JPH04247918A - Thermocompression molding method of thermosetting-fiber-reinforced resin sheet material - Google Patents

Thermocompression molding method of thermosetting-fiber-reinforced resin sheet material

Info

Publication number
JPH04247918A
JPH04247918A JP779691A JP779691A JPH04247918A JP H04247918 A JPH04247918 A JP H04247918A JP 779691 A JP779691 A JP 779691A JP 779691 A JP779691 A JP 779691A JP H04247918 A JPH04247918 A JP H04247918A
Authority
JP
Japan
Prior art keywords
mold
force
temperature
thermosetting
lower mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP779691A
Other languages
Japanese (ja)
Inventor
Shohei Kawasaki
章平 川崎
Mitsuo Okubo
光夫 大久保
Masaharu Takeshima
武島 正治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP779691A priority Critical patent/JPH04247918A/en
Publication of JPH04247918A publication Critical patent/JPH04247918A/en
Pending legal-status Critical Current

Links

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Abstract

PURPOSE:To improve productivity by shortening a molding cycle without deterio rating a quality, in a thermocompression molding method of a thermosetting fiber-reinforced resin sheet. CONSTITUTION:A sheet molding compound (SMC) 50 having a thickness of about 2mm is manufactured by infiltrating thermosetting unsaturated polyester resin paste containing t-butyl peroxy isopropyl cabonate into a glass fiber as a curing catalyst. A top force 10 and bottom force 20 are heated at 130 deg.C by circulating heating oil within the top force and bottom force by making use of a heating and control device 40 of the heating oil. Thirty sheets of the SMCs 50 are charged to the bottom force 20 by piling them upon one another, onto which the top force 10 is lowered and mold clamping is performed. Immediately after that, high-temperature heating oil is cerculated within the top force and bottom force by changing over to a heating and control device 30 of the heating oil, the top force 10 and bottom force 20 are heated at 150 deg.C and the SMC 50 is cured. A mold clamping time is 205 seconds and a good quality bathtublike molded product is obtained in a comparatively short time.

