JPH04248256A - Solid electrode composition - Google Patents

Solid electrode composition

Info

Publication number
JPH04248256A
JPH04248256A JP3007499A JP749991A JPH04248256A JP H04248256 A JPH04248256 A JP H04248256A JP 3007499 A JP3007499 A JP 3007499A JP 749991 A JP749991 A JP 749991A JP H04248256 A JPH04248256 A JP H04248256A
Authority
JP
Japan
Prior art keywords
compound
electrode
powder
ion
electrode composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3007499A
Other languages
Japanese (ja)
Other versions
JP2529474B2 (en
Inventor
Tadashi Tonomura
正 外邨
Yoshiko Sato
佳子 佐藤
Yasushi Uemachi
裕史 上町
Teruhisa Kanbara
神原 輝寿
Hiromu Matsuda
宏夢 松田
Kenichi Takeyama
竹山 健一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP3007499A priority Critical patent/JP2529474B2/en
Publication of JPH04248256A publication Critical patent/JPH04248256A/en
Application granted granted Critical
Publication of JP2529474B2 publication Critical patent/JP2529474B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Conductive Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To provide electrode compositions which can be used as a negative electrode for a lithium secondary cell which is uniform and less in polarization. CONSTITUTION:Electrode compositions are composed of carbon powder, aluminium or aluminium alloy powder, polyether compound in which ethylene oxide chain and/or propylene oxide chain are added to polyamine compound, ion exchanging layer compound, and of ionic material represented by a formula MX, wherein M represents metal ion, proton, and ammonium ion which travel within solid electrolyte compositions by the action of electric fields, and X represents anion strong in acid. The carbon powder and the aluminium or aluminium alloy powder are uniformly dispersed by the action of the polyether compound, so that large reactive areas can thereby be obtained, and ionic conductive paths preferable to cell reaction are concurrently formed within the electrode compositions by the ether compound combined with the ionic material and the ion exchanging layer compound. The electrode compositions thus formed can effectively use as a negative electrode for a lithium cell less in polarization.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、電池、キャパシター、
センサー、表示素子、記録素子などの電気化学素子に用
いられる固形電極組成物、とくに、リチウムイオン伝導
性の電解質と組み合わせて固体状のリチウム電池の負極
として用いる固形電極組成物に関する。
[Industrial Application Field] The present invention relates to batteries, capacitors,
The present invention relates to solid electrode compositions used in electrochemical devices such as sensors, display devices, and recording devices, and particularly to solid electrode compositions used in combination with lithium ion conductive electrolytes as negative electrodes of solid lithium batteries.

【0002】0002

【従来の技術】固体の電解質を用いることで液漏れしな
い、小形・薄形の電池や電気二重層キャパシタなどの固
体の電気化学デバイスを得ることができる。
2. Description of the Related Art By using a solid electrolyte, it is possible to obtain solid electrochemical devices such as small and thin batteries and electric double layer capacitors that do not leak.

【0003】しかしながら、従来の個体電気化学デバイ
スは弾性に欠ける固体物質で素子が構成されることから
、機械的衝撃に対してはきわめて脆く、破損しやすい欠
点がある。このような問題を解決するため、ポリエチレ
ンオキサイド(PEO)とアルカリ金属塩とからなる高
分子固体電解質が提案されている(例えば”Fast 
IonTransport in Solid” P.
Vanishstaet.al., Eds. P. 
131(1979) North HolandPub
lishing Co.) 。高分子固体電解質は無機
系固体電解質に較べ、軽量で、柔軟性と成形性に優れて
いる。以来、優れた柔軟性と成形性を保持したままで無
機系固体電解質に匹敵する高いイオン伝導性を示す材料
の研究開発が盛んに行われている。とくに、金属リチウ
ム負極と組み合わせることで電圧が3ボルト以上の高エ
ネルギー密度の固体二次電池が期待できることから、盛
んに研究開発が行われている。
[0003] However, since the conventional solid state electrochemical device is constructed of a solid material lacking in elasticity, it has the disadvantage that it is extremely brittle and easily damaged by mechanical impact. To solve these problems, polymer solid electrolytes made of polyethylene oxide (PEO) and alkali metal salts have been proposed (for example, "Fast").
IonTransport in Solid” P.
Vanishstate. al. , Eds. P.
131 (1979) North HollandPub
lishing Co. ). Polymer solid electrolytes are lighter and have superior flexibility and moldability compared to inorganic solid electrolytes. Since then, research and development has been actively conducted on materials that exhibit high ionic conductivity comparable to inorganic solid electrolytes while maintaining excellent flexibility and moldability. In particular, active research and development is being carried out because it is expected that by combining it with a metallic lithium negative electrode, a high energy density solid-state secondary battery with a voltage of 3 volts or more will be produced.

