voltage detection circuit 3 to one input terminal of the 2-input OR circuit 5.
The output of No. 1 is input to the base of a transistor 52 that drives the power MOS FET 4 via a base resistor. The collector of the transistor 52 is connected to the output side of the booster circuit 50 connected to the IG terminal 14, and
Connected to the gate of power MOSFET4. The drains of several MOS FETs are connected to the detection terminal 41, and the detection terminal 41 is connected to resistors 53, 54 and an operational amplifier 5.
5, a detection current proportional to the excitation current (=drain current) is taken out, and this detection terminal 41 is connected to the excitation current detection circuit composed of resistors 53, 54,
It is connected to an excitation current detection circuit constituted by an operational amplifier 55. The negative input of the operational amplifier 55 has
A voltage obtained by dividing a constant voltage stabilized by a constant voltage circuit 31 using two resistors is input. The output terminal of the operational amplifier 55 is connected to the negative input terminal of the comparator 56,
A sawtooth wave generating circuit 57 is connected to the positive input terminal of the comparator 56. The output terminal of the comparator 56 is connected to another input terminal of the two-input OR circuit 51. Note that the collector of the transistor 58 is connected to the detection terminal 4.
1, and when the power generation detection circuit 7 detects the power generation of the three-phase alternating current generator 6, it is turned on (conducted) and the detection terminal 41 is grounded.

【0015】発電検出回路7において、電機子巻線63
の一相の端子電圧は、分圧抵抗71、72で分圧され、
該分圧電圧は、ダイオード73、コンデンサ74、およ
び抵抗75よりなるピークホールド回路を介してコンパ
レータ76のプラス側入力に供給される。コンパレータ
76のマイナス側入力には、定電圧端子32より供給さ
れる定電圧を抵抗77、78で分圧した電圧が入力され
る。コンパレータ76の出力は発電検出信号として駆動
回路5の抵抗59に入力されている。
In the power generation detection circuit 7, the armature winding 63
The terminal voltage of one phase is divided by voltage dividing resistors 71 and 72,
The divided voltage is supplied to the positive input of a comparator 76 via a peak hold circuit including a diode 73, a capacitor 74, and a resistor 75. A voltage obtained by dividing the constant voltage supplied from the constant voltage terminal 32 by resistors 77 and 78 is input to the negative input of the comparator 76 . The output of the comparator 76 is input to the resistor 59 of the drive circuit 5 as a power generation detection signal.

【0016】差電圧検出回路8において、抵抗81、8
2、83、84、オペアンプ85からなる差動増幅回路
の各入力端86、87が、S端子15、B端子11に接
続されている。また、抵抗88、89は分圧抵抗である
。オペアンプ85の出力は、後述する、コンパレータ入
力回路9のA− Dコンバータ91および発電量検出コ
ンパレータ90のプラス側入力に入力されている。
In the differential voltage detection circuit 8, the resistors 81, 8
2, 83, 84, and an operational amplifier 85, each input terminal 86, 87 is connected to the S terminal 15 and the B terminal 11. Further, resistors 88 and 89 are voltage dividing resistors. The output of the operational amplifier 85 is input to a positive input of an A-D converter 91 of a comparator input circuit 9 and a power generation amount detection comparator 90, which will be described later.

【0017】コンパレータ入力回路9において、91は
充電線電流値700mAにおける三相交流発電機6の出
力電圧61とバッテリ2の端子電圧21との差電圧を充
電線電流値20Aに換算したデジタル値に変換するA−
 Dコンバータ、92はこのデジタル値をラッチするラ
ッチ回路、93はラッチ回路92の出力をアナログ信号
に変換するD− Aコンバータであり、変換されたアナ
ログ信号は、発電量検出コンパレータ90のマイナス側
に入力されている。インバータ94には発電検出回路7
のコンパレータ76からの信号が入力され、インバータ
94の出力は、遅延回路95を介して、或いは直接アン
ド回路96に入力されている。アンド回路96の出力は
トリガパルス発生回路97に入力され、トリガパルスが
ラッチ信号としてラッチ回路92に入力される。尚、9
8はエンジン制御を行うエンジン制御装置であり、発電
量信号99を含む車両の各状態信号が入力される。
In the comparator input circuit 9, 91 is a digital value obtained by converting the difference voltage between the output voltage 61 of the three-phase alternator 6 and the terminal voltage 21 of the battery 2 at a charging line current value of 700 mA into a charging line current value of 20A. Convert A-
A D converter 92 is a latch circuit that latches this digital value, 93 is a D-A converter that converts the output of the latch circuit 92 into an analog signal, and the converted analog signal is sent to the negative side of the power generation amount detection comparator 90. It has been entered. The inverter 94 has a power generation detection circuit 7
The output of the inverter 94 is input to the AND circuit 96 via a delay circuit 95 or directly. The output of the AND circuit 96 is input to a trigger pulse generation circuit 97, and the trigger pulse is input to the latch circuit 92 as a latch signal. Furthermore, 9
Reference numeral 8 denotes an engine control device for controlling the engine, into which various state signals of the vehicle including a power generation amount signal 99 are input.