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、シートモールディング
コンパウンド(SMC)等の熱硬化性繊維強化樹脂シー
ト材料の熱圧縮成形方法に関する。 【0002】 【従来の技術】SMC等の熱硬化性繊維強化樹脂シート
材料は、熱圧縮成形方法により各種の製品形状に成形さ
れる。具体的には、予め所定温度に加熱された下金型と
上金型とからなる金型を用い、この金型の下金型上に複
数枚の上記材料を重ねて装填し、これに上金型を降下さ
せて型締めすることにより、各種の製品形状に成形され
る。 【0003】この場合、特に、硬化の速い材料を使用す
ると、下金型上に装填された材料は、下金型からの熱に
よって金型を締めきるまでの間でゲル化が始まる。この
ようにゲル化した材料が長い時間下金型面に接している
と、所謂プリゲル化現象により成形品の表面の肌あれ、
あばた、曇り等の欠陥が生じる。 【0004】 【発明が解決しようとする課題】そのため、従来の熱圧
縮成形方法においては、一般に下金型の温度を上金型の
温度より約20℃程度低くしたり或いはゲル化の遅い材
料を使用して、材料を充填し金型を締めきるまでの間に
ゲル化が始まらないようにしてプリゲル化現象を防止し
ている。 【0005】ところが、下金型の温度を成形完了時まで
低くしたり或いは硬化の遅い材料を使用する場合は、成
形時間が長くなり生産性が悪くなる。本発明は、上記の
問題を解決するものであり、その目的とするところは、
成形時間を短縮して生産性を向上させ、しかも品質の良
好な成形品を製造することができる熱硬化性繊維強化樹
脂シート材料の熱圧縮成形方法を提供することにある。 【0006】 【課題を解決するための手段】本発明の熱硬化性繊維強
化樹脂シート材料の熱圧縮成形方法は、上金型内及び下
金型内に熱媒体を供給して、上金型及び下金型を成形温
度よりも低温に加熱保持し、この下金型に熱硬化性繊維
強化樹脂シート材料を装填し型締めした後、上記熱媒体
をより高温の熱媒体に切替え供給して上金型及び下金型
の温度を成形温度に加熱保持し材料を硬化させることを
特徴とし、そのことにより上記の目的が達成される。 【0007】本発明において、熱硬化性繊維強化樹脂シ
ート材料としては、通常、シートモールディングコンパ
ウンド(SMC)が用いられる。このSMCは、例えば
つぎに述べるような公知の方法で製造される。先ず、不
飽和ポリエステルをスチレンモノマー等の樹脂架橋用の
モノマーで希釈した慣用の液状不飽和ポリエステル樹脂
に硬化触媒を配合し、さらに必要に応じて化学増粘剤、
充填剤、収縮防止用樹脂、離型剤、安定剤、着色剤等を
配合して不飽和ポリエステル樹脂ペーストを調製する。 【0008】次ぎに、このペーストを支持フィルムに塗
布し、この塗布面にガラスロービング等を短く切断した
短繊維をシート状に集積する。その後、この短繊維の集
積物に上記と同様なペーストが塗布された支持フィルム
の塗布面を重ね合わせ、引き続いて一対の無端ベルト及
び複数対のロールからなる移送装置の間隙に通し、これ
を巻き取った後熟成する。SMCの厚さは一般に1〜1
0mm程度である。 【0009】硬化触媒としては、10時間半減期温度が
100 ℃よりも低い有機過酸化物、例えばt−ブチル
パーオキシイソプロピルカーボネート(10時間半減期
温度97℃) 、t−ブチルパーオキシ−2−エチルヘ
キサノエート(10時間半減期温度74℃) 、ベンゾ
イルパーオキサイド(10時間半減期温度72℃) 等
の単独或いはこれ等の混合物からなる有機過酸化物が好
適に用いられる。 【0010】化学増粘剤としては、酸化マグネシウムや
水酸化マグネシウムなどが用いられる。充填剤としては
、炭酸カルシウムやクレーや水酸化アルミニウムなど用
いられる。また、離型剤としては、ステアリン酸亜鉛や
ステアリン酸カルシウムなど用いられる。安定剤として
は、ハイドロキノンやパラベンゾキノンなどが用いられ
る。   【0011】強化繊維としては、一般に、モノフィラメ
ントの直径が1〜50μ、長さが5〜150 mmのガ
ラス繊維ロービングが好適に用いられる。上記の熱硬化
性樹脂ペーストと強化繊維との混合割合は、必要とする
成形体の物性により適宜決定されるが、一般に、SMC
中の強化繊維が5〜70重量%となるように混合される
。また、支持フィルムとしては、一般に厚さが10〜1
00 μのポリエチレンフィルム、ポリプロピレンフィ
ルム、ナイロンフィルム、ポリエステルフィルムなどが
用いられる。 【0012】以下、図面を参照しながら、本発明を具体
的に説明する。図1は本発明の一実施態様を示す説明図
である。図1において、10は上金型、20は下金型で
ある。この上金型10の内部及び下金型20の内部には
、スチームやオイルのような熱媒体を供給するための多
数の管路11及び管路21がそれぞれ配設されている。 30は上金型10及び下金型20へ供給する成形温度の
熱媒体の加熱制御装置、40は上金型10及び下金型2
0へ供給する成形温度よりも低い温度の熱媒体の加熱制
御装置である。 【0013】加熱制御装置30と多数の管路11とはフ
レキシブル配管31により連結されている。多数の管路
11と多数の管路21とはフレキシブル配管32により
連結されている。多数の管路21と加熱制御装置30と
はフレキシブル配管33により連結されている。そして
、成形温度に加熱された熱媒体が、加熱制御装置30、
配管31、多数の管路11、配管32、多数の管路21
、配管33をこの順に通って矢印方向に循環するように
なされている。この熱媒体により上金型10及び下金型
20が成形温度に加熱保持される。 【0014】また、加熱制御装置40にはフレキシブル
配管41が連結され、この配管41は配管31の途中に
連結されている。配管33の途中にはフレキシブル配管
42が連結され、この配管42は加熱制御装置40に連
結されている。そして、成形温度よりも低温に加熱され
た熱媒体が、加熱制御装置40、配管41、多数の管路
11、配管32、多数の管路21、配管42をこの順に
通って矢印方向に循環するようになされている。この熱
媒体により上金型10及び下金型20が成形温度よりも
低温に加熱保持される。 【0015】なお、配管31及び41には、熱媒体の供
給ポンプ34及び43がそれぞれ設けられている。また
、配管31、33、41及び42には、バルブ35、3
6、44及び45がそれぞれ設けられている。このよう
に構成された熱圧縮成形装置において、先ず、バルブ3
5、36を閉じ、バルブ44、45を開けて、成形温度
よりも低温(例えば、110 〜130 ℃) に加熱
された熱媒体を、加熱制御装置40、配管41、多数の
管路11、配管32、多数の管路21、配管42をこの
順に通って矢印方向に循環させ、上金型10及び下金型
20を成形温度よりも低温に加熱保持する。 【0016】次ぎに、SMC等の熱硬化性繊維強化樹脂
シート材料50を下金型20に装填する。熱硬化性繊維
強化樹脂シート材料50は、通常、複数枚が重ねて装填
される。そして、この下金型20に上金型10を降下さ
せて一定圧力( 一般に70〜150kgf/cm2)
で型締めする。その後、バルブ44、45を閉じ、バル
ブ35、36を開けて、成形温度(例えば、145 〜
155 ℃) に加熱された熱媒体に切替え、この熱媒
体を、加熱制御装置30、配管31、多数の管路11、
配管32、多数の管路21、配管33をこの順に通って
矢印方向に循環させ、上金型10及び下金型20を成形
温度に加熱保持する。 【0017】このようにしてシート材料50が成形温度
に加熱保持され、シート材料中の樹脂が硬化する。その
後、脱型して繊維強化樹脂成形体を得る。この場合、型
締め時間( 型締め開始から脱型までの時間) は、シ
ート材料50の硬化性により異なるが、一般に10〜3
00 秒とされる。 【0018】 【作用】このように、上金型内及び下金型内に熱媒体を
供給して上金型及び下金型を成形温度よりも低温に加熱
保持し、この下金型に熱硬化性繊維強化樹脂シート材料
を装填し型締めした後、上記熱媒体をより高温の熱媒体
に切替え供給して上金型及び下金型を成形温度に加熱保
持し材料を硬化させると、下金型に装填された材料は、
下金型の温度が低いので、金型を締めきるまでの間でゲ
ル化が始まることが防止される。 【0019】そして、型締めした後、上金型内及び下金
型内に、より高温の熱媒体を切替え供給して上金型及び
下金型の温度を成形温度に加熱すると、上金型及び下金
型はこの熱媒体により速やかに成形温度に加熱保持され
る。 【0020】 【実施例】以下、本発明の実施例及び比較例を示す。 実施例1 不飽和ポリエステル40重量部、スチレンモノマー60
重量部、ポリスチレン10重量部、t−ブチルパーオキ
シイソプロピルカーボネート(10時間半減期温度が9
7℃) 1重量部、炭酸カルシウム140 重量部、酸
化マグネシウム1重量部、ステアリン酸亜鉛4重量部と
を混合して熱硬化性樹脂ペーストを調製した。また、強
化用繊維として、ガラスロービング(モノフィラメント
径約13μ、番手4630g/km)を用意した。 【0021】先ず、上記の多数のガラスロービングを、
ロータリーカッターにより約25mmの長さの短繊維に
切断して下方へ落下させた。一方、厚さ50μのナイロ
ンフィルムからなる上下の支持フィルムを、上下一対の
無端ベルトに支持させて供給した。そして、この上下の
支持フィルムの内側に前記の熱硬化性樹脂ペーストを塗
布した。 【0022】次いで、この熱硬化性樹脂ペーストが塗布
された下側の支持フィルムの内側の塗布面( 上面) 
に上記の短繊維を落下させ、これをシート状に集積しな
がら移送した。引き続いて、このシート状に集積された
短繊維層に、熱硬化性樹脂ペーストが塗布された上側の
支持フィルムの内側の塗布面(下面)を重ね合わせた。 その後、この積層物を上下一対の無端ベルト及び複数対