【0004】0004

【発明が解決しようとする課題】しかし、このような従
来の金属リチウムあるいはリチウムーアルミニウムなど
のリチウム合金を負極とするリチウム二次電池では、負
極と高分子電解質との間で低分極性の可逆性の良い均一
な接合界面が必ずしも得られず、例えば、0.1mA/
cm2を越える電流密度の充放電では50サイクル以下
の充放電サイクルの初期においても分極が急激に増大す
るという問題があった。また、電解質層を破って金属リ
チウムが析出し、電池が短絡に至るという問題があった
[Problems to be Solved by the Invention] However, in conventional lithium secondary batteries that use metal lithium or lithium alloys such as lithium-aluminum as the negative electrode, there is a low polarizability and reversibility between the negative electrode and the polymer electrolyte. It is not always possible to obtain a uniform bonding interface with good properties, for example, 0.1 mA/
When charging and discharging at a current density exceeding cm2, there is a problem in that polarization increases rapidly even at the beginning of 50 or less charge/discharge cycles. In addition, there was a problem in that the electrolyte layer was broken and metallic lithium was deposited, leading to a short circuit in the battery.

【0005】本発明はこのような課題を解決するもので
、固体状リチウム二次電池用の負極として、イオン伝導
性と電子伝導性がともに優れた固形の電極組成物を得る
ことを目的とするものである。
[0005] The present invention solves these problems, and aims to obtain a solid electrode composition having excellent ionic conductivity and electronic conductivity as a negative electrode for solid-state lithium secondary batteries. It is something.

【0006】[0006]

【課題を解決するための手段】この課題を解決するため
に本発明は、炭素粉末と、金属アルミニウムまたはその
合金粉末と、ポリアミン化合物にエチレンオキサイド(
EO)またはプロピレンオキサイド(PO)を付加した
ポリエーテル化合物、あるいはポリアミン化合物にエチ
レンオキサイド(EO)およびプロピレンオキサイド(
PO)を付加したポリエーテル化合物と、イオン交換性
の層状化合物と、式MXで表されるイオン性物質(ただ
し、Mは電界の作用で固形電極組成物内を移動する金属
イオン、プロトン、アンモニウムイオンであり、Xは強
酸のアニオンである)を少なくとも含有させたものであ
る。さらに、電極組成物内のイオン伝導性を大きくする
目的でイオン伝導性の粒子を含有させたものである。
[Means for Solving the Problem] In order to solve this problem, the present invention provides carbon powder, metal aluminum or its alloy powder, and polyamine compound with ethylene oxide (
Polyether compounds with added ethylene oxide (EO) or propylene oxide (PO), or polyamine compounds with ethylene oxide (EO) and propylene oxide (PO) added.
PO), an ion-exchange layered compound, and an ionic substance represented by the formula MX (where M is a metal ion, proton, or ammonium that moves within the solid electrode composition under the action of an electric field). ion, and X is an anion of a strong acid). Furthermore, ion conductive particles are included for the purpose of increasing the ion conductivity within the electrode composition.

【0007】[0007]

【作用】このようにして得られる固形電極組成物内にあ
っては、イオン性の化合物MXはポリエーテル化合物と
イオン交換性の層状化合物とで複合体を形成し、層状化
合物の結晶の層間あるいは表面に高濃度に保持されイオ
ン伝導に有利な経路を形成する。また、炭素粉末および
金属アルミニウムまたはアルミニウム合金粉末は、ポリ
エーテル化合物の界面活性効果により溶媒とイオン交換
性の層状化合物とが均一に混和さる。さらに、イオン伝
導性粉末の添加混合に際しては、ポリエーテル化合物は
金属粉末の凝集を防止し、溶媒とイオン交換性の層状化
合物、炭素粉末、金属アルミニウム粉末あるいはその合
金粉末との均一な混合分散を可能にする。このようにし
て、高い電子・イオン伝導性と均質性が発現される。そ
の結果、分極の小さい電極組成物となる。すなわち、電
池反応の進行に伴って、炭素粉末あるいは金属アルミニ
ウムまたはその合金粉末上へ負極金属が析出・溶解を繰
り返すが、本発明の電極組成物は均質で電極面積が大き
いので電流の局部的な集中が起り難い。さらに、負極金
属の析出はイオン交換性の層状化合物が介在することに
より一方向に起こり難くなり、電解質層を突き破って負
極金属が析出し、両極が短絡することはない。また、ポ
リエーテル化合物のポリエチレンオキサイド鎖および/
またはプロピレンオキサイド鎖、あるいはポリエーテル
化合物のポリエチレンオキサイド鎖およびポリプロピレ
ンオキサイド鎖とイオン交換性の層状化合物とのマイク
ロポーラス構造とが絡まって良好な成形性と十分な機械
的強度が付与されることとなる。
[Function] In the solid electrode composition thus obtained, the ionic compound MX forms a complex with the polyether compound and the ion-exchangeable layered compound, and the ionic compound MX forms a complex between the crystals of the layered compound. It is retained at a high concentration on the surface and forms an advantageous path for ion conduction. In addition, the carbon powder and the metallic aluminum or aluminum alloy powder are uniformly mixed with the solvent and the ion-exchangeable layered compound due to the surface active effect of the polyether compound. Furthermore, when adding and mixing ion conductive powder, the polyether compound prevents agglomeration of the metal powder and ensures uniform mixing and dispersion of the solvent and the ion exchange layered compound, carbon powder, metal aluminum powder, or their alloy powder. enable. In this way, high electronic and ionic conductivity and homogeneity are achieved. As a result, an electrode composition with low polarization is obtained. That is, as the battery reaction progresses, the negative electrode metal repeatedly precipitates and dissolves on the carbon powder, metal aluminum, or its alloy powder, but the electrode composition of the present invention is homogeneous and has a large electrode area, so that the current is localized. It's hard to concentrate. Furthermore, the presence of the ion-exchange layered compound makes it difficult for the negative electrode metal to precipitate in one direction, so that the negative electrode metal does not break through the electrolyte layer and precipitate, thereby preventing short-circuiting between the two electrodes. In addition, polyethylene oxide chains of polyether compounds and/or
Alternatively, the propylene oxide chain, or the polyethylene oxide chain and polypropylene oxide chain of the polyether compound are entangled with the microporous structure of the ion exchange layered compound, giving good moldability and sufficient mechanical strength. .