【0018】以下、本実施例の作動を説明する。The operation of this embodiment will be explained below.

【0019】イグニッションスイッチ26を投入すると
、検出回路3の定電圧回路31の定電圧端子32に定電
圧(DC12Vより低い)が発生する。
When the ignition switch 26 is turned on, a constant voltage (lower than DC 12V) is generated at the constant voltage terminal 32 of the constant voltage circuit 31 of the detection circuit 3.

【0020】イグニッションスイッチ26を投入した時
点では、三相交流発電機6の回転軸が回転していなくて
未発電状態であるので、端子電圧21は調整電圧未満で
あり、コンパレータ33のプラス側入力の電圧がマイナ
ス側入力の電圧より低いため、コンパレータ33の出力
はL(低電位;以下略)となる。また、発電していない
ため、検出端子17で検出される電機子巻線63の相電
圧は略ゼロであるのでコンパレータ76のプラス側入力
電圧はマイナス側入力電圧より低く、コンパレータ76
の出力はLとなる。従って、トランジスタ58はオフ状
態となる。この時、パワーMOS  FET4は、未だ
導通状態になっていないので、検出端子41でドレイン
電流は検出されず、コンパレータ56の出力はLである
。 従って、2入力オア回路51の出力はLで、トランジス
タ52がオフであるので、昇圧した電圧(約22V)が
パワーMOS  FET4のゲートに印加され、パワー
MOS  FET4は導通する。
When the ignition switch 26 is turned on, the rotating shaft of the three-phase alternator 6 is not rotating and no power is being generated, so the terminal voltage 21 is less than the adjustment voltage, and the positive input of the comparator 33 Since the voltage is lower than the voltage of the negative side input, the output of the comparator 33 becomes L (low potential; hereinafter omitted). In addition, since power is not being generated, the phase voltage of the armature winding 63 detected by the detection terminal 17 is approximately zero, so the positive input voltage of the comparator 76 is lower than the negative input voltage, and the comparator 76
The output of is L. Therefore, transistor 58 is turned off. At this time, the power MOS FET 4 is not yet in a conductive state, so no drain current is detected at the detection terminal 41, and the output of the comparator 56 is L. Therefore, since the output of the two-input OR circuit 51 is L and the transistor 52 is off, the boosted voltage (approximately 22 V) is applied to the gate of the power MOS FET 4, and the power MOS FET 4 becomes conductive.

【0021】パワーMOS  FET4のドレイン電流
が増加すると、検出端子41で検出される検出用電流も
比例して増加し、オペアンプ55の出力が低下する。
When the drain current of the power MOS FET 4 increases, the detection current detected at the detection terminal 41 also increases proportionally, and the output of the operational amplifier 55 decreases.

【0022】そして、パワーMOS  FET4のドレ
イン電流が700mA以上になると、図2に示すように
、コンパレータ56の出力は定周波パルスとなり、デュ
ーティが増加する。この為、パワーMOS  FET4
のゲートに印加される電圧も定周波パルスとなり、デュ
ーティが減少する。このフィードバック制御により、ド
レイン電流は700mAに維持される。
When the drain current of the power MOS FET 4 exceeds 700 mA, the output of the comparator 56 becomes a constant frequency pulse, and the duty increases, as shown in FIG. For this reason, power MOS FET4
The voltage applied to the gate also becomes a constant frequency pulse, and the duty decreases. This feedback control maintains the drain current at 700mA.