のロールからなる移送装置の間隙に通し、これをロール
状に巻き取った。この場合、シートの製造速度は3m/
分、シートの厚さは約2mm、ガラス繊維含有量は約2
8重量%であった。このようにして製造されたSMCの
巻物( 約100kg) を、約50℃の温風恒温室に
約1日間放置して熟成した。熟成したSMCを裁断して
これを30枚用意した。 【0023】図1に示す方法で、上金型内及び下金型内
に加熱オイルを循環させて上金型及び下金型を130 
℃に加熱保持した。そして、この下金型に上記の裁断し
たSMCを30枚重ね合わせた状態で装填し、これに上
金型を降下させて100kgf/cm2 の圧力で型締
めする。その後、直ちに上金型内及び下金型内に別の加
熱オイルを切替え供給し循環させて、上金型及び下金型
の温度を150 ℃度に加熱保持した。型締め時間20
5 秒で金型内のSMCを加熱硬化させ、その後脱型し
て浴槽状成形品を得た。 【0024】この浴槽状成形品の表面には、肌あれ、あ
ばた、曇り等の欠陥は発生せず、品質は良好であった。 また、型締め時間は205 秒で比較的短くなった。比
較例1実施例1において、上金型と下金型とはいずれも
初めから150 ℃に加熱保持した。それ以外は実施例
1と同様に行った。 【0025】この場合、型締め時間は180 秒で比較
的短くなった。しかし、得られた浴槽状成形品の表面に
、肌あれ及び曇りが発生し、品質が悪くなった。 比較例2 実施例1において、型締め後、上金型内及び下金型内に
別の加熱オイルを切替えて循環させずに、上金型及び下
金型をそのまま130 ℃に加熱保持した。また、型締
め時間は300 秒に変更した。それ以外は実施例1と
同様に行った。 【0026】この場合、得られた浴槽状成形品の表面に
、肌あれ、あばた、曇り等の欠陥は発生せず、品質は良
好であった。しかし、型締め時間は300 秒で比較的
長くなった。 比較例3 実施例1において、t−ブチルパーオキシイソプロピル
カーボネート(10時間半減期温度が97℃) 1重量
部を、t−ブチルパーオキシベンゾエート(10 時間
半減期温度が105 ℃) 1重量部に替えた。また、
上金型と下金型とはいずれも初めから150 ℃に加熱
保持した。それ以外は実施例1と同様に行った。 【0027】この場合、得られた浴槽状成形品の表面に
、肌あれ、あばた、曇り等の欠陥は発生せず、品質は良
好であった。しかし、型締め時間は220 秒で比較的
長くなった。 【0028】 【発明の効果】上述の通り、本発明の熱圧縮成形方法に
よれば、硬化の速い材料を使用しても、下金型に装填さ
れたこの材料は、金型を締めきるまでの間は下金型の温
度が低いので、金型を締めきるまでの間にゲル化が始ま
ることが防止される。それゆえ、所謂プリゲル化現象に
よる成形品の表面の肌あれ、あばた、曇り等の欠陥は発
生せず、品質の良好な繊維強化樹脂成形品を製造するこ
とができる。 【0029】また、下金型に装填された上記の硬化の速
い材料は、金型を締めきった後は上金型及び下金型の温
度が速やかに同じような成形温度となるので、速やかに
加熱されて速やかに硬化する。それゆえ、成形時間を短
縮して生産性を向上させることができる。
Description: FIELD OF THE INVENTION The present invention relates to a method for thermocompression molding thermosetting fiber reinforced resin sheet materials such as sheet molding compounds (SMC). [0002] Thermosetting fiber-reinforced resin sheet materials such as SMC are molded into various product shapes by a thermocompression molding method. Specifically, a mold consisting of a lower mold and an upper mold that have been heated to a predetermined temperature is used, a plurality of the above-mentioned materials are stacked and loaded onto the lower mold of the mold, and the upper mold is loaded onto the lower mold. By lowering the mold and clamping it, various product shapes are formed. [0003] In this case, particularly when a fast-curing material is used, the material loaded onto the lower mold begins to gel until the mold is completely closed due to heat from the lower mold. If the gelled material is in contact with the lower mold surface for a long time, the so-called pre-gelation phenomenon will cause roughness and roughness on the surface of the molded product.
Defects such as pockmarks and cloudiness occur. [0004] Therefore, in conventional hot compression molding methods, the temperature of the lower mold is generally lowered by about 20°C than the temperature of the upper mold, or a material that gels slowly is used. This prevents gelation from starting before the material is filled and the mold is completely closed, thereby preventing the pre-gelation phenomenon. However, if the temperature of the lower mold is kept low until the completion of molding or if a material that hardens slowly is used, the molding time becomes longer and productivity deteriorates. The present invention solves the above problems, and its purpose is to:
It is an object of the present invention to provide a method for thermocompression molding of a thermosetting fiber-reinforced resin sheet material, which can shorten molding time, improve productivity, and produce molded products of good quality. [0006] Means for Solving the Problems The method of thermocompression molding of a thermosetting fiber reinforced resin sheet material of the present invention includes supplying a heating medium into an upper mold and a lower mold, The lower mold is heated and held at a lower temperature than the molding temperature, and after the lower mold is loaded with a thermosetting fiber-reinforced resin sheet material and the mold is clamped, the heat medium is switched to a higher temperature heat medium and supplied. The method is characterized in that the temperature of the upper mold and the lower mold is kept at the molding temperature to harden the material, thereby achieving the above object. [0007] In the present invention, sheet molding compound (SMC) is usually used as the thermosetting fiber-reinforced resin sheet material. This SMC is manufactured, for example, by a known method as described below. First, a curing catalyst is added to a conventional liquid unsaturated polyester resin made by diluting an unsaturated polyester with a resin crosslinking monomer such as a styrene monomer, and if necessary, a chemical thickener,