【0008】[0008]

【実施例】以下に本発明の一実施例を説明するが、本発
明は以下の実施例に限定されるものではない。また、以
下の実施例において部、%、比は特に断わらない限り重
量部、重量%、重量比を表わす。
[Example] An example of the present invention will be described below, but the present invention is not limited to the following example. Further, in the following examples, parts, percentages, and ratios represent parts by weight, percentages by weight, and weight ratios unless otherwise specified.

【0009】本実施例の炭素材料としては、天然黒鉛、
人造黒鉛、無定形炭素、繊維状、粉末状、石油ピッチ系
、石炭コークス系のいずれも用いることができる。粒子
あるいは繊維の大きさは、直径あるいは繊維径が0.0
1〜10μm、繊維長が数μmから数mmまでが望まし
い。金属アルミニウムまたはその合金粉末としては、A
l, Al−Fe, Al−Si, Al−Zn, A
l−Li, Al−Zn−Siなどの超急冷により得ら
れたフレーク状のものを空気あるいは窒素などの不活性
ガス中で機械的な粉砕により得られた球状あるいは無定
形の粉末が用いられる。粒子の大きさは、直径1μm〜
100μmが望ましい。炭素材料とアルミニウムまたは
アルミニウム合金粉末との混合割合は、アルミニウムま
たはアルミニウム合金粉末1部に対し炭素材料粉末0.
01〜5.0部、望ましくは0.05〜0.5部である
。炭素材料が0.01部以下であるとアルミニウムまた
はアルミニウム合金粉末との均一分散が困難になり、炭
素粉末が凝集しアルミニウムあるいはアルミニウム合金
粒子間の電導性が不良になり、電極として有効に働かな
くなる。また5.0部以上になるとアルミニウムまたは
アルミニウム合金粉末粒子が炭素粒子で厚く覆われてし
まい、電解質との接触が断たれ、電極電位が不安定にな
ったり分極が大きくなったりする。
The carbon materials used in this example include natural graphite,
Any of artificial graphite, amorphous carbon, fibrous, powdered, petroleum pitch-based, and coal-coke-based materials can be used. The size of particles or fibers is 0.0 in diameter or fiber diameter.
It is desirable that the fiber length is 1 to 10 μm, and the fiber length is from several μm to several mm. As metal aluminum or its alloy powder, A
l, Al-Fe, Al-Si, Al-Zn, A
Spherical or amorphous powder obtained by mechanically pulverizing flakes obtained by ultra-quenching l-Li, Al-Zn-Si, etc. in air or an inert gas such as nitrogen is used. The particle size is from 1 μm in diameter
100 μm is desirable. The mixing ratio of the carbon material and the aluminum or aluminum alloy powder is 1 part of the aluminum or aluminum alloy powder to 0.0 parts of the carbon material powder.
01 to 5.0 parts, preferably 0.05 to 0.5 parts. If the carbon material is less than 0.01 part, it will be difficult to uniformly disperse the aluminum or aluminum alloy powder, the carbon powder will aggregate, the conductivity between aluminum or aluminum alloy particles will be poor, and the material will not work effectively as an electrode. . If the amount exceeds 5.0 parts, the aluminum or aluminum alloy powder particles will be thickly covered with carbon particles, and contact with the electrolyte will be cut off, resulting in unstable electrode potential and increased polarization.

【0010】本発明のポリアミン化合物にエチレンオキ
サイドまたはプロピレンオキサイドを付加したポリエー
テル化合物は、あるいはポリアミン化合物にエチレンオ
キサイドおよびプロピレンオキサイドを付加したポリア
ミン化合物は、ポリアミン化合物にアルカリ触媒下で1
00ー180℃、1〜10気圧でエチレンオキサイドま
たはプロピレンオキサイドを付加反応する、あるいはエ
チレンオキサイドおよびプロピレンオキサイドを付加反
応することにより得ることができる。ポリアミン化合物
としては、ポリエチレンイミン、ポリアルキレンポリア
ミンあるいはそれらの誘導体を用いることができる。ポ
リアルキレンポリアミンとして、ジエチレントリアミン
、トリエチレンテトラミン、ヘキサメチレンテトラミン
、ジプロピレントリアミンなどを挙げることができる。
The polyether compound of the present invention is obtained by adding ethylene oxide or propylene oxide to a polyamine compound, or the polyamine compound is obtained by adding ethylene oxide and propylene oxide to a polyamine compound.
It can be obtained by addition reaction of ethylene oxide or propylene oxide or ethylene oxide and propylene oxide at 00-180°C and 1-10 atm. As the polyamine compound, polyethyleneimine, polyalkylene polyamine, or derivatives thereof can be used. Examples of polyalkylene polyamines include diethylenetriamine, triethylenetetramine, hexamethylenetetramine, and dipropylenetriamine.