【0023】一方、イグニッションスイッチ26を投入
した時、図3に示すように、コンパレータ入力回路9の
インバータ94の出力はLからH(高電位;以下略)に
切り換わる。従って、遅延回路95の出力は、インバー
タ94の信号よりTdだけ位相が遅れた信号となり(図
3に示す)、アンド回路96の出力は図3に示すとおり
、同じくインバータ94の信号よりTdだけ位相が遅れ
てHになる。この時同時にトリガパルス発生回路97の
出力(図3に示す)がHになり、ラッチ回路92がA−
 Dコンバータ91の信号をラッチする。この時、ラッ
チされる信号は、励磁電流が700mAのときのS端子
15とB端子11間の電圧ドロップ(第1差電圧)に比
例した信号となる。ここで、上記信号の値をV1 、充
電線抵抗22の抵抗値をR、差電圧検出回路8の差動増
幅回路の増幅率をk1 とすると、V1 =0.7×R
×k1 である。従って、監視(検出)したい充電線電
流23をI0 とすると、D− Aコンバータ93の出
力電圧V2はV2=(I0 /0.7)×V1 として
与えられる。
On the other hand, when the ignition switch 26 is turned on, the output of the inverter 94 of the comparator input circuit 9 is switched from L to H (high potential; hereinafter omitted) as shown in FIG. Therefore, the output of the delay circuit 95 is a signal whose phase is delayed by Td from the signal of the inverter 94 (as shown in FIG. 3), and the output of the AND circuit 96 is also a signal whose phase is delayed by Td from the signal of the inverter 94, as shown in FIG. becomes H after a delay. At the same time, the output of the trigger pulse generation circuit 97 (shown in FIG. 3) becomes H, and the latch circuit 92 becomes A-
The signal of the D converter 91 is latched. At this time, the latched signal is a signal proportional to the voltage drop (first differential voltage) between the S terminal 15 and the B terminal 11 when the excitation current is 700 mA. Here, if the value of the above signal is V1, the resistance value of the charging line resistance 22 is R, and the amplification factor of the differential amplifier circuit of the differential voltage detection circuit 8 is k1, then V1 = 0.7 x R
×k1. Therefore, if the charging line current 23 to be monitored (detected) is I0, the output voltage V2 of the DA converter 93 is given as V2=(I0/0.7)×V1.

【0024】その後、スタータが作動し、エンジンが完
爆し、三相交流発電機6の回転が増大し、発電が開始さ
れると、電機子巻線63に相電圧が発生する。相電圧パ
ルスのピーク電圧が高くなり、抵抗75の両端の電圧が
定電圧を抵抗77、78で分圧した電圧を越えるように
なると、コンパレータ76の出力はHとなる。この為、
トランジスタ58は導通し、コンパレータ56の出力は
Lとなる。
Thereafter, the starter operates, the engine completely explodes, the rotation of the three-phase alternating current generator 6 increases, and when power generation begins, a phase voltage is generated in the armature winding 63. When the peak voltage of the phase voltage pulse becomes high and the voltage across the resistor 75 exceeds the voltage obtained by dividing the constant voltage by the resistors 77 and 78, the output of the comparator 76 becomes H. For this reason,
Transistor 58 becomes conductive and the output of comparator 56 becomes L.

【0025】従って、三相交流発電機6の発電中は、パ
ワーMOS  FET4の駆動制御は、電圧検出回路3
のコンパレータ33の出力のみによって決まり、端子電
圧21が調整電圧(例えば14.5V)以下の時に、パ
ワーMOS  FET4が導通し、これにより励磁電流
が増加し、三相交流発電機6の出力が増大してバッテリ
2が充電される。
Therefore, during power generation by the three-phase alternating current generator 6, drive control of the power MOS FET 4 is performed by the voltage detection circuit 3.
It is determined only by the output of the comparator 33, and when the terminal voltage 21 is below the regulation voltage (for example, 14.5V), the power MOS FET 4 becomes conductive, thereby increasing the exciting current and increasing the output of the three-phase alternator 6. The battery 2 is then charged.