An unsaturated polyester resin paste is prepared by blending a filler, a shrinkage prevention resin, a mold release agent, a stabilizer, a coloring agent, etc. [0008] Next, this paste is applied to a support film, and short fibers obtained by cutting glass rovings etc. into short lengths are accumulated in the form of a sheet on the applied surface. Thereafter, the coated surface of a support film coated with the same paste as above is superimposed on this aggregate of short fibers, and then it is passed through the gap of a transfer device consisting of a pair of endless belts and multiple pairs of rolls, and then wound. It will ripen after being harvested. The thickness of SMC is generally 1 to 1
It is about 0 mm. As a curing catalyst, organic peroxides with a 10-hour half-life temperature lower than 100°C, such as t-butylperoxyisopropyl carbonate (10-hour half-life temperature 97°C), t-butylperoxy-2- Organic peroxides such as ethylhexanoate (10-hour half-life temperature: 74°C), benzoyl peroxide (10-hour half-life temperature: 72°C), or a mixture thereof, are preferably used. [0010] As the chemical thickener, magnesium oxide, magnesium hydroxide, etc. are used. As the filler, calcium carbonate, clay, aluminum hydroxide, etc. are used. Further, as a mold release agent, zinc stearate, calcium stearate, etc. are used. As the stabilizer, hydroquinone, parabenzoquinone, etc. are used. As the reinforcing fibers, glass fiber rovings having a monofilament diameter of 1 to 50 μm and a length of 5 to 150 mm are generally suitably used. The mixing ratio of the above-mentioned thermosetting resin paste and reinforcing fibers is appropriately determined depending on the required physical properties of the molded product, but in general, SMC
The reinforcing fibers are mixed in an amount of 5 to 70% by weight. In addition, the supporting film generally has a thickness of 10 to 1
00 μm polyethylene film, polypropylene film, nylon film, polyester film, etc. are used. The present invention will be specifically explained below with reference to the drawings. FIG. 1 is an explanatory diagram showing one embodiment of the present invention. In FIG. 1, 10 is an upper mold, and 20 is a lower mold. Inside the upper mold 10 and the lower mold 20, a large number of pipes 11 and 21 are arranged, respectively, for supplying a heat medium such as steam or oil. 30 is a heating control device for a heating medium at a molding temperature to be supplied to the upper mold 10 and the lower mold 20; 40 is a heating control device for the heating medium at the molding temperature; 40 is the upper mold 10 and the lower mold 2;
This is a heating control device for a heat medium at a temperature lower than the molding temperature supplied to the heat transfer medium. The heating control device 30 and the plurality of pipe lines 11 are connected by flexible piping 31. The multiple conduits 11 and the multiple conduits 21 are connected by flexible piping 32. The multiple pipe lines 21 and the heating control device 30 are connected by flexible piping 33. Then, the heat medium heated to the molding temperature is heated to the heating control device 30,
Piping 31, multiple pipelines 11, piping 32, multiple pipelines 21
, and piping 33 in this order to circulate in the direction of the arrow. This heating medium heats and maintains the upper mold 10 and the lower mold 20 at the molding temperature. Further, a flexible pipe 41 is connected to the heating control device 40, and this pipe 41 is connected to the middle of the pipe 31. A flexible pipe 42 is connected to the middle of the pipe 33, and this pipe 42 is connected to a heating control device 40. The heat medium heated to a temperature lower than the molding temperature circulates in the direction of the arrow through the heating control device 40, piping 41, multiple pipe lines 11, piping 32, multiple pipe lines 21, and piping 42 in this order. It is done like this. This heating medium heats and maintains the upper mold 10 and the lower mold 20 at a temperature lower than the molding temperature. Note that the pipes 31 and 41 are provided with heat medium supply pumps 34 and 43, respectively. Also, valves 35, 3 are provided in the pipes 31, 33, 41 and 42.