【0011】エチレンオキサイドとプロピレンオキサイ
ドの付加モル数はポリアミン化合物の活性水素1個当り
2〜500モルが望ましい。付加するエチレンオキサイ
ド(EO)とプロピレンオキサイド(PO)との比は、
80/20〜10/90(=EO/PO)である。この
ようにして得られるポリエーテルの平均分子量は1,0
00〜500万である。このポリエーテル化合物の添加
量は、固形電極組成物全量に対し、0.5から20%が
望ましい。
The number of moles of ethylene oxide and propylene oxide added is preferably 2 to 500 moles per active hydrogen of the polyamine compound. The ratio of ethylene oxide (EO) and propylene oxide (PO) to be added is:
The ratio is 80/20 to 10/90 (=EO/PO). The average molecular weight of the polyether thus obtained is 1.0
00 to 5 million. The amount of this polyether compound added is preferably 0.5 to 20% based on the total amount of the solid electrode composition.

【0012】イオン性物質としては、特に制限はないが
、LiI,LiClO4,LiCF3SO3,LiPF
6, LiBF4,LiSCN,LiAsF6などの可
溶性のリチウム塩が用いられる。
[0012] There are no particular restrictions on the ionic substance, but LiI, LiClO4, LiCF3SO3, LiPF
6. Soluble lithium salts such as LiBF4, LiSCN, LiAsF6 are used.

【0013】イオン交換性の層状化合物としては、モン
モリロナイト、ヘクトライト、サポナイト、スメクタイ
トなどのけい酸塩を含む粘土鉱物、りん酸ジルコニウム
、りん酸チタニウムなどのりん酸エステル、バナジン酸
、アンチモン酸、タングステン酸、あるいは、それらを
第4級アンモニウム塩などの有機カチオンあるいはエチ
レンオキサイド、プロピレンオキサイドなどの有機の極
性化合物で変性したものが挙げられる。
Examples of ion exchange layered compounds include clay minerals containing silicates such as montmorillonite, hectorite, saponite, and smectite, phosphate esters such as zirconium phosphate and titanium phosphate, vanadate, antimonic acid, and tungsten. Examples include acids, or those modified with organic cations such as quaternary ammonium salts, or organic polar compounds such as ethylene oxide and propylene oxide.

【0014】さらにイオン伝導性の粉末としては、Li
I、LiI・H2O、Li−β−Al2O3、LiI−
Li2S−B2S3、PEO−LiCF3SO3などの
リチウムイオン伝導性固体電解質が望ましく用いられる
。イオン伝導性粉末の添加量は、固形電極組成物の成形
性が損なわれない限り制限はない。
Furthermore, as the ion conductive powder, Li
I, LiI・H2O, Li-β-Al2O3, LiI-
Lithium ion conductive solid electrolytes such as Li2S-B2S3 and PEO-LiCF3SO3 are preferably used. There is no limit to the amount of ion conductive powder added as long as the moldability of the solid electrode composition is not impaired.

【0015】本発明の固形電極組成物はつぎのようにし
て得られる。イオン性化合物を1〜50%溶解した溶剤
にイオン交換性の層状化合物粉末を1〜50%となるよ
うに加え、つぎにEO鎖あるいはPO鎖を有するポリエ
ーテル化合物、あるいはEO鎖およびPO鎖を有するポ
リエーテル化合物をスラリー全体に対して0.1〜20
%の割合になるように加え、ディスパーサなどの混合粉
砕機により粉砕混合して固形分含量が5〜95%の電解
質スラリーを調製する。
The solid electrode composition of the present invention can be obtained as follows. Add 1 to 50% ion exchange layered compound powder to a solvent in which 1 to 50% of an ionic compound is dissolved, and then add a polyether compound having an EO chain or a PO chain, or a polyether compound having an EO chain or a PO chain. 0.1 to 20 of the polyether compound with respect to the entire slurry
%, and then pulverized and mixed using a mixer such as a disperser to prepare an electrolyte slurry having a solid content of 5 to 95%.

【0016】また、イオン性化合物を1〜50%溶解し
た溶剤にEO鎖あるいはPO鎖を有するポリエーテル化
合物、あるいはEO鎖およびPO鎖を有するポリエーテ
ル化合物を0.1〜20%含むポリエーテル化合物溶液
に、炭素粉末とアルミニウムまたはアルミニウム合金粉
末とをあらかじめ混合した粉末を添加し電極スラリーと
する。 つぎに、電解質スラリーと電極スラリーを混合して電極
組成物スラリーを得る。混合は、直径が3〜10mmア
ルミナ球と一緒にアルミナボールミル中で行うのが望ま
しい。このようにして得られた電極組成物スラリーを、
テフロン板やナイロンメッシュシートなどの支持体上に
流延あるいは塗布して成形した後、溶剤を一部あるいは
全部散逸させることで固形電解質組成物を得ることがで
きる。支持体がメッシュ状であれば支持体を一体化した
ままで固形電極組成物として用いることも可能である。 必要に応じ、これらの工程は相対湿度が40%以下の乾
燥雰囲気中で行われる。
[0016] In addition, a polyether compound having an EO chain or a PO chain, or a polyether compound containing 0.1 to 20% of a polyether compound having an EO chain and a PO chain in a solvent in which an ionic compound is dissolved from 1 to 50%. A pre-mixed powder of carbon powder and aluminum or aluminum alloy powder is added to the solution to form an electrode slurry. Next, the electrolyte slurry and the electrode slurry are mixed to obtain an electrode composition slurry. Mixing is preferably carried out in an alumina ball mill with alumina balls having a diameter of 3 to 10 mm. The electrode composition slurry thus obtained is
A solid electrolyte composition can be obtained by casting or coating on a support such as a Teflon plate or a nylon mesh sheet, and then dissipating some or all of the solvent. If the support is in the form of a mesh, it is possible to use it as a solid electrode composition with the support integrated. If necessary, these steps are performed in a dry atmosphere with a relative humidity of 40% or less.