【0026】バッテリ2の端子電圧21が調整電圧以上
になると、電圧検出回路3のコンパレータ33の出力が
Hとなり、トランジスタ52が導通するので、パワーM
OSFET4はオフする。これにより、励磁電流が減少
し、三相交流発電機6の発電出力は低下する。これを繰
り返すことにより、端子電圧21が調整電圧に維持され
る。
When the terminal voltage 21 of the battery 2 exceeds the adjustment voltage, the output of the comparator 33 of the voltage detection circuit 3 becomes H, and the transistor 52 becomes conductive, so that the power M
OSFET4 is turned off. As a result, the exciting current decreases, and the power generation output of the three-phase alternating current generator 6 decreases. By repeating this, the terminal voltage 21 is maintained at the regulated voltage.

【0027】三相交流発電機6の発電中において、充電
線電流23はバッテリ2の充電用と図示しない常用負荷
で数A程度である。充電線電流23を例えば20Aで監
視したい場合(I0 =20A)、上記の状態では、コ
ンパレータ90の出力はLであり、エンジン制御装置9
8には発電量信号99は送出されない。この場合、エン
ジン制御装置98は、エンジンの燃費向上の為、アイド
リング時のエンジン回転数を減少させる。
During power generation by the three-phase alternating current generator 6, the charging line current 23 is approximately several A for charging the battery 2 and for a regular load (not shown). When it is desired to monitor the charging line current 23 at, for example, 20 A (I0 = 20 A), in the above state, the output of the comparator 90 is L, and the engine control device 9
8, the power generation amount signal 99 is not sent. In this case, the engine control device 98 reduces the engine speed during idling in order to improve the fuel efficiency of the engine.

【0028】負荷スイッチ24が閉成し、ヘッドライト
、ヒータ等の電気負荷25がバッテリ2に接続されると
、充電線電流23が20Aを越えるので、コンパレータ
90の出力がHとなり、エンジン制御装置98に充電線
電流23が20A以上であるという発電量信号99が送
出される。この場合、エンジン制御装置98は、三相交
流発電機6の発電能力を高めるよう、アイドリング時の
エンジン回転数を増加させて、充電収支の改善を図る。
When the load switch 24 is closed and the electric loads 25 such as headlights and heaters are connected to the battery 2, the charging line current 23 exceeds 20A, so the output of the comparator 90 becomes H, and the engine control device 98, a power generation amount signal 99 indicating that the charging line current 23 is 20 A or more is sent. In this case, the engine control device 98 increases the engine speed during idling so as to increase the power generation capacity of the three-phase alternating current generator 6, thereby improving the charging balance.

【0029】以下、電圧制御装置1の効果を述べる。The effects of the voltage control device 1 will be described below.

【0030】(あ)電圧制御装置1は、三相交流発電機
6の発電開始前、励磁巻線64に通電して充電線27の
電圧降下から充電線抵抗22を求め、発電開始後の充電
線27の電圧降下と前記充電線抵抗22とにより充電線
電流23を演算しているので、ホール素子を用いて充電
電流を検出するものに比べ、低コストで製造できる。 尚、電圧検出回路3、駆動回路5、発電検出回路7、差
電圧検出回路8、コンパレータ入力回路9は、回路的に
は複雑であるが、電気的にIC化が容易な構成であるの
で、著しい製造コストの上昇はない。
(A) Before the three-phase alternating current generator 6 starts generating electricity, the voltage control device 1 energizes the excitation winding 64 and determines the charging line resistance 22 from the voltage drop in the charging line 27. Since the charging line current 23 is calculated based on the voltage drop of the line 27 and the charging line resistance 22, it can be manufactured at a lower cost than the one in which the charging current is detected using a Hall element. Although the voltage detection circuit 3, the drive circuit 5, the power generation detection circuit 7, the differential voltage detection circuit 8, and the comparator input circuit 9 are complex in circuit terms, they have a configuration that can be electrically easily integrated into an IC. There is no significant increase in manufacturing costs.