6, 44 and 45 are provided, respectively. In the heat compression molding apparatus configured in this way, first, the valve 3
5 and 36 are closed, valves 44 and 45 are opened, and a heat medium heated to a temperature lower than the molding temperature (for example, 110 to 130°C) is transferred to the heating control device 40, piping 41, a large number of conduits 11, and the piping. 32, the upper mold 10 and the lower mold 20 are heated and maintained at a temperature lower than the molding temperature by circulating in the direction of the arrow through a large number of conduits 21 and piping 42 in this order. Next, a thermosetting fiber-reinforced resin sheet material 50 such as SMC is loaded into the lower mold 20. A plurality of thermosetting fiber-reinforced resin sheet materials 50 are usually stacked and loaded. Then, the upper mold 10 is lowered onto the lower mold 20 under a constant pressure (generally 70 to 150 kgf/cm2).
Clamp the mold with. Thereafter, the valves 44 and 45 are closed, the valves 35 and 36 are opened, and the molding temperature (for example, 145 to
155° C.), and this heat medium is transferred to the heating control device 30, piping 31, a large number of conduits 11,
The upper mold 10 and the lower mold 20 are heated and maintained at the molding temperature by circulating in the direction of the arrow through the pipe 32, a large number of pipes 21, and the pipe 33 in this order. In this way, the sheet material 50 is heated and maintained at the molding temperature, and the resin in the sheet material is cured. Thereafter, the mold is demolded to obtain a fiber-reinforced resin molded body. In this case, the mold clamping time (time from the start of mold clamping to demolding) varies depending on the hardenability of the sheet material 50, but is generally 10 to 3
00 seconds. [Operation] In this way, a heating medium is supplied into the upper mold and the lower mold to heat and maintain the upper mold and the lower mold at a temperature lower than the molding temperature, and heat is applied to the lower mold. After loading the curable fiber-reinforced resin sheet material and clamping the mold, the heat medium is switched to a higher temperature heat medium and the upper and lower molds are heated and maintained at the molding temperature to harden the material. The material loaded into the mold is
Since the temperature of the lower mold is low, gelation is prevented from starting until the mold is completely tightened. After the mold is clamped, a higher temperature heat medium is switched and supplied into the upper mold and the lower mold to heat the upper mold and the lower mold to the molding temperature. The lower mold is quickly heated and maintained at the molding temperature by this heating medium. [Examples] Examples and comparative examples of the present invention will be shown below. Example 1 40 parts by weight of unsaturated polyester, 60 parts by weight of styrene monomer
parts by weight, 10 parts by weight of polystyrene, t-butyl peroxyisopropyl carbonate (10 hour half-life temperature: 9
7° C.), 140 parts by weight of calcium carbonate, 1 part by weight of magnesium oxide, and 4 parts by weight of zinc stearate to prepare a thermosetting resin paste. In addition, glass roving (monofilament diameter approximately 13 μm, count 4630 g/km) was prepared as a reinforcing fiber. First, the above-mentioned large number of glass rovings are
The fibers were cut into short fibers with a length of about 25 mm using a rotary cutter and allowed to fall downward. On the other hand, upper and lower supporting films made of nylon films having a thickness of 50 μm were supplied while being supported by a pair of upper and lower endless belts. Then, the above thermosetting resin paste was applied to the inside of the upper and lower support films. Next, the inner coating surface (top surface) of the lower support film is coated with this thermosetting resin paste.