【0017】また、溶剤としては、アセトン、メチルエ
チルケトン、メチルイソブチルケトンなどのケトン系溶
剤、n−ヘキサン、n−ヘプタン、n−オクタン、シク
ロヘキサンなどの飽和炭化水素系溶剤、ベンゼン、トル
エン、キシレンなどの芳香族系溶剤、酢酸エチル、酢酸
ブチル、プロピレンカーボネートなどのエステル系溶剤
、メタノール、エタノール、イソプロピルアルコール、
エチレングリコール、グリセリン、ポリエチレングリコ
ールなどのアルコール系溶剤、アセトニトリルなどのニ
トリル類、あるいは水が用いられる。
Examples of the solvent include ketone solvents such as acetone, methyl ethyl ketone, and methyl isobutyl ketone, saturated hydrocarbon solvents such as n-hexane, n-heptane, n-octane, and cyclohexane, and benzene, toluene, and xylene. Aromatic solvents, ester solvents such as ethyl acetate, butyl acetate, propylene carbonate, methanol, ethanol, isopropyl alcohol,
Alcohol solvents such as ethylene glycol, glycerin, and polyethylene glycol, nitriles such as acetonitrile, or water are used.

【0018】(実施例1)分子内に10個のN原子を含
有するポリエチレンイミンにエチレンオキサイド(EO
)とプロピレンオキサイド(PO)をEOとPOの比が
30/70となるように付加して得た平均分子量が18
0,000のポリエーテル化合物をアセトニトリルに溶
解し20%のポリエーテル溶液を調製した。
(Example 1) Ethylene oxide (EO) was added to polyethyleneimine containing 10 N atoms in the molecule.
) and propylene oxide (PO) so that the ratio of EO to PO is 30/70, the average molecular weight obtained is 18
A 20% polyether solution was prepared by dissolving 0,000% polyether compound in acetonitrile.

【0019】さらに、イオン性物質としてLiCF3S
O3を10%溶解したポリエーテル溶液に、固形分含量
が30%となるように平均粒径が15μmのγーりん酸
ジルコニウム粉末を添加し、40℃で24時間撹半混合
し電解質スラリーを得た。つぎに、ポリエーテル溶液に
平均粒径が18μmの純度99.8%の金属アルミニウ
ム粉末1部と黒鉛化度48%、平均粒径が2μmの人造
黒鉛粉末0.1部との混合粉末を固形分含量が50%と
なるように加え40℃で24時間混合し電極スラリーを
得た。電解質スラリーと電極スラリーとを固形分比が1
:2となるようにアルミナボールミル中で24時間混合
して電極組成物スラリーを得た。電極組成物スラリーを
平滑なテフロン製の板の上でドクターブレードを用い塗
布した後、130℃の乾燥アルゴン気流中で1時間乾燥
し、さらに5時間真空乾燥することで、大きさ  80
x80mm、厚さ210μmのシート状の固形電極組成
物を得た。また、電極組成物の電気化学特性を評価する
電解セルの構成用として、電解質スラリーのみを同様に
して塗布乾燥して大きさ80x80mm、厚さ90ミク
ロンの電解質シートを作製した。
Furthermore, LiCF3S is used as an ionic substance.
γ-zirconium phosphate powder with an average particle size of 15 μm was added to a polyether solution in which 10% O3 was dissolved so that the solid content was 30%, and the mixture was stirred and mixed at 40°C for 24 hours to obtain an electrolyte slurry. Ta. Next, a mixed powder of 1 part of 99.8% pure metal aluminum powder with an average particle size of 18 μm and 0.1 part of artificial graphite powder with a graphitization degree of 48% and an average particle size of 2 μm was solidified in a polyether solution. The mixture was added so that the content was 50% and mixed at 40° C. for 24 hours to obtain an electrode slurry. The solid content ratio of the electrolyte slurry and electrode slurry is 1.
:2 in an alumina ball mill for 24 hours to obtain an electrode composition slurry. After applying the electrode composition slurry on a smooth Teflon plate using a doctor blade, it was dried in a dry argon stream at 130°C for 1 hour, and then vacuum dried for 5 hours to reduce the size to 80.
A sheet-like solid electrode composition having a size of 80 mm and a thickness of 210 μm was obtained. Further, for the construction of an electrolytic cell for evaluating the electrochemical properties of the electrode composition, an electrolyte sheet having a size of 80 x 80 mm and a thickness of 90 microns was prepared by applying and drying only the electrolyte slurry in the same manner.