【0031】(い)電圧制御装置1は、ホール素子に拠
るものと異なり、充電線電流を検出するのにコアを必要
としないので、容積は大きくならず、また磁気の影響を
受けないので容易に三相交流発電機6のハウジング内に
配設できる。
(a) Unlike the voltage control device 1 based on a Hall element, the voltage control device 1 does not require a core to detect the charging line current, so the volume does not become large, and it is not affected by magnetism, so it is easy to use. It can be arranged within the housing of the three-phase alternator 6.

【0032】(う)充電線抵抗22をエンジン始動時(
三相交流発電機6の発電開始前)に毎回検出しているの
で、充電線抵抗22の経時変動を受けない。
(c) When the charging wire resistor 22 is started (
Since it is detected every time (before the three-phase alternating current generator 6 starts generating electricity), it is not affected by changes in the charging line resistance 22 over time.

【0033】つぎに、本発明の第2実施例を図4に基づ
いて説明する。図4は本発明にかかる車両用交流発電機
の電圧制御装置を採用した車両用電源システムの構成図
である。
Next, a second embodiment of the present invention will be explained based on FIG. 4. FIG. 4 is a configuration diagram of a vehicle power supply system that employs a voltage control device for a vehicle alternator according to the present invention.

【0034】本実施例は、コンパレータ90の出力をオ
ア回路901に入力する構成が第1実施例と異なる点で
あり、これにより、充電線電流23が所定値(例えば6
0A)以上の場合、オア回路901の出力が始動時以外
にもHとなって、パワーMOS  FET4をオフし、
三相交流発電機6に過負荷がかからないように充電線電
流23を制限している。
The present embodiment differs from the first embodiment in that the output of the comparator 90 is input to the OR circuit 901, which allows the charging line current 23 to reach a predetermined value (for example, 6
0A) or more, the output of the OR circuit 901 becomes H even when starting, turning off the power MOS FET4,
The charging line current 23 is limited so that the three-phase alternating current generator 6 is not overloaded.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の第1実施例に係る車両用交流発電機の
電圧制御装置を採用した車両用電源システムの構成図で
ある。
FIG. 1 is a configuration diagram of a vehicle power supply system that employs a voltage control device for a vehicle alternator according to a first embodiment of the present invention.

【図2】その車両用電源システムの各部の出力波形図で
ある。
FIG. 2 is an output waveform diagram of each part of the vehicle power supply system.

【図3】その車両用電源システムの各部の出力波形図で
ある。
FIG. 3 is an output waveform diagram of each part of the vehicle power supply system.

【図4】本発明の第2実施例に係る車両用交流発電機の
電圧制御装置を採用した車両用電源システムの構成図で
ある。
FIG. 4 is a configuration diagram of a vehicle power supply system that employs a voltage control device for a vehicle alternator according to a second embodiment of the present invention.

【符号の説明】 1  電圧制御装置(車両用交流発電機の電圧制御装置
)2  バッテリ 5  駆動回路(通電手段) 6  三相交流発電機(車両用交流発電機)8  差電
圧検出回路(差電圧検出手段)11  B端子 21  端子電圧 22  充電線抵抗 23  充電線電流 25  電気負荷 27  充電線 61  出力電圧(出力端子電圧) 62  ブリッジダイオード(整流器)63  電機子
巻線 64  励磁巻線
[Explanation of symbols] 1 Voltage control device (voltage control device for vehicle alternator) 2 Battery 5 Drive circuit (current supply means) 6 Three-phase alternator (vehicle alternator) 8 Differential voltage detection circuit (differential voltage Detection means) 11 B terminal 21 Terminal voltage 22 Charging wire resistance 23 Charging wire current 25 Electric load 27 Charging wire 61 Output voltage (output terminal voltage) 62 Bridge diode (rectifier) 63 Armature winding 64 Excitation winding