The above-mentioned short fibers were dropped, and the short fibers were transferred while being accumulated in a sheet form. Subsequently, the inner coated surface (lower surface) of the upper support film coated with the thermosetting resin paste was superimposed on the short fiber layer accumulated in the sheet form. Thereafter, this laminate was passed through a gap in a transfer device consisting of a pair of upper and lower endless belts and a plurality of pairs of rolls, and wound up into a roll. In this case, the sheet manufacturing speed is 3 m/
The thickness of the sheet is approximately 2 mm, and the glass fiber content is approximately 2 mm.
It was 8% by weight. The thus produced SMC scroll (approximately 100 kg) was left to mature in a thermostatic chamber at approximately 50° C. for approximately one day. Thirty sheets of aged SMC were cut and prepared. By the method shown in FIG. 1, heating oil is circulated in the upper mold and the lower mold to heat the upper mold and the lower mold to 130.
The temperature was maintained at ℃. Then, 30 sheets of the above-described cut SMC were stacked and loaded into the lower mold, and the upper mold was lowered thereto and the molds were clamped at a pressure of 100 kgf/cm2. Immediately thereafter, another heated oil was supplied and circulated into the upper mold and the lower mold to maintain the temperature of the upper mold and the lower mold at 150°C. Mold clamping time 20
The SMC in the mold was heated and hardened for 5 seconds, and then removed from the mold to obtain a bathtub-shaped molded product. [0024] The surface of this bathtub-shaped molded product was free from defects such as rough skin, pockmarks, and cloudiness, and was of good quality. Furthermore, the mold clamping time was relatively short at 205 seconds. Comparative Example 1 In Example 1, both the upper mold and the lower mold were heated and maintained at 150° C. from the beginning. Other than that, the same procedure as in Example 1 was carried out. In this case, the mold clamping time was 180 seconds, which was relatively short. However, rough skin and cloudiness occurred on the surface of the obtained bathtub-shaped molded product, resulting in poor quality. Comparative Example 2 In Example 1, after the mold clamping, the upper mold and the lower mold were heated and maintained at 130° C. without switching and circulating another heating oil in the upper mold and the lower mold. In addition, the mold clamping time was changed to 300 seconds. Other than that, the same procedure as in Example 1 was carried out. In this case, defects such as rough skin, pockmarks, and cloudiness did not occur on the surface of the obtained bathtub-shaped molded product, and the quality was good. However, the mold clamping time was relatively long at 300 seconds. Comparative Example 3 In Example 1, 1 part by weight of t-butylperoxyisopropyl carbonate (10-hour half-life temperature: 97°C) was replaced with 1 part by weight of t-butylperoxybenzoate (10-hour half-life temperature: 105°C). I changed it. Also,
Both the upper mold and the lower mold were heated and maintained at 150°C from the beginning. Other than that, the same procedure as in Example 1 was carried out. In this case, defects such as rough skin, pockmarks, and cloudiness did not occur on the surface of the obtained bathtub-shaped molded product, and the quality was good. However, the mold clamping time was relatively long at 220 seconds. [0028] As described above, according to the heat compression molding method of the present invention, even if a fast-curing material is used, the material loaded into the lower mold will not be able to harden until the mold is completely closed. Since the temperature of the lower mold is low during this period, gelation is prevented from starting before the mold is completely tightened. Therefore, defects such as rough skin, pockmarks, and cloudiness on the surface of the molded product due to the so-called pre-gelation phenomenon do not occur, and a fiber-reinforced resin molded product of good quality can be produced. In addition, the above-mentioned fast-curing material loaded into the lower mold can be quickly cured because the temperatures of the upper mold and lower mold quickly reach the same molding temperature after the mold has been completely tightened. It hardens quickly when heated. Therefore, molding time can be shortened and productivity can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の一実施態様を示す説明図である。FIG. 1 is an explanatory diagram showing one embodiment of the present invention.

【符号の説明】[Explanation of symbols]

10  上金型 11  上金型内の管路 20  下金型 21  下金型内の管路 30  熱媒体の加熱制御装置 40  熱媒体の加熱制御装置 10 Upper mold 11 Pipe line in the upper mold 20 Lower mold 21 Pipe line in the lower mold 30 Heating control device for heat medium 40 Heating control device for heat medium

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  上金型内及び下金型内に熱媒体を供給
して、上金型及び下金型を成形温度よりも低温に加熱保
持し、この下金型に熱硬化性繊維強化樹脂シート材料を
装填し型締めした後、上記熱媒体をより高温の熱媒体に
切替え供給して上金型及び下金型の温度を成形温度に加
熱保持し材料を硬化させることを特徴とする熱硬化性繊
維強化樹脂シート材料の熱圧縮成形方法。
Claim 1: A heating medium is supplied into the upper mold and the lower mold to heat and maintain the upper mold and the lower mold at a temperature lower than the molding temperature, and the lower mold is reinforced with thermosetting fibers. After the resin sheet material is loaded and the mold is clamped, the heat medium is switched to a higher temperature heat medium and the temperature of the upper mold and the lower mold is maintained at the molding temperature to harden the material. A method for thermocompression molding of thermosetting fiber-reinforced resin sheet materials.
JP779691A 1991-01-25 1991-01-25 Thermocompression molding method of thermosetting-fiber-reinforced resin sheet material Pending JPH04247918A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP779691A JPH04247918A (en) 1991-01-25 1991-01-25 Thermocompression molding method of thermosetting-fiber-reinforced resin sheet material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP779691A JPH04247918A (en) 1991-01-25 1991-01-25 Thermocompression molding method of thermosetting-fiber-reinforced resin sheet material

Publications (1)

Publication Number Publication Date
JPH04247918A true JPH04247918A (en) 1992-09-03

Family

ID=11675609

Family Applications (1)

Application Number Title Priority Date Filing Date
JP779691A Pending JPH04247918A (en) 1991-01-25 1991-01-25 Thermocompression molding method of thermosetting-fiber-reinforced resin sheet material

Country Status (1)

Country Link
JP (1) JPH04247918A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100482501B1 (en) * 2002-05-14 2005-04-14 현대자동차주식회사 A method for manufacturing glass fiber reinforced thermosetting composite
KR101022576B1 (en) * 2010-07-15 2011-03-16 울산과학대학 산학협력단 Metal mold for manufacturing a automobile inner element
JP2014019012A (en) * 2012-07-17 2014-02-03 Akebono Brake Ind Co Ltd Metal mold for compression heat molding equipment, and compression heat molding equipment

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100482501B1 (en) * 2002-05-14 2005-04-14 현대자동차주식회사 A method for manufacturing glass fiber reinforced thermosetting composite
KR101022576B1 (en) * 2010-07-15 2011-03-16 울산과학대학 산학협력단 Metal mold for manufacturing a automobile inner element
JP2014019012A (en) * 2012-07-17 2014-02-03 Akebono Brake Ind Co Ltd Metal mold for compression heat molding equipment, and compression heat molding equipment

Similar Documents

Publication Publication Date Title
US4424287A (en) Polymer foam process
JP2895459B2 (en) Method and apparatus for manufacturing plastic optical transmission body
US2609319A (en) Laminated pipe and process of making same
CN112695957B (en) High-molecular waterproof coiled material and forming method thereof
CN101367953B (en) Process for preparing water-soluble polyvinyl alcohol film
JP3609783B2 (en) Insulating coil manufacturing method for rotating electrical machine
JPH04247917A (en) Thermocompression molding method of thermosetting-fiber-reinforced resin sheet material
JPH04247918A (en) Thermocompression molding method of thermosetting-fiber-reinforced resin sheet material
US2750320A (en) Process for preparing continuous plastic sheets
US3888712A (en) Method for producing fiberglass reinforced plastic composite pipes
JP2851336B2 (en) Polymer composition
JPS586736B2 (en) Seizouhouhou
EA003015B1 (en) Method of producing centrifugally cast, glass fiber reinforced plastic tubes
RU2579380C2 (en) Method of moulding components from polymer composite materials with application of double vacuum pack
JPS6025252B2 (en) Molding method for fiber-reinforced thermosetting resin using resin in-die extension method
JPH09143232A (en) Molding material composition and molding material containing the same and production of the molding material
CA1251590A (en) Process for manufacture of products from reinforced polyester resins and composites therefore
JPH04224916A (en) Thermo-compression molding method for thermosetting fiber reinforced resin sheet
JP6735885B1 (en) Regeneration method of polymer compound
JPS6131739B2 (en)
US2449390A (en) Process for the production of hard rubber
JPS61213136A (en) Continuous pultrusion method of frp pipe
CN110539507A (en) Rapid pultrusion process
GB2188636A (en) Thermoset polyester and phenolic foams having denser outer skin
JP2009165999A (en) Method for forming high viscosity thermosetting resin film