【0020】(実施例2)窒素ガス雰囲気中で粉砕した
球状の平均粒径が40μmのAl−Si合金(Si含量
:25原子%)粉末1部と、平均粒径7μm、純度99
.99%の高純度天然黒鉛0.1部とをエタノールを分
散媒として混合し、乾燥したものを電極粉末として用い
、トリエチレンテトラミンにEOを付加することで得た
平均分子量が65,000のポリエーテル化合物をアセ
トニトリルに溶解した10%のポリエーテル溶液と、平
均粒径が25μmのモンモリロナイト粉末、イオン性物
質としてトリフルオロスルフォン酸リチウム(LiCF
3SO3)とを用いた以外は実施例1と同様にして、厚
さが300μmのシート状電極組成物と厚さが110μ
mのシート状電解質を作製した。
(Example 2) One part of spherical Al-Si alloy (Si content: 25 atomic %) powder with an average particle size of 40 μm crushed in a nitrogen gas atmosphere and an average particle size of 7 μm with a purity of 99
.. A polyester with an average molecular weight of 65,000 obtained by mixing 0.1 part of 99% high-purity natural graphite with ethanol as a dispersion medium and drying it was used as an electrode powder and adding EO to triethylenetetramine. A 10% polyether solution in which an ether compound was dissolved in acetonitrile, montmorillonite powder with an average particle size of 25 μm, and lithium trifluorosulfonate (LiCF) as an ionic substance.
A sheet-like electrode composition with a thickness of 300 μm and a sheet-like electrode composition with a thickness of 110 μm were prepared in the same manner as in Example 1 except that 3SO3) was used.
A sheet-like electrolyte of m was prepared.

【0021】(実施例3)空気中で粉砕した平均粒径が
12μmの無定形Al−Cu合金(Cu含量:25原子
%)粉末1部と一次粒子の平均粒径0.01μmのファ
ーネスブラック0.05部とをアセトニトリル中を分散
媒として混合、乾燥したものを電極粉末として用い、ヘ
キサメチレンテトラミンにEOとPOをEO/PO=4
0/60の割合で付加して得た平均分子量が15,00
0のポリエーテル化合物をアセトニトリルに溶解した1
0%のポリエーテル溶液と、平均粒径が8μmのγーり
ん酸ジルコニウム粉末と、イオン性物質として過塩素酸
リチウム(LiClO4)を用い、さらに、イオン伝導
性固体電解質としてLi3NとLiIとB2O3からな
るリチウム化合物を固形分重量として5%混合した以外
は実施例1と同様にして大きさが80x80mm、厚さ
が135μmのシート状電極組成物と、厚さが65μm
のシート状電解質を作製した。
(Example 3) 1 part of amorphous Al-Cu alloy (Cu content: 25 atomic %) powder with an average particle size of 12 μm pulverized in air and furnace black 0 with an average particle size of primary particles of 0.01 μm 05 parts of EO and PO were mixed in acetonitrile as a dispersion medium, dried and used as an electrode powder, and EO and PO were mixed in hexamethylenetetramine at EO/PO=4.
The average molecular weight obtained by adding at a ratio of 0/60 is 15,00
0 polyether compound dissolved in acetonitrile 1
Using a 0% polyether solution, γ-zirconium phosphate powder with an average particle size of 8 μm, lithium perchlorate (LiClO4) as an ionic substance, and Li3N, LiI, and B2O3 as an ion-conductive solid electrolyte. A sheet-like electrode composition with a size of 80 x 80 mm and a thickness of 135 μm and a sheet-like electrode composition with a thickness of 65 μm were prepared in the same manner as in Example 1 except that 5% of the lithium compound was mixed as a solid content weight.
A sheet-like electrolyte was prepared.