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  電機子巻線、励磁巻線、および整流器
を備え、車載エンジンにより駆動されて発電する車両用
交流発電機の出力端子と車両の電気負荷に電力供給する
車載されたバッテリとを充電線で電気接続し、前記バッ
テリの端子電圧を検出するとともに、端子電圧が調整電
圧になるように前記励磁巻線に流れる励磁電流を制御す
る車両用交流発電機の電圧制御装置において、発電停止
時に設定量の励磁電流を前記充電線に流す通電手段と、
前記バッテリの端子電圧と前記車両用交流発電機の出力
端子電圧との差電圧を検出する差電圧検出手段とを備え
、前記通電手段の作動時に前記差電圧検出手段で検出さ
れる第1差電圧と前記設定量の励磁電流により把握でき
る充電線抵抗の抵抗値と、発電中に前記差電圧通電手段
で検出される第2差電圧とに基づいて、発電中の充電線
電流の電流値を検出することを特徴とする車両用交流発
電機の電圧制御装置。
Claim 1: An output terminal of a vehicle alternator that is equipped with an armature winding, an excitation winding, and a rectifier and that is driven by an on-vehicle engine to generate electricity, and an on-vehicle battery that supplies power to an electrical load of the vehicle. In a voltage control device for a vehicle alternator, which is electrically connected to a charging line, detects a terminal voltage of the battery, and controls an excitation current flowing through the excitation winding so that the terminal voltage becomes a regulated voltage. energizing means for causing a set amount of excitation current to flow through the charging line;
a first differential voltage detecting means for detecting a differential voltage between a terminal voltage of the battery and an output terminal voltage of the vehicle alternator, the first differential voltage being detected by the differential voltage detecting means when the energizing means is activated; Detecting the current value of the charging line current during power generation based on the resistance value of the charging line resistance that can be determined from the set amount of excitation current and the second differential voltage detected by the differential voltage energizing means during power generation. A voltage control device for a vehicle alternator, characterized in that:
JP3005921A 1991-01-22 1991-01-22 Voltage control device for vehicle alternator Expired - Lifetime JP3021689B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3005921A JP3021689B2 (en) 1991-01-22 1991-01-22 Voltage control device for vehicle alternator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3005921A JP3021689B2 (en) 1991-01-22 1991-01-22 Voltage control device for vehicle alternator

Publications (2)

Publication Number Publication Date
JPH04248335A true JPH04248335A (en) 1992-09-03
JP3021689B2 JP3021689B2 (en) 2000-03-15

Family

ID=11624363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3005921A Expired - Lifetime JP3021689B2 (en) 1991-01-22 1991-01-22 Voltage control device for vehicle alternator

Country Status (1)

Country Link
JP (1) JP3021689B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005333779A (en) * 2004-05-21 2005-12-02 Kokusan Denki Co Ltd Electrical equipment load driving device and ignition device for internal combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005333779A (en) * 2004-05-21 2005-12-02 Kokusan Denki Co Ltd Electrical equipment load driving device and ignition device for internal combustion engine

Also Published As

Publication number Publication date
JP3021689B2 (en) 2000-03-15

Similar Documents

Publication Publication Date Title
US5444354A (en) Charging generator control for vehicles
EP0408055B1 (en) Vehicle AC generator control device
KR100220898B1 (en) Control apparatus and control method of generator and those of generator for car applying that
JP3537833B2 (en) Control device for vehicle alternator
JP4119492B2 (en) Generator control method
US6271649B1 (en) Control apparatus for vehicle AC generator
JP2986905B2 (en) Control device for charging generator
JP3627047B2 (en) Voltage controller that controls the output voltage of the generator
US6313613B1 (en) Controller AC generator for vehicle
KR100453666B1 (en) Voltage controller for automotive alternator
EP0299807A2 (en) Method and apparatus for managing alternator loads on engines
JPH06284598A (en) Charger/discharger for vehicle
US4079306A (en) Current generating system for motor vehicle
JPH06189600A (en) Controller for charging generator of vehicle
JPH04248335A (en) Voltage controller of ac generator for vehicle
JPH0549101A (en) Power supply protective circuit for vehicle
JPS63302735A (en) Charge controller for vehicle
JPS6242457B2 (en)
JPH06351173A (en) Voltage controller of vehicle power generator
JP2780260B2 (en) Vehicle charging device
JPH0994661A (en) On-vehicle generator provided with welding function
JP2000027742A (en) Phase control voltage adjusting unit for automobile and method thereof
JPH0578254B2 (en)
JP2884735B2 (en) Power supply for vehicles
JP3192020B2 (en) Control device for vehicle charging generator

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100114

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110114

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120114

Year of fee payment: 12