【0022】(比較例)LiCF3SO3をエチレンオ
キサイド1分子当り8分の1個溶解した平均分子量が4
80万のポリエチレンオキサイドよりなる高分子固体電
解質と、実施例2と同様の電極粉末とを混合・乾燥して
厚さ305μmのシート状の電極組成物を作製した。ま
た、厚さ115μmのシート状電解質を作製した。 電極組成物の特性評価 実施例1〜3と比較例で得られた電極組成物を直径10
mmの円板に打ち抜き、特性試験用の試料とした。また
、各々の実施例で作製したシート状電解質を直径10m
mに打ち抜き電解セル構成用に用いた。電解質円板2枚
を、その間に参照電極用の線径が50μmの銀線を挟み
重ね電解質層を形成し、電解質層の片面に直径10mm
、厚さ1mmの金属リチウム円板を置き、もう一方の面
に電極円板を配置し、さらにその上下に白金円板を配置
した後、全体を50kg/cm2の圧力で上下から加圧
した状態で、水分が2ppm以下のアルゴンガス雰囲気
中で80℃で3時間加熱し試験セルA(実施例1)、試
験セルB(実施例2)、試験セルC(実施例3)、試験
セルD(比較例)を組み立てた。電極円板を動作極、金
属リチウム極を対極、銀線を参照極として試験セルをゼ
ロVを中心に±1.5Vの範囲で、電位を0→1.5→
0→−1.5→0→1.5Vと直線的に掃引速度5mV
/sで繰り返し変化さた。±0.6〜±1.1V付近に
電流のピークが現れ、ピーク電流値は充放電サイクルの
進行と共に変化する。20、50、100、200サイ
クル後の還元電流のピークの電位と電流値を(表1)に
示す。
(Comparative example) The average molecular weight of one-eighth of LiCF3SO3 dissolved per molecule of ethylene oxide is 4.
A polymer solid electrolyte made of 800,000% polyethylene oxide and the same electrode powder as in Example 2 were mixed and dried to prepare a sheet-like electrode composition with a thickness of 305 μm. Further, a sheet-like electrolyte having a thickness of 115 μm was produced. Characteristic Evaluation of Electrode Compositions The electrode compositions obtained in Examples 1 to 3 and Comparative Examples were
A disk of mm was punched out and used as a sample for characteristic testing. In addition, the sheet-shaped electrolyte produced in each example was 10 m in diameter.
It was punched out and used for constructing an electrolytic cell. Two electrolyte discs are stacked with a silver wire with a wire diameter of 50 μm for a reference electrode sandwiched between them to form an electrolyte layer, and a diameter of 10 mm is placed on one side of the electrolyte layer.
, a metal lithium disk with a thickness of 1 mm was placed, an electrode disk was placed on the other side, and platinum disks were placed above and below it, and the whole was pressurized from above and below at a pressure of 50 kg/cm2. The test cell A (Example 1), test cell B (Example 2), test cell C (Example 3), test cell D ( Comparative example) was assembled. Using the electrode disk as the working electrode, the metal lithium electrode as the counter electrode, and the silver wire as the reference electrode, the potential of the test cell was changed from 0 → 1.5 → in the range of ±1.5 V around zero V.
Sweep speed 5mV linearly from 0 → -1.5 → 0 → 1.5V
/s to change repeatedly. A current peak appears around ±0.6 to ±1.1 V, and the peak current value changes as the charge/discharge cycle progresses. The peak potential and current value of the reduction current after 20, 50, 100, and 200 cycles are shown in (Table 1).

【0023】[0023]

【表1】[Table 1]

【0024】(表1)に示した結果から明らかなように
、本発明の電極組成物によれば、比較例の電極組成物に
較べ大きなピーク電流値が得られ、分極が小さい。また
、充放電サイクルの進行によるピーク電流値の低下も小
さい。また、電極組成物の機械強度を、評価するため長
さ40mm幅5mmの成形体を半径が50mmの曲面に
沿って1秒間に2回の割合で繰り返し折り曲げて、破断
するまでの回数で評価したところ、800回の折り曲げ
試験後でも破断することなく元の形状を保っていた。優
れた機械強度を有していることがわかる。
As is clear from the results shown in Table 1, the electrode composition of the present invention provides a larger peak current value and smaller polarization than the electrode composition of the comparative example. Further, the decrease in peak current value due to progress of charge/discharge cycles is also small. In addition, in order to evaluate the mechanical strength of the electrode composition, a molded body with a length of 40 mm and a width of 5 mm was bent repeatedly along a curved surface with a radius of 50 mm at a rate of 2 times per second, and the number of times until it broke was evaluated. However, even after 800 bending tests, it maintained its original shape without breaking. It can be seen that it has excellent mechanical strength.

【0025】[0025]

【発明の効果】以上の実施例の説明からも明かなように
本発明によれば、エチレンオキサイド鎖またはプロピレ
ンオキサイド鎖を有する特定のポリエーテル化合物、あ
るいはエチレンオキサイド鎖およびプロピレンオキサイ
ド鎖を有する特定のポリエーテル化合物の作用により電
極材料粉末が均一に分散された電極面積が大きく、かつ
均質な電極組成物を提供することができる。このポリエ
ーテル化合物は、イオン交換性の層状化合物と複合体を
形成し、層状化合物の結晶の層間あるいは表面に高濃度
に保持されイオン伝導に有利な経路を形成し、電極組成
物内にあって電池反応の円滑な進行に必要なイオン伝導
の経路を提供する。本発明の電極組成物によれば電子お
よびイオンの伝導経路が均一に形成され、その結果とし
て分極の小さい電極組成物が得られる。
Effects of the Invention As is clear from the description of the examples above, according to the present invention, a specific polyether compound having an ethylene oxide chain or a propylene oxide chain, or a specific polyether compound having an ethylene oxide chain and a propylene oxide chain, Due to the action of the polyether compound, it is possible to provide a homogeneous electrode composition with a large electrode area in which the electrode material powder is uniformly dispersed. This polyether compound forms a complex with the ion-exchangeable layered compound, is held at a high concentration between the layers or on the surface of the layered compound's crystals, forms an advantageous path for ion conduction, and is present in the electrode composition. Provides the ionic conduction path necessary for the smooth progression of battery reactions. According to the electrode composition of the present invention, electron and ion conduction paths are uniformly formed, and as a result, an electrode composition with low polarization can be obtained.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】炭素粉末と、金属アルミニウムまたはその
合金粉末と、ポリアミン化合物にエチレンオキサイドま
たはプロピレンオキサイドのいずれかを付加したポリエ
ーテル化合物、あるいはポリアミン化合物にエチレンオ
キサイドおよびプロピレンオキサイドを付加したポリエ
ーテル化合物と、イオン交換性の層状化合物と、式MX
で表されるイオン性物質(ただし、Mは電界の作用で固
形電解質組成物内を移動する金属イオン、プロトン、ア
ンモニウムイオンであり、Xは強酸のアニオンである)
を少なくとも含有する固形電極組成物。
Claim 1: Carbon powder, metallic aluminum or its alloy powder, and a polyether compound obtained by adding either ethylene oxide or propylene oxide to a polyamine compound, or a polyether compound obtained by adding ethylene oxide and propylene oxide to a polyamine compound. , an ion exchange layered compound, and a formula MX
An ionic substance represented by
A solid electrode composition containing at least
JP3007499A 1991-01-25 1991-01-25 Solid electrode composition Expired - Fee Related JP2529474B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3007499A JP2529474B2 (en) 1991-01-25 1991-01-25 Solid electrode composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3007499A JP2529474B2 (en) 1991-01-25 1991-01-25 Solid electrode composition

Publications (2)

Publication Number Publication Date
JPH04248256A true JPH04248256A (en) 1992-09-03
JP2529474B2 JP2529474B2 (en) 1996-08-28

Family

ID=11667474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3007499A Expired - Fee Related JP2529474B2 (en) 1991-01-25 1991-01-25 Solid electrode composition

Country Status (1)

Country Link
JP (1) JP2529474B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013020967A (en) * 2011-07-07 2013-01-31 Samsung Sdi Co Ltd Electrode for lithium secondary battery, method of manufacturing the same, and lithium secondary battery including the same
JP2013084503A (en) * 2011-10-12 2013-05-09 Showa Denko Kk Negative electrode active material for lithium secondary batteries, and method of manufacturing the same
CN107069921A (en) * 2017-01-23 2017-08-18 中国科学院青岛生物能源与过程研究所 The long long-life high-energy-density unmanned plane integrated drive generator of continuation of the journey of one kind

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013020967A (en) * 2011-07-07 2013-01-31 Samsung Sdi Co Ltd Electrode for lithium secondary battery, method of manufacturing the same, and lithium secondary battery including the same
JP2013084503A (en) * 2011-10-12 2013-05-09 Showa Denko Kk Negative electrode active material for lithium secondary batteries, and method of manufacturing the same
CN107069921A (en) * 2017-01-23 2017-08-18 中国科学院青岛生物能源与过程研究所 The long long-life high-energy-density unmanned plane integrated drive generator of continuation of the journey of one kind

Also Published As

Publication number Publication date
JP2529474B2 (en) 1996-08-28

Similar Documents

Publication Publication Date Title
Chen et al. Recent advances in lithium–sulfur batteries
KR100332080B1 (en) Solid electrolyte and battery
KR101375381B1 (en) Co-crushed mixture of an active material and of a conductive material, preparation methods and uses thereof
ES2716611T3 (en) Graphene powder, electrode paste for the lithium-ion battery and electrodes for the lithium-ion battery
JP6607959B2 (en) Electrode material, electrode sheet for all-solid-state secondary battery, all-solid-state secondary battery, electrode sheet for all-solid-state secondary battery, and method for producing all-solid-state secondary battery
KR101367217B1 (en) High performance litmus-polymer cell comprising silicon nano-particles substituted with polymer and self-assemble block copolymer
Chen et al. MoO 2–ordered mesoporous carbon hybrids as anode materials with highly improved rate capability and reversible capacity for lithium-ion battery
KR102178542B1 (en) Metal tin-carbon complex, method for producing said complex, negative electrode active material for non-aqueous lithium secondary batteries which is produced using said complex, negative electrode for non-aqueous lithium secondary batteries which comprises said negative electrode active material, and non-aqueous lithium secondary battery
Novikova et al. Electrical conductivity and electrochemical characteristics of Na 3 V 2 (PO 4) 3-based NASICON-type materials
Wang et al. Enhanced electrochemical properties of nanocomposite polymer electrolyte based on copolymer with exfoliated clays
JP2940181B2 (en) Solid electrode composition
Dimri et al. ZnFe2O4 nanoparticles assisted ion transport behavior in a sodium ion conducting polymer electrolyte
Kebede et al. The electrical and electrochemical properties of graphene nanoplatelets modified 75V2O5–25P2O5 glass as a promising anode material for lithium ion battery
Piffet et al. Aqueous processing of flexible, free-standing Li4Ti5O12 electrodes for Li-ion batteries
TW522601B (en) nonaqueous organic secondary cell
JPH04248258A (en) Solid electrode composition
JPH04248256A (en) Solid electrode composition
JP4495531B2 (en) Granular composite carbon material and method for producing the same, negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2929726B2 (en) Solid electrode composition
Wang et al. A particle–carbon matrix architecture for long-term cycle stability of ZnFe 2 O 4 anode
Kitaura et al. Mechanochemical synthesis of α-Fe2O3 nanoparticles and their application to all-solid-state lithium batteries
JP3038945B2 (en) Lithium secondary battery
JP2001210375A (en) Solid electrolyte battery
JPH04267056A (en) Solid electrode composition
KR20140091152A (en) Electrode formulation, method for preparing the same, and electrode commprising the same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees